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Abstract. In the Hilbert space L2
A(I; E) (I := [a, b), −∞ < a < b ≤ +∞, dim E = m < +∞, A > 0), the

maximal dissipative singular matrix-valued Sturm–Liouville operators that the extensions of a minimal
symmetric operator with maximal deficiency indices (2m, 2m) (in limit-circle case at singular endpoint b)
are studied. The maximal dissipative operators with general (for example coupled or separated) boundary
conditions are investigated. A self-adjoint dilation is constructed for dissipative operator and its incoming
and outgoing spectral representations, which make it possible to determine the scattering matrix of the
dilation. We also construct a functional model of the dissipative operator and determine its characteristic
function in terms of the scattering matrix of the dilation (or in terms of the Weyl function of self-adjoint
operator). Moreover a theorem on completeness of the system of eigenvectors and associated vectors (or
root vectors) of the dissipative operators proved.

1. Introduction

The contour integration method is one of the main methods to investigate the spectral analysis of non-
self-adjoint (dissipative) operators. To use the contour integration methods one requires a sharp estimate of
the resolvent on expanding contours separating the spectrum. Moreover weak perturbations of self-adjoint
operators with sparse discrete spectrum are needed. Since for wide classes of singular differential equations
there are no asymptotics of the solutions, the method cannot be applied to them.

Theorems on representation of linear relations turned out to be useful for the description of various
classes of extensions of symmetric operators. The first result of this type is due to Rofe-Beketov [30]. Bruk
[11] and Kochubei [19] independently introduced the term “space of boundary values” and in terms of this
described all maximal dissipative (accumulative), self-adjoint, etc. extensions of symmetric operators.

To investigate the spectral properties of non-self-adjoint (dissipative) and nonunitary operators acting
on a Hilbert space, functional model theory plays a prominent role. The rich and comprehensive theory
has been developed since pioneering works of M. Brodskiı̆, M. Livŝiç, B. Sz.-Nagy, C. Foiaş, L. de Branges,
and J. Rovnyak, see [24, 26] and references therein. It should be noted that the first work of B. S. Pavlov that
contains an application of functional model (see [27-29]) rooted in the scattering theory of Lax and Phillps
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[21]. Functional model generated by dilations represents a new trend in spectral theory of dissipative (con-
tractive) operators (see [24, 26-29]). Characteristic function carries the complete information on the spectral
properties of the dissipative operators and plays a main role in this theory. To be more precise, the dissipa-
tive operators in the incoming spectral representation of the dilation become the model. The information
about the completeness of the system of eigenvectors and associated vectors may be obtained in terms of
the factorization of the characteristic function. self-adjoint dilation of the corresponding scattering problem
is important to compute the characteristic functions of dissipative operators, in which the characteristic
function is realized as the scattering matrix (see [21]). The adequacy of this approach to dissipative singular
differential and difference operators has been demonstrated, for example, in [1-6, 8, 18, 27-29].

Let L2
A (I; E) (I := [a, b),−∞ < a < b ≤ +∞, dim E = m < +∞, A > 0) denote a Hilbert space in which

the minimal symmetric singular matrix-valued Sturm–Liouville operator Lmin with maximal deficiency
indices (2m, 2m) (in limit-circle case at singular endpoint b) acts on it. In this paper, the maximal dissipative
operators that the extensions of a minimal symmetric operator Lmin are studied. We investigate maximal
dissipative operators with general (for example coupled or separated) boundary conditions. In particular,
if we consider separated boundary conditions, the at a and at b non-self-adjoint (dissipative) boundary
conditions are prescribed simultaneously. We construct a self-adjoint dilation of the maximal dissipative
operator and its incoming and outgoing spectral representations, and determine the scattering matrix of the
dilation, using to the scheme of Lax and Phillips [21]. With the help of the incoming spectral representation,
we then construct a functional model of the maximal dissipative operator and define its characteristic
function in terms of the scattering matrix of the dilation (or in terms of the Weyl function of self-adjoint
operator). Finally, using these results, we prove the theorem on completeness of the system of eigenvectors
and associated vectors (or root vectors) of the maximal dissipative operators.

