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Abstract. The primary objective of this research article is to introduce the Szász-operators [22] by initiating
the “νth-order Tricomi function” and study the approximation properties of these operators by leveraging
Korovkin’s theorem alongside a classical method based on the modulus of continuity, we explore the
convergence properties of this operator within Lipschitz-type spaces. We rigorously demonstrate the
rate of convergence and establish key properties of the proposed operator. Additionally, we provide a
detailed illustration of the convergence behavior through various graphical representations and error-
estimation tables based on numerical examples, offering a comprehensive understanding of the operator’s
effectiveness.

1. Introduction

Approximation theory has been essential in the development of computer methods by bridging the
gap between theoretical and applied mathematics. The main objective is to optimize the approximation of
functions by employing simpler or more accessible functions and procedures that rely on contemporary
approximation techniques. Positive approximation approaches are crucial in this theory and naturally
emerge in diverse issues related to the approximation of continuous functions. By providing tools and
methods for approximating complex functions, approximation theory helps bridge the gap between theo-
retical mathematics and practical problem-solving, making it an essential area of study in both pure and
applied mathematics.

Approximation theory has progressed from the initial geometric approximations made by ancient Greeks
to the polynomial techniques developed by Newton and Lagrange in the 17th and 18th centuries. It further
advanced with Fourier’s fundamental contributions to the Fourier series in the 19th century. Significant
progress in the 19th century involved Chebyshev’s invention of orthogonal polynomials and Weierstrass’s
demonstration that polynomials can approximate continuous functions. Hilbert and Banach developed
functional analysis in the 20th century, which offered a rigorous foundation for approximation in spaces
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of infinite dimensions. Korovkin’s theorem, developed by P. P. Korovkin in the 1950s, was a major break-
through that extended the understanding of convergence in approximation operators and offered valuable
tools for studying the convergence of different approximation approaches. This advancement connected
abstract ideas with real-world uses, and current investigations are further building upon these fundamental
principles in areas like machine learning and data science. Numerous researchers have explored the conver-
gence rates and properties of Korovkin-type approximation, as evidenced by studies such as [9, 10, 21, 24].
Important progress in approximation theories can be attributed to publications such as [1, 3, 5–7, 12–18, 20].

The field of approximation theory greatly benefits from the utilization of Szász-operators [22], which
expand Bernstein operators to encompass infinite intervals. Szász introduced a series of positive linear
operators:

S̃η(1̂, y) = e−ηy
∞∑

r=0

(ηy)r

r!
1̂

(
r
η

)
, (1)

where y ∈ [0,∞) and 1̂ ∈ C[0,∞), ensuring the series in equation (1) converges. Current research in ap-
proximation theory has significantly expanded the study of Szász-operators through the use of specialized
polynomials. Szász-operators, originally designed for function approximation, have been generalized in
various ways to enhance their applicability and effectiveness. These generalizations involve incorporating
specialized polynomials, which provide new sequences of operators with improved or tailored properties.

It is advantageous to establish precise terminology and clearly emphasize certain outcomes within this
framework.

Definition 1.1. [11] The modulus of continuity, represented asω( f ; σ), is defined for any function f that is uniformly
continuous on the interval [0,∞) and for any positive value of σ

ω( f ; σ) := sup
s,t∈[0,∞)
|s−t|≤σ

| f (s) − f (t)|. (2)

Observe that for any σ > 0 and for every s, t ∈ [0,∞), we can express it as follows

| f (s) − f (t)| ≤ ω( f ; σ)
(
|s − t|
σ
+ 1

)
. (3)

Definition 1.2. [23] Let f be any function within the space of real-valued bounded and uniformly continuous
functions CB[0,∞). The second modulus of continuity for f is defined as:

ω2( f ; σ) := sup
0<x≤σ

∥ f (. + 2x) − 2 f (. + x) + f (.)∥, (4)

with the associated norm

∥ f ∥CB = sup
x∈[0,∞)

| f (y)|. (5)

Lemma 1.3. [4] Let {Ln}n≥0 be a sequence of linear positive operators, with the propertyLn(1; y) = 1 and 1̃ ∈ C2[0, a].
Then:

|Ln(1̃; y) − 1̃(y)| ≤ ∥1̃′∥
√
Ln

(
(χ − y)2; y

)
+

1
2
∥1̃′′∥Ln

(
(χ − y)2; y

)
. (6)

