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On subbalancing numbers involving the third balancing number in the
Diophantine equation
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Abstract. In this paper, we consider subbalancing numbers formed by using the third balancing number in
the Diophantine equation. We obtain some algebraic identities on these numbers which are also known as
Bs-subbalancing numbers. We provide a variety of sum formulas and some divisibility properties associated
with these numbers. We also give several Pythagorean triples obtained by using Bs-subbalancing numbers.
Furthermore, we derive some functions that takes Bs-subbalancing and balancing numbers values for
Bs-subbalancing number arguments.

1. Introduction
In [6], the sequence {u,},, satisfying the recurrence relation
Unsa = TUps1 +sU,  (120) 1
is called a binary recurrence sequence such that r and s are two non-zero integers and 7> + 4s # 0. In fact,
(1) is a linear homogeneous recurrence relation and is also commonly known as binary recurrence. The
characteristic equation for this sequence is

X —rx—-s5=0 (2)

It is obvious that the equation (1) has two different roots as & and . Thus, there are fix coefficients a and b
such that

u, = aa” + bp" (n=0) 3)
Let ug and u; be the initial terms of the sequence u,,. From (3), we get

_ ugﬁ—ul

e

U — Upxx

and b= ﬁ——a (4)
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Thus, from (3) and (4)

_ (uof —u)a" + (u1 — upa)p"

u, =
n ﬁ—a

is obtained which is the Binet formula for the sequence u,,.

Two of the most well-known binary recurrence sequences that have been studied are Fibonacci and
Lucas sequences. The recurrence relations of Fibonacci and Lucas sequences which is obtained by taking
r = s = 1in (1) are the same. The initial terms of these sequences Fy = 0,F; = 1and Ly = 2,L; = 1,
respectively (for further details see [7, 8, 12, 30]).

Another binary recurrence sequences are the sequences of balancing and Lucas-balancing numbers. In
[1], the sequence of balancing numbers is defined as the sequence of n that satisfy the Diophantine equation

1+2+--+m-D=m+D)+n+2)+---+(n+7r) (6)
for some positive integers r, which is called the balancer of 7. The n' balancing number is denoted by B,,.
If the Diophantine equation (6) is rearranged, we get
s m+rn+r+1)

—2n+1)+ V8n2 +1
n:f and r= 5

)

From (7), B, is a balancing number if and only if 8B2 + 1 is a perfect square. In [20], the square root of

8B2 + 1 is called the n" Lucas-balancing number and denoted by C, = +/8B2 + 1. The recurrence relations
of the sequences of balancing and Lucas-balancing numbers, obtained by taking * = 6 and s = —1in (1), are
as follows:

Byyi = 6B, — By (I’l = 2)
Ci1 = 6C,—Cyq (n>2)

where By =1,B, =6and C; =3,C, = 17.

From (2), the roots of the characteristic equation for the sequence of balancing and Lucas-balancing

numbers are @ = 3 +2V2 and f = 3 - 2V2. By taking a; = 1+ V2 and @, = 1 — V2 and by using (5), the
Binet formulas for balancing and Lucas-balancing numbers are obtained as

a3 — 3"
and C, =

42

In [22], the sequence of cobalancing numbers is defined as the sequence of # that satisfy the Diophantine
equation

2n 2n

B, = 5

1424+ +n=m+1)+m+2)+---+(n+r) 8)

for some positive integers r, which is called the cobalancer of n. Cobalancing numbers are also called the
balancers of balancing numbers. The 1" cobalancing number is denoted by b,.