2. Preliminaries and extensions of a symmetric operator

The matrix-valued Sturm–Liouville differential equation with singular endpoint b is considered as
follows:

L1(y) := −((P(x)y′(x))′ +Q(x)y(x) = λA (x) y(x), x ∈ I. (2.1)

Here λ is a spectral parameter, P∗(x) = P(x), det P(x) , 0,Q∗(x) = Q(x), A∗(x) = A(x) > 0 (for almost all x ∈ I)
on E (E is the m (m < ∞) dimensional Euclidean space), and the entries of the m × m matrices P−1(x), Q(x)
and A(x) are Lebesgue measurable and locally integrable functions on I (see [3, 13, 25, 34]). Note that these
conditions for P,Q and A are minimal and there is no sign restriction on the coefficient P.

Let L(y) := A−1L1(y) (x ∈ I) denote the differential expression andH := L2
A(I; E) denote the Hilbert space

consisting of all the vector-valued functions y such that∫ b

a
(A(x)y(x), y(x))Edx < +∞

with the inner product (y, z) :=
∫ b

a (A(x)y(x), z(x))Edx. Let Dmax be the linear set of the vectors y ∈ H such
that y and Py′ are locally absolutely continuous vector-valued functions on I, and L(y) ∈ H. We define the
operator Lmax on Dmax by the equality Lmaxy = L(y).

For two arbitrary vectors y, z ∈ Dmax,we have Green’s formula∫ x

a
((L1(y))(ξ), z(ξ))Edξ −

∫ x

a
(y(ξ), (L1(z))(ξ))Edξ =

[
y, z

]
(x) −

[
y, z

]
(a), (2.2)

where
[
y, z

]
(x) := (y(x), (Pz′)(x))E−((Py′)(x), z(x))E (x ∈ I). (2.2) implies that limit

[
y, z

]
(b) := limx→b−

[
y, z

]
(x)

exists and is finite for all y, z ∈ Dmax. For any vector-valued function y ∈ Dmax, y (a) and (py′) (a) can be
defined by y(a) := limx→a+ y(x) and (Py′) (a) := limx→a+ (Py′)(x). These limits exist and are finite (since y and
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Py′ are absolutely continuous vector-valued functions on [a, c], ∀c ∈ (a, b)). Therefore, passing to the limit
as x→ b− in (2.2), we get that for arbitrary y, z ∈ Dmax

(Lmaxy, z) − (y,Lmaxz) =
[
y, z

]
(b) −

[
y, z

]
(a). (2.3)

LetDmin be a dense set inH consisting of smooth, compactly supported vector-valued functions. Denote
by L′0 the restriction of the operator Lmax to D′min. It follows from (2.3) that L′min is symmetric operator.
Consequentially, it admits closure which is denoted by Lmin. The domain of Lmin consist of vectors
y ∈ Dmax satisfying the conditions

y(a) = (Py′)(a) = 0, [y, z](b) = 0, ∀z ∈ Dmax. (2.4)

The operator Lmin is a symmetric operator with deficiency indices (k−, k+), where 0 ≤ k± ≤ 2m, and
satisfying Lmax = L

∗

min [3, 13, 25, 34]. The operators Lmin and Lmax are called, the minimal and maximal
operators, respectively.

Further, we assume that the symmetric operatorLmin has maximal deficiency indices (2m, 2m), so that the
Weyl limit-circle case holds for Lmin or L. There are several sufficient conditions that guarantee limit-circle
case (see [7, 9, 10, 13-15, 20, 22, 23, 25, 30, 33, 34]).

Let V1(x) and V2(x) denote the matrix (operator)-valued solution of the equation

L(y) = O (x ∈ I) (2.5)

satisfying the initial conditions

V1(a) = I, (PV′1)(a) = O, V2(a) = O, (PV′2)(a) = I. (2.6)

Here O (respectively I) is the zero (respectively identity) operator in E. We note that the Wronskian of the
two matrix-valued solutions V1(x) and V2(x) does not depend on x:

Wx(V1,V2) = (V′∗2 P)(x)V1(x) − V∗2(x)(PV′1)(x)

=Wa(V1,V2) = I (x ∈ I). (2.7)

Construct the matrix

U(x) :=
(

V1(x) V2(x)
(PV′1)(x) (PV′2)(x)

)
.