Definition 1.4. [25] For 1 ∈ C[a, b], the second-order Steklov function of 1 is defined by

1h(y) :=
1
h

∫ h

−h

(
1 −
|t|
h

)
1(h; y + t)dt, x ∈ [a, b], (7)
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where 1(h; .) : [a − h, b + h]→ R, h > 0 is given by

1(h; y) =


L−(y), a − h ≤ y ≤ a
1(y), a ≤ y ≤ b
L+(y), b ≤ y ≤ b + h

(8)

and L−, L+ are the linear best approximations to f on the mentioned intervals.

Lemma 1.5. [25] Let fh denote the second-order Steklov function of f , where f ∈ C[a, b] and h is in the interval(
0, b−a

2

)
. The following inequalities are then valid:

∥ fh − f ∥ ≤
3
4
ω2( f ; h), (9)

∥ f ′′h ∥ ≤
3

2h2ω2( f ; h). (10)

Additionally, the Landau inequality is expressed as:

∥ f ′h∥ ≤
2
a
∥ fh∥ +

a
2
∥ f ′′h ∥. (11)

Special functions play a pivotal role in applied mathematics, serving as crucial tools for modeling and
solving complex problems across diverse disciplines. Among these, the Tricomi function is particularly
noteworthy for its applications in approximation theory. The Tricomi function, which arises in the context of
differential equations and special function theory, offers valuable insights into the behavior of solutions and
approximations. In approximation theory, it facilitates the construction of operators that approximate func-
tions with desired properties, leveraging its unique mathematical characteristics to achieve more accurate
and efficient approximations. The study and application of special functions like the Tricomi function thus
enhance our ability to solve intricate problems and improve approximation methods in various scientific
and engineering fields.

The generating function and explicit representation for defining the νth-order Tricomi functions Cν(y) is
given by [19]:

∞∑
n=−∞

Cν(y)tn = exp
(
t −

y
t

)
, t , 0 (12)

and

Cν(y) =
∞∑

r=0

(−1)ryr

r!(ν + r)!
. (13)

respectively.

In this article, we develop positive linear approximation operators using the Tricomi function of νth-
order on the interval R+ ∪ {0}. Section 2 introduces the definition of the operators and derives their central
moments. In Section 3, we establish the transformation properties and prove a global Korovkin’s theorem
for our operators. We then determine the rate of convergence using the modulus of continuity and examine
convergence within various Lipschitz-type spaces. In Section 4, we apply our operators to approximate
two functions, providing graphical comparisons between the approximated and actual functions. We also
compute the absolute error for different values of η, presenting the results in both tabular and graphical
forms. The programming codes for these computations were executed in WOLFRAM MATHEMATICA
v13.3.1 on a MacOS X 13.2.1 x86(64-bit) processor. Finally, Section 5 offers concluding remarks and discusses
potential applications.
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2. Formulation of Operators

Driven by the applications discussed earlier, this section begins by constructing positive linear operators.
We then derive several equalities that are used to analyze the convergence properties of these operators. To
develop the positive linear operators, we alter Cν(y) by substituting y with −y, yielding:

Tν(yt) := Cν(−yt) =
∞∑

r=0

(yt)r

r!(r + ν)!
. (14)

Utilizing the above equation, we can define the positive linear operators for ν, η ∈N as follows:

Jνη(1̂; y) =
1

Tν(ηy)

∞∑
r=0

(ηy)r

r!(ν + r)!
1̂

(
r(ν + r)
η

)
, (15)

where 1̂ ∈ E :=
{
1̂ ∈ CB[0,∞) : limy→∞

1̂(y)
1+y2 is finite

}
and CB[0,∞) represents the space of continuous and

bounded functions defined on [0,∞). It is important to highlight that the Banach lattice E is equipped with
the norm

∥1̂∥∗ := sup
y∈[0,∞)

|1̂(y)|
1 + y2 . (16)

The subsequent outcomes are demonstrated to be essential for establishing our primary conclusion:

Lemma 2.1. The operators specified by equation (15) form a linear and positive sequence.