If the Diophantine equation (8) is rearranged, we get

m+r)(n+r+1) —2n+1)+ V8n2 +8n+1
————~ and r=

1) =
nn+1) > >
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From (9), b, is a cobalancing number if and only if 862 + 8b, + 1 is a perfect square. In [23], the square

root of 802 + 8b,, + 1 is called the n'" Lucas-cobalancing number and denoted by c, = +/8b% + 8b,, + 1. The
recurrence relations of the sequence of cobalancing and Lucas-cobalancing numbers are as follows:

bn+1 = 6bn - bn—l +2 (7’1 > 2)
Cnel = 6Cy — Cyt (Tl 2 2)
whereb; =0,bp =2andc; =1,¢p = 7.
As it is seen, while Lucas-cobalancing numbers satisfy the linear homogeneous recurrence relation,

cobalancing numbers satisfy the linear non-homogeneous recurrence relation.

n—1 _a2n—l

2
The Binet formula for cobalancing numbers is b, = [114—‘52 — %, wherea; =1+ V2and ap =1 - V2.
a%n—l_'_a%n—l

Furthermore by using (5), the Binet formula for Lucas-cobalancing numbers is obtained as ¢, = +—5-*—,

wherea; =1+ V2and a, =1- V2.

Since the first research on balancing numbers was made, balancing numbers have attracted the attention
of many researchers. In [14], (a, b)-balancing numbers were presented as an extended concept of balancing
numbers. Later in [21], Panda and Panda introduced almost balancing numbers and called these two types
of almost balancing numbers as A;-balancing and A,-balancing numbers. Furthermore in [27], Tekcan
obtained several algebraic relations on Aj-balancing and A,-balancing numbers (for further details on bal-
ancing numbers, see also [2, 9, 10, 15-19, 28]).

In addition to these, in [3] balancing numbers were generalized to t-balancing numbers, with the defi-
nition given as follows:

A positive integer 7 is called a t-balancing number if
1+2+-+n=m+1+)+m+2+)+--+(n+r+i)

for some positive integers r, which is called the t-balancer of n. The n'" t-balancing number is denoted by
B!, (for further details, see [4, 29]).

In [5], Davala and Panda defined D-subbalancing numbers as n numbers that satisfy the following
Diophantine equation for some positive integer  and fixed positive integer D.

1424+---+mn-1D)+D=mn+)+n+2)+---+(n+7r) (10)
It follows from (10) that

e —(2n+1)+ V8n2 +8D +1
B 2

(11)
It is obvious from (11) that 7 is a D-subbalancing number if and only if 8n + 8D + 1 is a perfect square.

In [5], it was deduced that D-subbalancing numbers cannot be constructed for every D. In order to de-
termine the values of D such that D-subbalancing numbers can be obtained, they examined the case where
D values are taken as the terms of the sequence of cobalancing numbers. They showed that if D is taken
as the terms of the sequence of cobalancing numbers, the values of n satisfying the Diophantine equation
(10) can be found. Thus, the concept of bx-subbalancing numbers was introduced and b3-subbalancing and
bs-subbalancing numbers were examined. Later, Sar1 and Karadeniz-Gozeri [25] dealt with bs-subbalancing
numbers and obtained various new identities related to these numbers. Furthermore, they introduced b3-
Lucas subbalancing numbers and derived various algebraic identities between bs-Lucas subbalancing and
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bs-subbalancing numbers.

In [24], it was shown that if D = Ty (k > 1), the values of n satisfying the Diophantine equation (10) can
be found. Thus, the concept of Tr-subbalancing numbers was introduced and some algebraic relations on
these numbers were obtained. In addition to these, Tx-Lucas subbalancing numbers were introduced and
several algebraic identities on these numbers were given. Later, Sar1 and Karadeniz-Gozeri [26] showed
thatif D = B,,, the values of n satisfying the Diophantine equation (10) can be found. Thus, they introduced
the concept of B,,-subbalancing numbers and proved that there exist at least two solution classes of the
Diophantine equation of B,,-subbalancing numbers. They obtained these solution classes as (¢, +2)By +b,,Ck
and (¢ + 2)Byi1 — by Cpy1, for k > 0.

In the present work, we deal with the solutions of the Diophantine equation of subbalancing numbers
related to the third balancing number. By using the third balancing number, the following Diophantine
equation is obtained:

1+2+---+m-D+Bs=m+1)+n+2)+---+(n+r)
Thus, it can be seen that the solutions of this Diophantine equation form an integer sequence called the
sequence of Bs-subbalancing numbers. We provide some new algebraic relations and several sum formulas
for this sequence. Besides these, we give some Pythagorean triples obtained by using the terms of the

sequence of Bs-subbalancing numbers. Furthermore, we present a variety of new results on the functions
related to the terms of the sequence of Bz-subbalancing numbers.