Using the formula (2.7) one can show that

J−1U∗(x)J = U−1(x), U−1(x) =
(
(V′∗2 P)(x) − V∗2(x)
−(V′∗1 P)(x) V∗1(x)

)
,

where

J =
(
O − I
I O

)
,

J−1 = J∗ = −J, J2 = −IE⊕E and IE⊕E is the identity operator in E ⊕ E.
Let us adopt the following:

(Sy)(x) : =

(
(S1y)(x)
(S2y)(x)

)
:= U−1(x)

(
y(x)

(Py′)(x)

)

=

(
(V′∗2 P)(x)y(x) − V∗2(x)(Py′)(x)
−(V′∗1 P)(x)y(x) + V∗1(x)(Py′)(x)

)
.
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It can be seen that for all vectors f ∈ Dmax the limit limx→b− (S f )(x)= (S f )(b) exists and finite ([3]). The domain
Dmin of the operator Lmin consists of vectors f ∈ Dmax, satisfying the following boundary conditions ([3])

f (a) = (P f ′)(a) = 0, (S1 f )(b) = (S2 f )(b) = 0.

For arbitrary vectors f , 1 ∈ Dmax,we have the equality ([3])

[ f , 1](x) =
(
(S1 f )(x), (S21)(x)

)
E −

(
(S2 f )(x), (S11)(x)

)
E , a ≤ x ≤ b. (2.8)

It is better to remind that a linear operator S (with dense domain D(S)) acting on some Hilbert space
H is called dissipative (accumulative) if ℑ(S f , f ) ≥ 0 (ℑ(S f , f ) ≤ 0) for all f ∈ D(S) and maximal dissipative
(maximal accumulative) if it does not have a proper dissipative (accumulative) extension ([17]).

The space of boundary values of the symmetric operator stays in the centre of the extension theory. The
triplet (H,Φ1,Φ2), where H is a Hilbert space and Φ1 and Φ2 are linear mappings of D (A∗) into H, is called
(see [11, 17, p. 152, 19]) a space of boundary values of a closed symmetric operatorA acting in a Hilbert space
H with equal (finite or infinite) deficiency indices if

(i)
(
A
∗h, 1

)
H
−

(
h,A∗1

)
H
=

(
Φ1h,Φ21

)
H −

(
Φ2h,Φ11

)
H , ∀h, 1 ∈ D(A∗), and

(ii) for every G1,G2 ∈ H, there exists a vector 1 ∈ D(A∗) such that Φ11 = G1 and Φ21 = G2.
We consider the following linear maps Dmax into E ⊕ E

𭟋1 f =
(
− f (a)

(S1 f )(b)

)
, 𭟋2 f =

(
(P f ′)(a)
(S2 f )(b)

)
( f ∈ Dmax). (2.9)

Then we have ([3])

Theorem 2.1. The triplet (E⊕E, 𭟋1, 𭟋2) defined by (2.9) is a space of boundary values of the symmetric operator Lmin.
For any contraction T in E ⊕ E the restriction of operator Lmax to set of vectors y ∈ Dmax satisfying the boundary
conditions

(T − I)𭟋1y + i(T + I)𭟋2y = 0 (2.10)

or

(T − I)𭟋1y − i(T + I)𭟋2y = 0 (2.11)

is, respectively, a maximal dissipative or a maximal accumulative extensions of the symmetric operator Lmin. Con-
versely, any maximal dissipative (maximal accumulative) extensions of Lmin is the restriction of Lmax to a set of
vectors y ∈ Dmax satisfying (2.10) ((2.11)), and the contraction T is uniquely determined by the extension. These
conditions define a self-adjoint extension of Lmin if and only if T is unitary. In the latter case, (2.10) and (2.11) are
equivalent to the condition (cos S) 𭟋1y− (sin S) 𭟋2y = 0, where S is a self-adjoint operator in E⊕E. The general form
of dissipative and accumulative extensions of the operator Lmin is given by the conditions

T(𭟋1y + i𭟋2y) = 𭟋1y − i𭟋2y, 𭟋1y + i𭟋2y ∈ D(T), (2.12)

T(𭟋1y − i𭟋2y) = 𭟋1y + i𭟋2y, 𭟋1y − i𭟋2y ∈ D(T), (2.13)

respectively, where T is a linear operator with
∥∥∥T f

∥∥∥ ≤ ∥∥∥ f
∥∥∥ , f ∈ D(T). The general form of symmetric extensions is

given by the formulae (2.12) and (2.13), where T is an isometric operator in E ⊕ E.

Construct the matrix

T =
(

T1 O
O T2

)
.