Lemma 2.2. The sequence of operators Jνη(1̂; y) satisfies the following inequalities for y ∈ [0,∞):

Jνη(1; y) = 1, (17)

Jνη(t; y) = y, (18)

Jνη(t
2; y) = y2 + 2y2Tν+1(ηy)

Tν(ηy)
+

(ν + 1)y
η

, ∀η ∈N. (19)

Proof. In view of equation (14), It is obvious that Jνη(1; y) = 1.

Now, for 1̂(t) = t, equation (15) gives

Jνη(t; y) =
1

Tν(ηy)

∞∑
r=0

(ηy)r

r!(ν + r)!
r(ν + r)
η

(20)

which gives

Jνη(t; y) =
y

Tν(ηy)

∞∑
r=1

(ηy)r−1

(r − 1)!(ν + r − 1)!
. (21)

Using equation (14), we get Jνη(t; y) = y.

Finally, for 1̂(t) = t2

Jνη(t
2; y) =

1
Tν(ηy)

∞∑
r=0

(ηy)r

r!(ν + r)!
r2(ν + r)2

η2 . (22)
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We consider,

C(yt) =

∞∑
r=0

(yt)r

r!(ν + r)!
r2(ν + r)2

η2

=
1
η2

∞∑
r=0

(yt)r

(r − 1)!)(ν + r − 1)!
r(ν + r)

=
yt
η2

∞∑
r=1

(yt)r−1

(r − 1)!)(ν + r − 1)!
r(ν + r) (23)

which on simplification, gives

C(yt) =
yt
η2

 ∞∑
r=0

(yt)r

r!(ν + r)!
r(ν + r) + 2

∞∑
r=0

(yt)r

r!(ν + r)!
r + (ν + 1)Tν(yt)

 (24)

which, on further simplifying by using equation (14) and taking t = 1 and replacing y by ηy in equation
(24), we arrive at

C(ηy) =
ηy
η2

{
(ηy)Tν(ηy) + 2(ηy)Tν+1(ηy) + (ν + 1)Tν(ηy)

}
, (25)

which on using in equation (22), we get assertion (19).

Remark 2.3. With the aid of Wolfram Mathematica, we can observe that

lim
η→∞

Tν+1(ηy)
Tν(ηy)

= 0. (26)

We determine the central moments of the Tricomi operators as follows:

Lemma 2.4. If Λy
m(t) = (t − y)m. Then for m = 2, we have

Jνη(Λ
y
2(t); y) = 2y2Tν+1(ηy)

Tν(ηy)
+

(ν + 1)y
η

, ∀η ∈N. (27)

Proof. By using the linearity of the operators defined in equation (15), we have

Jνη(Λ
y
2(t); y) = Jνη(t

2; y) − 2yJνη(t; y) + y2Jνη(1; y). (28)

By applying equations (17), (18), and (19), we obtain the result stated in assertion (27).

3. Rate of Convergence

In this section, we will determine the convergence rate of the operators Jνη(1̂; y) using the modulus of
continuity. We will also calculate the convergence rate in various Lipschitz-type spaces.

We now establish uniform convergence using the universal Korovkin theorem as follows:

Theorem 3.1. Let 1̂ ∈ E :=
{
1̂ ∈ C[0,∞) : limy→∞

1̂(y)
1+y2 is finite

}
and C[0,∞) denotes the space of continuous func-

tions defined on [0,∞). Then the sequence of operators defined in (15) converges uniformly on the compact subsets of
the interval [0,∞), i.e.,

lim
η→∞
Jνη(1̂; y) = 1̂(y). (29)
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Proof. Using Lemma 2.2 and Remark 2.3, we obtain

lim
n→∞
Jνη(t

s; y) = ys, for s = 0, 1, 2, (30)

uniformly on the compact subsets of the interval [0,∞). Therefore, by applying the universal Korovkin
theorem [2], we derive the result in assertion (29).

From this point forward, we will present the results of the approximation.

Theorem 3.2. Assume that 1̂ is uniformly continuous on the interval [0,∞). Then, for the sequence of operators
Jνη(1̂; y), the following inequality holds:∣∣∣Jνη(1̂; y) − 1̂(y)

∣∣∣ ≤ 2ω
(
1̂;

√
Jνη(Λ

y
2(t); y)

)
, (31)

where ω is the modulus of continuity of the function as defined in (2).