2. Preliminiaries

In order to prove the theorems in the part of the main results, we need to following theorems and
corollaries which are included in [26].

Theorem 2.1. Let (SB3),, denote the m!™ Bs-subbalancing number and B,, denote the mth balancing number . Then
(5B3)om = 34By — (SB3)2m-1
form>1.
Theorem 2.2. Let (SB3),, denote the m™ Bs-subbalancing number and B,, denote the mith balancing number . Then
(SB3)om+1 = 14(SB3)2, — 195B,,
form > 0.

Theorem 2.3. Let (SB3),, denote the m™" Bs-subbalancing number and c,, denote the mth Lucas-cobalancing number.
Then

(SB3)2m+1 = 15¢ms1 — (SB3)am

form > 0.

Theorem 2.4. Let (SB3),, denote the m'" Bs-subbalancing number. Then
(SBs)2, = (SB3)n-s(SB3)sa + 281

form > 2.
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Corollary 2.1. Let (5B3),, denote the mth Bs-subbalancing number, let B,, denote the mih balancing number and let
C,, denote the m™ Lucas-balancing number. Then

(SBs)om = 17By +Cy
(533)2m+1 = 17Bj11 — Chpna
form > 0.

Corollary 2.2. Let (SB3),, denote the mth Bs-subbalancing number and let B, denote the mth balancing number.
Then

(SBS)Zm = By +14By,
(5B3)oms1 = 14By41 + By,

form > 0.

3. Main Results

This section consists of four subsection. While the first, second and third subsections include sum
formulas, divisibility properties and Pythagorean triples regarding Bs-subbalancing numbers, the last
subsection includes the functions generating balancing and Bs-subbalancing numbers.

3.1. Sum Formulas

In this subsection, we obtain several sum formulas related to B3-subbalancing numbers by using bal-
ancing, Lucas-balancing, cobalancing and Lucas-cobalancing numbers.

Theorem 3.1. Let (SBs3),, denote the m!™ Bs-subbalancing number, b,, denote the mth cobalancing number and By,
denote the m'" balancing number. Then

m
15
Z(SBS)Zi = ?bm+1 + Bm+1
i=0
and
- 15
2(533)2i+1 = ?bmﬂ + 14B;11.
i=0

Proof. By using Corollary 2.1, we obtain

i(5B3)2i
=0

17(BO+B1+B2+B3+"'+Bm)+(C0+C1+C2+"-+Cm)
= 17(By+B1+By+Bs+---+By)+Bys1 —2(Bo+B1+ By +Bs+ -+ + By)

m
- 15 Z B; + By
i=0

15
- ?bnﬁl + Bm+1 .

Similarly, we obtain

Z(SBES)ZH-l = 17(B1+Ba+ B3+ +Byy1) = (C1 + G2 + C3 + -+ + Cpyi1)
i=0
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m m
= [17 Z B+ 17B,,,+1J - (3Bm+1 +2 Z B,}
i=1 i=1
m
= 15 Z Bi + 14B,s1
i=1
15
= 7bm+1 + 14B;41.

Corollary 3.1. Let (SB3),, denote the mth Bs-subbalancing number, b,, denote the mth cobalancing number and B,
denote the m'" balancing number. Then

2m
2(533)1 =17byn
i1

and

2m+1

Y (SB3): = 15(Byis1 + byusa).
Proof. By using Theorem 3.1, we obtain

[(SB3)2 + (SB3)s + -+ + (5B3)2m] + [(SB3)1 + (SB3)3 + - -+ + (SB3)2p-1]

[
W
&
!

15b,, 15by,
= ( 2” +Bm+1—1)+( > +14Bm)
= ( > + > 1) ( 5 =+ 7bys1 — 7by
b 15b
= (10bm+1 - ?m) + ( 2m m+1 — 7bm)
= 17by

The other case can be proved similarly.