Then by the Theorem 2.1 we have
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Corollary 2.2. The boundary conditions (y ∈ Dmax)

(T1 − I)y(a) ∓ i(T1 + I)y(a) = 0, (2.13)

(T2 − I)(S1y)(b) ± i(T2 + I)(S2y)(b) = 0, (2.14)

where T1 and T2 are contractions in E, describe all the maximal dissipative and maximal accumulative extensions
with separated boundary conditions of the symmetric operator Lmin. These conditions define a self-adjoint extensions
of Lmin if T1 and T2 are unitary.

Throughout the sequel we shall study the maximal dissipative operator LT, where ∥T∥E⊕E < 1 (i.e., a
strict contraction in E ⊕ E), generated by the expression L and boundary condition (2.10). It is obvious that
the boundary condition, generally speaking, may be nonseparated. In particular, if we consider separated
boundary conditions (2.13) and (2.14), then at end points a and b there are simultaneously non-self-adjoint
(dissipative) boundary conditions.

One can infer that the boundary condition (2.10) is equivalent to the condition

𭟋2y + B𭟋1y = 0, (2.15)

where B = −i (T + I)−1 (T − I), ℑB > 0, and −T is the Cayley transform of the dissipative operator B. This
result comes from the fact that T is a strict contraction and therefore the operator T + I must be invertible.
We denote by L̃B (= LT) the maximal dissipative operator generated by the expression L and the boundary
condition (2.15)

3. Self-adjoint dilation of the dissipative operator

The Hilbert space H is constructed as adding the ‘incoming’ and ‘outgoing’ channels L2(R−; E ⊕ E)
(R− := (−∞, 0]) and L2 (R+; E ⊕ E) (R+ := [0,∞)) to the Hilbert space H. In fact, we form the orthogonal sum
H = L2(R−; E ⊕ E) ⊕ H ⊕ L2 (R+; E ⊕ E) . The Hilbert space H is called the main Hilbert space of the dilation.
Clearly, the elements ofH are three-component vector-valued functions h = ⟨ϕ−, y, ϕ+⟩. In the main Hilbert
spaceH, let us consider the operator LB generated by the expression

L⟨ϕ−, y, ϕ+⟩ = ⟨i
dϕ−
dξ
,L(y), i

dϕ+
dζ
⟩ (3.1)

on the set of elements D(LB) satisfying the conditions: ϕ− ∈ W1
2 (R−; E ⊕ E) , ϕ+ ∈ W1

2 (R+; E ⊕ E) , y ∈ Dmax
and

𭟋2y + B𭟋1y = Kϕ− (0) , 𭟋2y + B∗𭟋1y = Kϕ+ (0) , (3.2)

where K2 := 2ℑB, K > 0, and W1
2 (R∓; E ⊕ E) is the Sobolev space. Then we have the following theorem.

Theorem 3.1.The operator LB is self-adjoint inH and it is a self-adjoint dilation of the maximal dissipative operator
L̃B (= LT).

Proof. For the vector-valued functions h = ⟨ϕ−, y, ϕ+⟩, 1 = ⟨ϑ−, z, ϑ+⟩ ∈ D (LB) we obtain that(
LBh, 1

)
H −

(
h,LB1

)
H = i

(
ϕ− (0) , ϑ− (0)

)
E⊕E

−i
(
ϕ+ (0) , ϑ+ (0)

)
E⊕E
+

[
y, z

]
(b) −

[
y, z

]
(a). (3.3)

Using the boundary conditions (3.2) and (2.8), with a direct calculation we obtain that i
(
ϕ− (0) , ϑ− (0)

)
E⊕E

−i
(
ϕ+ (0) , ϑ+ (0)

)
E⊕E
+

[
y, z

]
(b) −

[
y, z

]
(a) = 0. Thus, the operator LB is symmetric, and D(LB) ⊆ D(L∗B)
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It is easy to check thatLB andL∗B are generated by the same expression (3.1). Let us describe the domain
of L∗B. We shall compute the terms outside the integral sign, which are obtained by integration by parts in
bilinear form

(
LBh, 1

)
H , h ∈ D (LB) , 1 ∈ D

(
L
∗

B

)
. Their sum is equal to zero:

[
y, z

]
(b) −

[
y, z

]
(a) + i

(
ϕ− (0) , ϑ− (0)

)
E⊕E
− i

(
ϕ+ (0) , ϑ+ (0)

)
E⊕E
= 0. (3.4)

Moreover, solving the boundary conditions (3.2) for 𭟋1y and 𭟋2y, we find that

𭟋1y = −iK−1
(
ϕ− (0) − ϕ+ (0)

)
, 𭟋2y = Kϕ− (0) + iBK−1

(
ϕ− (0) − ϕ+ (0)

)
.