Proof. Consider

∣∣∣Jνη(1̂; y) − 1̂(y)
∣∣∣ = ∣∣∣∣∣∣∣ 1
Tν(ηy)

∞∑
r=0

(ηy)r

r!(ν + r)!

[
1̂

(
r(r + ν)
η

)
− 1̂(y)

]∣∣∣∣∣∣∣ (32)

using the triangle inequality gives

∣∣∣Jνη(1̂; y) − 1̂(y)
∣∣∣ ≤ 1
Tν(ηy)

∞∑
r=0

(ηy)r

r!(r + ν)!

∣∣∣∣∣∣1̂
(

r(r + ν)
η

)
− 1̂(y)

∣∣∣∣∣∣ . (33)

By applying the definition of the modulus of continuity and referring to inequality (3), we obtain:

∣∣∣Jνη(1̂; y) − 1̂(y)
∣∣∣ ≤ 1
Tν(ηy)

∞∑
r=0

(ηy)r

r!(r + ν)!

[
1 +

1
σ

∣∣∣∣∣ r(r + ν)
η

− y
∣∣∣∣∣]ω(1̂; σ) (34)

∣∣∣Jνη(1̂; y) − 1̂(y)
∣∣∣ ≤ 1 + 1

σ
1

Tν(ηy)

∞∑
r=0

(ηy)r

r!(r + ν)!

∣∣∣∣∣ r(r + ν)
η

− y
∣∣∣∣∣
ω(1̂; σ). (35)

In view of Cauchy-Schwartz inequality, we find

∞∑
r=0

(ηy)r

r!(r + ν)!

∣∣∣∣∣ r(r + ν)
η

− y
∣∣∣∣∣ = ∞∑

r=0

√
(ηy)r

r!(r + ν)!

√
(ηy)r

r!(r + ν)!

∣∣∣∣∣ r(r + ν)
η

− y
∣∣∣∣∣ (36)

∞∑
r=0

(ηy)r

r!(r + ν)!

∣∣∣∣∣ r(r + ν)
η

− y
∣∣∣∣∣ ≤

 ∞∑
r=0

(ηy)r

r!(r + ν)!


1
2
 ∞∑

r=0

(ηy)r

r!(r + ν)!

(
r(r + ν)
η

− y
)2


1
2

. (37)

By multiplying and dividing the right-hand side of inequality (37) by
√
Tν(ηy), and considering equation

(14), we obtain:

∞∑
r=0

(ηy)r

r!(r + ν)!

∣∣∣∣∣ r(r + ν)
η

− y
∣∣∣∣∣ ≤ Tν(ηy)

{
Jνη((t − y)2; y)

} 1
2 (38)

using above inequality in inequality (35), we find∣∣∣Jνη(1̂; y) − 1̂(y)
∣∣∣ ≤ [

1 +
1
σ

√
Jνη(Λ

y
2(t); y)

]
ω(1̂; σ) (39)
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by choosing

σ =
√
Jνη(Λ

y
2(t); y)

we get assertion (31).

Now, for 0 < α ≤ 1 and x1, x2 ∈ [0,∞), Let’s introduce the following class of the functions:

Lip(α)
M

:= {ϕ : |ϕ(x1) − ϕ(x2)| ≤ M|x1 − x2|
α
}. (40)

Theorem 3.3. Suppose ϕ ∈ Lip(α)
M

. In that case,∣∣∣Jνη(ϕ; y) − ϕ(y)
∣∣∣ ≤ M [

Jνη(Λ
y
2(t); y)

] α
2 . (41)

Proof. Since, Jνη(1̂; y) is positive linear operator and ϕ ∈ Lip(α)
M
, therefore in view of equation (40), we obtain∣∣∣Jνη(ϕ; y) − ϕ(y)

∣∣∣ = ∣∣∣Jνη(ϕ(t) − ϕ(y); y)
∣∣∣ ≤ Jνη(|ϕ(t) − ϕ(y)|; y) ≤ MJνη(|t − y|α; y) (42)

which applying Hölder’s inequality to the right-hand side yields

Jνη(|t − y|α; y) =
1

Tν(ηy)

∞∑
r=0

(ηy)r

r!(r + ν)!