Theorem 3.2. Let (SB3),, denote the m™" Bs-subbalancing number, c,, denote the mth Lucas-cobalancing number and
B, denote the m™ balancing number . Then

2i SB3)m _34iB +152cm+1+1
m=0 m=1

m=1

Proof. By using Theorem 2.1 and Theorem 2.3, we get

ius&)zm + (SBa)a] = 34 i B, (12)
m=1 m=1
and
Z[<SB3 Yon + (SB3)ae] = i Cst (13)
Since _

(SB3)o + Z[(SB?a)Zm—l + (5B3)2m] = (SB3)o + [(SB3)1 + (5B3)2] + [(SB3)s + (SB3)4] +

m=1
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we obtain

[(SB3)o + (SB3)1] + [(SB3)2] + (SB3)3] + - -

(SB3)o + ) [(SB3)au-1 + (SB3)au]

m=1
= Y [(SBs)an + (SB3)amsa]
m=0
Thus, we get
(SB3)o + ) [(SB3)au-1 + (SB3)au] = Z (SB3)au + (SBs)amsn].
m=1 m=0

From this equation and (12), we obtain

Y [(SBs)ou + (SBs)omaa] = 1+ ) 34B,. (14)

m=0 m=1

Further from (13) and (14), we obtain

(e8]

2| ) (SBa)zw + (SBs)ana _3423 #15Y G 1

m=0 m=1

Thus, we get

2

gk

(SB3),, = 34 Z B, +15 Z Coet + 1.
m=1 m=1

3
il
S

Theorem 3.3. Let (SB3),, denote the m'" Bs-subbalancing number and c,, denote the m™ Lucas-cobalancing number.
Then

[(SB3)21 - (SB3)21 ] =Cm+1 — 1.

1=

I
—_

i

Proof. From Corollary 2.2, we obtain

m
Z(Bm - Bi1)
P
= (B2—Bo)+ (B3 —B1) + (Bs—B2) + - + (Bys1 — Bi-1)
= By +By-1

= By + (Cm+1 - Bm+1) -1

Y [(SBs)ai = (SBs)aii]
i=1

= cu1— 1

3.2. Divisibility Properties
In this subsection, we deal with some divisibility properties regarding Bs-subbalancing numbers.
Theorem 3.4. Let (SB3),, denote the m™ Bs-subbalancing number and b,, denote the mth cobalancing number. Then

2bm+1 + 1|(SB3)2m+1 - (SBS)Zm

form > 0.
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Proof. From Corollary 2.2, we obtain
(SB3)2m+1 = (SB3)2m (14By41 + Bin) — (14By + Byi)
13(Bm+1 - Bm)
= 13 (bm+2 - bm+1 - bm+1 + bm)
2
13 (6bm+1 - bm +2- 2bm+1 + bm)

2

13(2b,41 + 1).
Thus, we obtain
2bm+1 + 1|(SB3)2m+1 - (SBS)Zm-

Theorem 3.5. Let (SB3),, denote the m"" Bs-subbalancing number and C,, denote the mth Lucas-balancing number.
Then

Cnl(SB3)2m = (SB3)2m-1
form>1.
Proof. From Corollary 2.1, we obtain
(5B3)am — (SB3)am-1 (7B + C) = (17By = Cin)
= 2C,.

Thus, we get
le(SB3)2m - (SB3)2m—1-

Corollary 3.2. Let (SB3),, denote the m'" By-subbalancing number and B,, denote the m™ balancing number. Then
Boml(SB3)2m — (SB3)am-1

form > 1.

Proof. From Theorem 3.5 and the relation between balancing and Lucas-balancing numbers, we get
By = 2B,,Cy

Bu[(SB3)am — (SB3)am-1]-

Thus, we obtain
B2wl(SB3)2m — (SB3)2m-1-

Theorem 3.6. Let (SB3),, denote the m'™ Bs-subbalancing number and B,, denote the mth balancing number. Then

Bowl(SB3)3,, — (SB3)3,, 4 (m=>1)

and
Bom+11(SB3)3,41 — (SB3)3,, (m = 0).
Proof. By using Theorem 2.1 and Theorem 3.5, we obtain
(SBS)gm - (SB3)§m_1 = [(SB3)2m - (SB?))Zm—l][(SBB)Zm + (SBS)Zm—l]

68B,,Cy
34By,.

Thus, we get
Banl(SB3)3,, = (SB3)3-1-

The other case can be proved similarly.
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3.3. Pythagorean Triples

In this subsection, we give several Pythagorean triples obtained by using Bs-subbalancing numbers. We
obtain the following theorems by using some techniques included in [11] and [13].

Theorem 3.7. Let (SB3),, denote the m'" By-subbalancing number . Then

(SB?’)im—/l -1 (SBg)im_4 +1
2 ’ 2

(SB?’)im—l -1 (SB3)421m—1 +1

2 ’ 2

(5B3)4m-4,

] and ( (5B3)am-1,

are Pythagorean triples.
Proof. We first show that (5B3)m—4 is odd. For this purpose, we assume that (SB3)4u—4 is even.

From Corollary 2.2, we get
(5B3)am-4 = 14Boy—2 + Bom-1 (15)

It follows from (15) that B,,-1 is even. Since every odd term of the sequence of balancing numbers is odd,

(SB@ )im—él $1
2

we get a contradiction. Thus, (SB3)4n-4 is odd and ( are integers.

Since
SBaE .+ (SB3)2, ,—1Y _ (SB3)}, 4 +2SBa)}, +1
3)am—4 2 4
((533)§m_4 +1 ]2
2 4

we obtain that

(SB3)ﬁm_4 -1 (SB3)421m—4 +1 ]

[ (SB3 )4m74/ 7 ’ 2

is a Pythagorean triple.

The other case can be proved similarly.

Theorem 3.8. Let (SB3),, denote the m™ Bs-subbalancing number . Then

2 2 5 )
[(533)4;11—2,(%) -1, (%) +1] and ((533)4m_3/((5332)4m—3) Y ((SB32)4m—3) +1)

are Pythagorean triples.
Proof. We first show that (SB3)4m-2 is even. For this purpose, we assume that (SB3)4y,—» is odd.

From Corollary 2.2, we get
(5B3)am-2 = 14Boy-1 + B (16)

It follows from (16) that B,,, is odd. Since every even term of the sequence of balancing numbers is even,

(533;471;72 )

2
we get a contradiction. Thus, (SB3)4n—> is even and ( + 1 are integers.
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Since

2
(SBs)2. ., + [((533)4m—2 )2 B 1} (SB3)},_, + 8(SB3);,_, + 16
4m-2 2

16
2

[( (SB3§4m—2 )2 + 1] ,

2 2
[(SBs)m—zr (—(533;47"_2) -1, (—(5332)4'"_2) + 1]

is a Pythagorean triple.

we obtain that

The other case can be proved similarly.

Theorem 3.9. Let (SB3),, denote the m'™ Bs-subbalancing number . Then

5 ((SB3)s, —(SB3)3,) ([(SB3)am + 281B21[(SB3)ay + 281B2 +1]
(SBs),, , ( )

2 2
is a Pythagorean triple.

Proof. From Corollary 2.2 and the relations between the terms of the sequence of balancing number, we get

(SB3)3,, — 2(SBs)5,, + (SBa)y,,
4

(SB3)S, +2(SBs)S, + (SB3)s,

4

(SB3)4m +2(SB3)? +1

(SB3)gm +

(SBs)4, — (SB3)2, r

[(SBa)3, 12 + [ >

(SB3)2, +1T

<SBa>§m[ ;

[[(SB3)4m + 281B2 1[(SB3) 4 + 281B2, + 1]

2

2

Thus, we obtain that

5 ((SBs)y,, —(SB3)3, ) ([(SB3)am +281B21[(SBs)an + 281B2 + 1]
(SB3)2mr 2 ’ ( 2 )

is a Pythagorean triple.
Theorem 3.10. Let (SB),, denote the m™ Bs-subbalancing number . Then

((533)§m+1 - (533)3,“1] ([28133,”1 = (SB3)4m+31[281B7 | — (SB3)amss + 1] ]]

[(SB3)gm+1’ 2 2

is a Pythagorean triple.