∣∣∣∣∣ r(r + ν)
η

− y
∣∣∣∣∣α (43)

Jνη(|t − y|α; y) =
1

Tν(ηy)

∞∑
r=0

{
(ηy)r

r!(r + ν)!

} 2−α
2

{
(ηy)r

r!(r + ν)!

} α
2
∣∣∣∣∣ r(r + ν)
η

− y
∣∣∣∣∣α (44)

Jνη(|t − y|α; y) ≤
1

Tν(ηy)
× [Tν(ηy)]

2−α
2

 1
Tν(ηy)

∞∑
r=0

(ηy)r

r!(r + ν)!


2−α

2

× [Tν(ηy)]
α
2

 1
Tν(ηy)

∞∑
r=0

(ηy)r

r!(r + ν)!

(
r(r + ν)
η

− y
)2

α
2

. (45)

In view of equations (15) and (27), the above inequality gives

Jνη(|t − y|α; y) ≤ [Jνη(1; y)]
2−α

2

[
Jνη(Λ

y
2(t); y)

] α
2 , (46)

which, by applying inequalities (42) and (46), leads to the result in assertion (41).

Theorem 3.4. Assume that ζ is a continuous function on [0,∞). Then the following holds:

∣∣∣Jνη(ζ; y) − ζ(y)
∣∣∣ ≤ 3

2

(
1 +

a
2
+

h2

2

)
ω2(ζ, h) +

2h2

a
∥ζ∥, (47)

where

h := Ωn(y) =
{
Jνη(Λ

y
2(t); y)

} 1
4

and ω2 is the second modulus of the continuity of the function ζ defined in (4).
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Proof. Let fh denote the second-order Steklov function of the function ζ. Then, we have∣∣∣Jνη(ζ; y) − ζ(y)
∣∣∣ ≤ ∣∣∣Jνη(|ζ − fh|; y)

∣∣∣ + ∣∣∣Jνη( fh; y) − fh(y)
∣∣∣ + ∣∣∣ fh(y) − ζ(y)

∣∣∣ (48)

using equation (17), we have∣∣∣Jνη(ζ; y) − ζ(y)
∣∣∣ ≤ 2∥ζ − fh∥ +

∣∣∣Jνη( fh; y) − fh(y)
∣∣∣ (49)

in view of inequality (9), above inequality becomes∣∣∣Jνη(ζ; y) − ζ(y)
∣∣∣ ≤ 3

2
ω2(ζ, h) +

∣∣∣Jνη( fh; y) − fh(y)
∣∣∣ . (50)

Considering that fh ∈ C2[0, a], it follows from inequality (6) that:∣∣∣Jνη( fh; y) − fh(y)
∣∣∣ ≤ ∥ f ′h∥

√
Jνη(Λ

y
2(t); y) +

1
2
∥ f ′′h ∥J

ν
η(Λ

y
2(t); y), (51)

now using inequality (10) in above inequality, we find∣∣∣Jνη( fh; y) − fh(y)
∣∣∣ ≤ ∥ f ′h∥

√
Jνη(Λ

y
2(t); y) +

3
4h2ω2( f , h)Jνη(Λ

y
2(t); y). (52)

Further, in view of inequalities (10) and (11), we have∣∣∣Jνη( fh; y) − fh(y)
∣∣∣ ≤ (2

a
∥ζ∥ +

3a
4h2ω2(ζ, h)

) √
Jνη(Λ

y
2(t); y) +

3
4h2ω2(ζ, h)Jνη(Λ

y
2(t); y). (53)

Thus, based on equations (50) and (53), we obtain assertion (47) by selecting

h := Ωη(y) =
{
Jνη(Λ

y
2(t); y)

} 1
4 . (54)

Remark 3.5. In Theorem 3.4, Ωη(y)→ 0 as η→∞.

4. Numerical Examples

In this section, we demonstrate the convergence of our operators using numerical examples. We present
graphical comparisons between the approximated expressions and the actual functions. Additionally, we
include graphs showing the absolute error and provide tables for various values of y and η.