Proof. From Corollary 2.2 and the relations between the terms of the sequence of balancing number, we get
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(SB3)},.,; = (SBa)2,.0 ] (SB3),,.; — 2(SBa)S,,; + (SBa)3

2m+1
4

(SBS)gnH—l + Z(SBB)gnHl + (SB3)§H1+1
4
[(533)§m+1 +2(SBs)2, ., + 1}

4

(SB3)2, ., + 1]
2

[(SB3)3,. .12 + (SB3)3,041 +

2

(SB3)§m+1

(SB3)§m+1

[[281132 ~ (SB3)am+31[281B;, _(SB3)4111+3+1]]2

m+1 m+1
2

Thus, we obtain that

((533)§m+1 - (533)§m+1] ([2813ﬁ1+1 — (5B3)am+3][281B2 ., — (SB3)ams3 + 1]))

[(SB3)gm+1’ 2 2

is a Pythagorean triple.

3.4. Functions Generating Balancing and Bs-Subbalancing Numbers

In this subsection, we obtain some functions that takes Bs-subbalancing and balancing numbers values
for Bs-subbalancing number arguments.

A /812
Theorem 3.11. Let f(x) = m_\2/+z+w and g(y) = W. If x is an even term and vy is an odd term of the

sequence of Bs-subbalancing numbers, then f(x) and g(y) are balancing numbers.

Proof. Let x be an even term of the sequence of Bz-subbalancing numbers. Then there exist a positive
integer m such that x = (5B3).

From Corollary 2.2, Theorem 2.4 and the recurrence relation of B3-subbalancing numbers, we obtain
8(SBs)3,, + 281 8(SB3)3,, + (SB3)3,, — (SB3)2m-2(SB3)am+2
= 9(SBs)3,, — [6(SB3)am — (SB3)am+21(SB3)2m+2
= 9(SB3)3,, — 6(SB3)2m(SB3)am+2 + (SB3)3,40
= 9(14By; + Bys1)? — 6(14B, + Bys1)(14Bys1 + Buso) + (14Bps + Binsn)?
= 9(14B,, + Bys1)? — 6(14B,;, + Byys1)(20Bys1 — Byy) + (20Bys1 — By )
= 1849B2 — 1462B,1Byy + 28982

= 289(B?., +28B,.11B, + 196B2) — 9554B,,(B,.+1 + 14B,,) + 7896182,

m+1
= [17(Bys1 + 14B,,) — 281B,,]?
= [17(SB3)am — 281B,,]°.

Thus, we deduce that
8(SB3)§m +281 = 17(5B3), — 281B,, 17)

If we take x = (SB3)2m, we get

17(SB3)am — +[8(SBs)2, + 281

281

f(SB3)am) =
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Thus, it is obvious from (17) that f(x) = B,,.
Similarly, we get

8(SB3)2 . +281 = 281By1 — 17(SBs)ams1. (18)

2m+1

If we take y = (SB3)2m+1, We get

17(533)2m+1 + ’8(5B3)§m+1 + 281

281
Thus, it is obvious from (18) that g(y) = B+1.

g((SB3)am+1) =

Theorem 3.12. Let g(x) = % “18"2”81 and g(x) = % V824281 If x is an even term of the sequence of
Bs-subbalancing numbers, then g(x) is the Bs-subbalancing number just prior to it and §(x) is the Bs-subbalancing

number next to it.

Proof. Let x be an even term of the sequence of B3-subbalancing numbers. Then there exist a positive integer
m such that x = (SB3)2-
From Theorem 2.1 and Theorem 3.11, we obtain

297(SBs)on — 34 \[8(SB3)2, + 281

281

17(SB3)am — +[8(SB3)2, + 281

34 o0 - (SBa)an

g((SB?))Zm)

= (SB3)am-1-
Thus, we get g((SB3)2m)) = (SB3)2m-1.

By using Theorem 2.2 and Theorem 3.11, we get

619(SB3)am + 195 1[8(SB3)2, + 281

281

17(SB3)2m - 1[8(533)57" + 281

281

9((SB3)2m)

14(SB3)ay — 195

= (SB3)am+1-
Thus, we get !7((533)2;11) = (SB3)2m+1'

Theorem 3.13. Let g(x) = % V8221 and G(x) = % “18"2+281. If x is an odd term of the sequence of
Bs-subbalancing numbers, then g(x) is the Bs-subbalancing number just prior to it and §(x) is the Bs-subbalancing

number next to it.

Proof. Let x be an odd term of the sequence of Bz-subbalancing numbers. Then there exist a positive integer
m such that x = (SB3)2+1-
From Corollary 2.2 and Theorem 3.11, we get

17(533)2m+1 + 8(533)2 + 281

2m+1
281

Bn, = (5B3)2m+1_14
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43(533)2m+1 -14 R [8(533)§m+1 + 281

- 281 (19)

It follows from (19), Corollary 2.2 and Theorem 3.11 that

619(SB3)ams1 — 195 (8(SB3)2, ., + 281

9((SB3)am+1) = 281
43(5B3)2m+1 -14 R ’8(5B3)5m+1 + 281 17(5B3)2m+1 + 4 [8(533);’”1 + 281
= 281 " 281
= 14B,, + B;11
= (5B3)am.

Thus, we get g((SB3)am+1) = (SB3)2m.

By using Theorem 2.1 and Theorem 3.11, we get

297(SB3)ams1 + 34 \/8(SB3)2, | + 281

281

17(533)2m+1 + 8(SB3)§111+1 +281

281

G((SB3)am+1) =

= 34

= (SB3)2m+1

34B,41 — (SB3)om+1
(5B3)2m42-

Thus, we get §((SB3)am+1) = (SB3)am+2-

Theorem 3.14. Let f(x) = 3x + V8x? + 281 and f(x) = 3x — V8x2 +281. If x is a Bs-subbalancing number, then
f(x) and f(x) are also Bs-subbalancing numbers.

Proof. Let x be a Bz-subbalancing number. Then there exist a positive integer m such that x = (SB3),.

By using Theorem 2.4 and the recurrence relation of Bs-subbalancing numbers, we get
9(533)%1 - (SB3)m—2(SB3)m+2

9(SB3)3, — 6(SB3)m(SB3)m—2 + (SB3)2,_»

[3(SB3)m — (SB3)m-2]*.

8(SB3)2, + 281

Thus, we deduce that
8(SB3)y +281 = 3(SB3)u — (SB3)m-2 (20)
From (20) and the recurrence relation of Bz-subbalancing numbers, we obtain

3(SBs)m + +/8(SB3)2, + 281

6(SB3)m — (SB3)m-2
(SB3)m+2-

f(SBS)m)
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Thus, we get f(x) = (SB3)m+2-

Similarly, by using (20), we get

F((SB3)w) = 3(SB3)w — +[8(SB3)% + 281

(SBB)m—Z'
Thus, we get f(x) = (5B3)-2-

Consequently, f(x) is equal to the (m + 2)" Bs-subbalancing number and f(x) is equal to the (m — 2)"

Bs-subbalancing number where x = (SB3)..

Acknowledgments

This research supported by the Scientific and Technological Research Council of Tiirkiye (TUBITAK),
grant number 123F048.