Example 4.1. For η = 60, 70, 80, 90, 100, and ν = 2 the convergence rate of the operators Jνη(1̂; y) to the function

1̂(y) = y2

2 −
1

1+y2+πy is shown in Figure 1. Additionally, Table 1 presents the estimated absolute error Eη =∣∣∣Jνη(1̂; y) − 1̂(y)
∣∣∣ for various values of η, with a corresponding error graph depicting the convergence in Figure 2. It is

evident from Figure 1, Figure 2, and Table 1 that as η increases, the proposed operator (15) converges to 1̂(y).
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Figure 1: The Convergence of operators Jνη(1̂; y) to 1̂(y) = y2
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Figure 2: Absolute error of operators Jνη(1̂; y) to 1̂(y) = y2

2 −
1

1+y2+πy

Example 4.2. For η = 60, 70, 80, 90, 100, and ν = 2 the convergence rate of the operators Jνη(1̂; y) towards the

function 1̂(y) = 1
y3+π+y2 +

y
2 −

√
y

3 is depicted in Figure 3. Additionally, Table 2 provides the estimated absolute

error Eη =
∣∣∣Jνη(1̂; y) − 1̂(y)

∣∣∣ for various values of η, with the corresponding error graph illustrating the convergence
in Figure 4. It is clearly shown in Figure 3, Figure 4, and Table 2 that as η increases, the proposed operator (15)
converges to 1̂(y).
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Table 1: Error of approximation process for 1̂(y) = y2

2 −
1

1+y2+πy

y E60 E70 E80 E90 E100

0.1 0.02877 0.02655 0.02479 0.02335 0.02214
0.2 0.03797 0.03528 0.03312 0.03133 0.02981
0.3 0.03467 0.03230 0.03038 0.02878 0.02742
0.4 0.02431 0.02271 0.02140 0.02031 0.01938
0.5 0.00974 0.00921 0.00876 0.00838 0.00804
0.6 0.00748 0.00675 0.00618 0.00572 0.00535
0.7 0.02653 0.02439 0.02269 0.02129 0.02012
0.8 0.04693 0.04327 0.04035 0.03794 0.03592
0.9 0.06839 0.06313 0.05892 0.05545 0.05252
1.0 0.09076 0.08382 0.07826 0.07367 0.06980
1.1 0.11392 0.10524 0.09827 0.09252 0.08768
1.2 0.13781 0.12733 0.11891 0.11197 0.10611
1.3 0.16239 0.15005 0.14014 0.13197 0.12507
1.4 0.18763 0.17338 0.16194 0.15250 0.14453
1.5 0.21350 0.19730 0.18429 0.17354 0.16447
1.6 0.24000 0.22179 0.20717 0.19509 0.18490
1.7 0.26711 0.24685 0.23058 0.21714 0.20580
1.8 0.29482 0.27247 0.25451 0.23968 0.22716
1.9 0.32312 0.29863 0.27895 0.26270 0.24898
2.0 0.35201 0.32533 0.30390 0.28620 0.27126
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Figure 3: The Convergence of operators Jνη(1̂; y) to 1̂(y) = 1
y3+π+y2 +

y
2 −

√
y

3

Example 4.3. For η = 60, 70, 80, 90, 100, and ν = 2 the convergence rate of the operators Jνη(1̂; y) towards the

function 1̂(y) = (πy)2

3y+e + sin
( y
π

)
is depicted in Figure 5. Additionally, Table 3 provides the estimated absolute error

Eη =
∣∣∣Jνη(1̂; y) − 1̂(y)

∣∣∣ for various values of η, with the corresponding error graph illustrating the convergence in
Figure 6. It is clearly shown in Figure 5, Figure 6, and Table 3 that as η increases, the proposed operator (15) converges
to 1̂(y).