References

[1] A.Behera, G.K. Panda, On the square roots of triangular numbers, Fibonacci Quart. 37(2) (1999), 98-105.
[2] P.Catarino, H. Campos, P. Vasco, On some identities for balancing and cobalancing numbers, Ann. Math. Inform. 45 (2015), 11-24.
[3] K.K. Dash, R.S. Ota, S. Dash, t-balancing numbers, Int. . Contemp. Math. Sciences 7(41) (2012), 1999-2012.
[4] K.K. Dash, R.S. Ota, S. Dash, Sequence t-balancing numbers, Int. ]. Contemp. Math. Sciences 7(47) (2012), 2305-2310.
[5] RK. Davala, G.K. Panda, Subbalancing numbers, Matematika 34(1) (2018), 163-172.
[6] G.Grossman, F. Luca, Sums of factorials in binary recurrence sequences, ]. Number Theory 93(2) (2002), 87-107.
[7] V.E.Hoggatt, Fibonacci and Lucas numbers, Houghton Mifflin Company, Santa Clara, 1969.
[8] A.F. Horadam, A generalized Fibonacci sequence, The American Mathematical Monthly 68(5) (1961), 455-459.
[9] G.Karadeniz-Gozeri, On Pell, Pell-Lucas, and balancing numbers, J. Inequal. Appl. 3 (2018).
[10] G.Karadeniz-Gozeri, A. Ozkog, A. Tekcan, Some algebraic relations on balancing numbers, Util. Math. 103 (2017), 217-236.
[11] M. Keith, More 666 Curiosa, J. Recreational Mathematics 31 (2002-2003), 47-49.
[12] T. Koshy, Fibonacci and Lucas numbers with applications, John Wiley, New York, 2001.
[13] T. Koshy, Elemantary number theory with applications, (2nd edition), Academic Press, Burlington, MA, 2007.
[14] T. Kovics, K. Liptai, P. Olajos, On (a, b)-balancing numbers, Publ. Math. Debrecen 77(3-4) (2010), 485-498.
[15] K. Liptai, Fibonacci balancing numbers, Fibonacci Quart. 42(4) (2004), 330-340.
[16] K. Liptai, Lucas balancing numbers, Acta Math. Univ. Ostrav. 14(1) (2006), 43-47.
[17] K. Liptai, F. Luca, A. Pinter, L. Szalay, Generalized balancing numbers, Indag. Math. (N.S.) 20(1) (2009), 87-100.
[18] P. Olajos, Properties of balancing, cobalancing and generalized balancing numbers, Ann. Math. Inform. 37 (2010), 125-138.
[19] A. Ozkog, Tridiagonal matrices via k-balancing number, British Journal of Mathematics and Computer Science 10(4) (2015), 1-11.
[20] G.K.Panda, Some fascinating properties of balancing numbers, Congr. Numer. 194 (2009), 185-189.
[21] G.K.Panda, A K. Panda, Almost balancing numbers, J. Indian Math. Soc. 82(3-4) (2015), 147-156.
[22] G.K.Panda, PK. Ray, Cobalancing numbers and cobalancers, Int. J. Math. Math. Sci. 8 (2005), 1189-2000.
[23] G.K. Panda, PK. Ray, Some links of balancing and cobalancing numbers with Pell and associated Pell numbers, Bull. Inst. Math. Acad.
Sin. (N.S.) 6(1) (2011), 41-72.
[24] S.G Rayaguru, G.K Panda, A generalization to almost balancing and cobalancing numbers using triangular numbers, Notes on Number
Theory and Discrete Mathematics 26(3) (2020), 135-148.
[25] S. Sari, G. Karadeniz-Gozeri, bs-subbalancing and bz-Lucas subbalancing numbers, Filomat 37(22) (2023), 7623-7639.
[26] S. Sar1, G. Karadeniz-Gozeri, On the existence of solutions of Diophantine equations related to subbalancing numbers, Submitted.
[27] A. Tekcan, Almost balancing, triangular and square triangular numbers, Notes on Number Theory and Discrete Mathematics 25(1)
(2019), 108-121.
[28] A. Tekcan, Sums and spectral norms of all almost balancing numbers, Creat. Math. Inform. 28(2) (2019), 203-214.
[29] A. Tekcan, M. Tayat, M.E. Ozbek, The Diophantine equation 8x> — y> + 8x(1 + t) + (2t + 1)> = 0 and t-balancing numbers, Hindawi
Publishing Corporation ISR Combinatorics 2014 (2014).
[30] S. Vajda, Fibonacci & Lucas numbers, and the golden section: Theory and applications, Ellis Horwood Limited Publ., England, 1989.