N. Raza et al. / Filomat 38:30 (2024), 10695–10708 10705

E60

E70

E80

E90

E100

0.0 0.5 1.0 1.5 2.0

0.00

0.01

0.02

0.03

0.04

Figure 4: Absolute error of operators Jνη(1̂; y) to 1̂(y) = 1
y3+π+y2 +

y
2 −

√
y

3

Table 2: Error of approximation process for 1̂(y) = 1
y3+π+y2 +

y
2 −

√
y

3

y E60 E70 E80 E90 E100

0.1 0.01488 0.01305 0.01165 0.01055 0.00968
0.2 0.00938 0.00827 0.00745 0.00683 0.00635
0.3 0.00585 0.00514 0.00462 0.00424 0.00393
0.4 0.00363 0.00310 0.00272 0.00244 0.00221
0.5 0.00289 0.00240 0.00205 0.00178 0.00156
0.6 0.00374 0.00318 0.00277 0.00244 0.00218
0.7 0.00605 0.00535 0.00482 0.00439 0.00404
0.8 0.00950 0.00862 0.00792 0.00736 0.00689
0.9 0.01366 0.01257 0.01170 0.01098 0.01038
1.0 0.01811 0.01680 0.01574 0.01487 0.01413
1.1 0.02247 0.02095 0.01971 0.01868 0.01780
1.2 0.02647 0.02474 0.02334 0.02216 0.02115
1.3 0.02993 0.02802 0.02646 0.02515 0.02403
1.4 0.03276 0.03069 0.02900 0.02757 0.02636
1.5 0.03494 0.03274 0.03093 0.02942 0.02812
1.6 0.03650 0.03419 0.03230 0.03071 0.02934
1.7 0.03751 0.03511 0.03315 0.03150 0.03009
1.8 0.03803 0.03557 0.03356 0.03187 0.03042
1.9 0.03815 0.03565 0.03360 0.03188 0.03041
2.0 0.03794 0.03541 0.03334 0.03161 0.03014
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Figure 5: The Convergence of operators Jνη(1̂; y) to 1̂(y) = (πy)2
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Figure 6: Absolute error of operators Jνη(1̂; y) to 1̂(y) = (πy)2
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Table 3: Error of approximation process for 1̂(y) = (πy)2

3y+e + sin
( y
π

)
y E60 E70 E80 E90 E100

0.1 0.01488 0.01305 0.01165 0.01055 0.00968
0.2 0.00938 0.00827 0.00745 0.00683 0.00635
0.3 0.00585 0.00514 0.00462 0.00424 0.00393
0.4 0.00363 0.00310 0.00272 0.00244 0.00221
0.5 0.00289 0.00240 0.00205 0.00178 0.00156
0.6 0.00374 0.00318 0.00277 0.00244 0.00218
0.7 0.00605 0.00535 0.00482 0.00439 0.00404
0.8 0.00950 0.00862 0.00792 0.00736 0.00689
0.9 0.01366 0.01257 0.01170 0.01098 0.01038
1.0 0.01811 0.01680 0.01574 0.01487 0.01413
1.1 0.02247 0.02095 0.01971 0.01868 0.01780
1.2 0.02647 0.02474 0.02334 0.02216 0.02115
1.3 0.02993 0.02802 0.02646 0.02515 0.02403
1.4 0.03276 0.03069 0.02900 0.02757 0.02636
1.5 0.03494 0.03274 0.03093 0.02942 0.02812
1.6 0.03650 0.03419 0.03230 0.03071 0.02934
1.7 0.03751 0.03511 0.03315 0.03150 0.03009
1.8 0.03803 0.03557 0.03356 0.03187 0.03042
1.9 0.03815 0.03565 0.03360 0.03188 0.03041
2.0 0.03794 0.03541 0.03334 0.03161 0.03014

5. Conclusions

In this paper, we introduce a sequence of new operators utilizing the νth-order Tricomi function. We
explore the approximation properties and convergence characteristics of the positive linear operator se-
quence in (15). Numerical examples are conducted using Wolfram Mathematica, and we also examine
the approximation error, providing graphical representations of both the approximated function 1̂ and the
associated error.

In future research, scholars can explore a new sequence of operators that extends those presented in
(15). For example, modifications or generalizations of these operators could be pursued to achieve more
accurate approximations. Additionally, the results obtained from this study are valuable and applicable in
areas such as mathematical analysis and mathematical physics. Moreover, the proposed operators could
be applied to study and manage real-world issues, such as analyzing the daily average global surface air
temperature [8]. This sequence of operators holds significant potential for influencing various scientific
fields.
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