Hence, using (2.8), one may see that (3.4) is equivalent to the following

i
(
ϕ+ (0) , ϑ+ (0)

)
E⊕E
− i

(
ϕ− (0) , ϑ− (0)

)
E⊕E
=

[
y, z

]
(b) −

[
y, z

]
(a)

=
(
𭟋1y, 𭟋2z

)
E⊕E −

(
𭟋2y, 𭟋1z

)
E⊕E = −i

(
K−1

(
ϕ− (0) − ϕ+ (0)

)
, 𭟋2z

)
E⊕E

−

(
Kϕ− (0) , 𭟋1z

)
E⊕E
− i

(
BK−1

(
ϕ− (0) − ϕ+ (0)

)
, 𭟋1z

)
E⊕E
.

Since the values ϕ± (0) can be arbitrary vectors, a comparison of the coefficients of ϕi± (0) (i = 1, 2, ..., 2m) on
the left and right of this equality gives that the vector 1 = ⟨ϑ−, z, ϑ+⟩ satisfies the boundary conditions (3.2):
𭟋2z + B𭟋1z = Kϑ− (0) , 𭟋2z + B∗𭟋1z = Kϑ+ (0). This implies that D(L∗B) ⊆ D(LB), and consequently LB = L

∗

B.
It is known that the self-adjoint operator LB generates the unitary group U(s) = exp [iLBs] (s ∈ R :=

(−∞,∞)) onH. Denote by P : H→ H and P1 : H→ H being the mappings defined as P : ⟨ϕ−, y, ϕ+⟩ → y
and P1 : y → ⟨0, y, 0⟩, respectively. Let us construct a strongly continuous semigroup of completely
nonunitary contractions on H asV(s) = PU(s)P1, s ≥ 0. Denote by AB the generator of this semigroup, i.e.,
ABy = lims→+0(is)−1(V(s)y − y). The domain of AB consists of all the vectors for which the limit exists. It is
known that the operator AB is a maximal dissipative and the operator LB is called the self-adjoint dilation of
AB [24, 26]. It should be shown that L̃B = AB, and this implies that LB is a self-adjoint dilation of L̃B. For
this purpose set the equality

P(LB − λI)−1
P1y = (L̃B − λI)−1y, y ∈ H, ℑλ < 0. (3.5)

Construct the vector-function 1 as (LB − λI)−1
P1y = 1 = ⟨ϑ−, z, ϑ+⟩. Therefore (LB − λI)1 = P1y, and hence,

L(z) − λz = y, ϑ−(ξ) = ϑ− (0) e−iλξ, ϑ+(ζ) = ϑ+ (0) e−iλζ. Since 1 ∈ D(LB), hence, ϑ− ∈ W1
2 (R−; E) , and so

ϑ− (0) = 0 and, consequently, z satisfies the boundary condition 𭟋2z + B𭟋1z = 0. Therefore, z ∈ D(L̃B), and
since a point λwith Imλ < 0 cannot be an eigenvalue of dissipative operator, then z = (L̃B − λI)y. Thus, for
y ∈ H and Imλ < 0,we have

(LB − λI)−1
P1y = ⟨0, (L̃B − λI)−1y,K−1(𭟋2y + B∗𭟋1y)e−iλζ

⟩.

Using the mapping P and (3.5) we obtain that

(L̃B − λI)−1 = P(LB − λI)−1
P1 = −iP

∫
∞

0
U(s)e−iλsdsP1

= −i
∫
∞

0
V(s)e−iλsds = (AB − λI)−1 , Imλ < 0

and therefore L̃B = AB. This completes the proof. □
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4. Scattering theory of the dilation and functional model of the dissipative operator

Lax–Phillip’s theory makes us possible to construct the model operator (see [21]). In fact, the uni-
tary group {U(s)} and the ‘incoming’ and ‘outgoing’ subspaces D− = ⟨L2 (R−; E ⊕ E) , 0, 0⟩ and D+ =
⟨0, 0,L2(R+; E ⊕ E)⟩ have the following properties:

(1)U(s)D− ⊂ D−, s ≤ 0 andU(s)D+ ⊂ D+, s ≥ 0;
(2) ∩s≤0U(s)D− = ∩s≥0U(s)D+ = {0} ;
(3) ∪s≥0U(s)D− = ∪s≤0U(s)D+ =H;
(4)D− ⊥ D+.
The property (4) is obvious. To prove the property (1) forD+ (forD−, the proof is analogous) we shall

set Rλ = (LB − λI)−1. For all λwith Imλ < 0 and for all h = ⟨0, 0, ϕ+⟩ ∈ D+,we have

Rλh = ⟨0, 0,−ie−iλξ
∫ ξ

0
eiλsϕ+ (s) ds⟩

and therefore Rλh ∈ D+. Hence, if 1 ⊥ D+, then

0 =
(
Rλh, 1

)
H = −i

∫
∞

0
e−iλs (U(s)h, 1

)
H ds, ℑλ < 0.

This implies that (U(s)h, 1)H = 0 for all s ≥ 0 and thereforeU(s)D+ ⊂ D+ for s ≥ 0. This proves the property
(1).

To show that the property (2) holds let us define the mappings P+ : H → L2 (R+; E ⊕ E) and P+1 :
L2 (R+; E ⊕ E) → D+ as P+ : ⟨ϕ−y, ϕ+⟩ → ϕ+ and P+1 : ϕ → ⟨0, 0, ϕ⟩, respectively. Note that the semigroup
of isometries U+(s) = P+U(s)P+1 , s ≥ 0 is the one-side shift in L2 (R+; E ⊕ E). Namely, the generator of the
semigroup of the shift Z(s) in L2 (R+; E ⊕ E) is the differential operator i d

dξ with the boundary condition
φ (0) = 0. On the other hand, the generator S of semigroup of isometriesU+(s), s ≥ 0 is the operator

Sφ = P+LBP
+
1φ = P

+
LB⟨0, 0, φ⟩ = P+⟨0, 0, i

dφ
dξ
⟩ = i

dφ
dξ
,

where φ ∈ W1
2 (R+; E ⊕ E) and φ (0) = 0. However, a semigroup is uniquely determined by its generator.

Therefore we have thatU+(s) = Z(s), and hence,⋂
s≥0

U(s)D+ = ⟨0, 0,
⋂
s≥0

Z(s)L2 (R+; E ⊕ E)⟩ = {0} .

Thus the property (2) is proved.
According to the Lax–Phillips scattering theory, the scattering matrix is defined in terms of the theory

of spectral representations. Now we apply this theory to construct these representations. In these process,
we also prove the property (3) of the incoming and outgoing subspaces.

We shall remind that the linear operator A (with domain D(A)) acting in the Hilbert space H is called
completely non-self-adjoint (or simple) if there is no invariant subspace M ⊆ D(A) (M , {0}) of the operator A
on which the restriction A to M is self-adjoint.

Lemma 4.1. The operator L̃B is completely non-self-adjoint (simple).

Proof. Consider that H0 ⊆ H be a subspace and let the operator L̃B indicates the self-adjoint operator L̃′B. For
h ∈ H0 ∩D(L̃B) we have h ∈ D(L̃∗B). Therefore

0 = (L̃′Bh, h)E⊕E − (h, L̃′Bh)E⊕E = (𭟋1h, 𭟋2h)E − (𭟋2h, 𭟋1h)E = (𭟋1h,−B𭟋1h)E⊕E

−(−B𭟋1h, 𭟋1h)E⊕E = ((B − B∗)𭟋1h, 𭟋1h)E⊕E = 2i(ℑB𭟋1h, 𭟋1h)E⊕E.
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This implies that 𭟋1h = 0. For eigenvectors yλ ∈ H0 of the operator L̃B, we have 𭟋1yλ = 0 and the boundary
condition 𭟋2y + B𭟋1y = 0 implies that 𭟋2yλ = 0, i.e., yλ (a) = 0, (Py′λ) (a) = 0. Then by the uniqueness
theorem of the Cauchy problem for the equation L(y) = λy (x ∈ I), we have yλ ≡ 0. Since all solutions of
L(y) = λy (x ∈ I) belong to H, from this it can be concluded that the resolvent Rλ(L̃B) of the operator L̃B is
a Hilbert–Schmidt operator, and hence the spectrum of L̃B is purely discrete. Therefore expansion theorem
in eigenvectors of the self-adjoint operator shows that H0 = {0} , i.e., the operator L̃B is simple. The lemma
is proved. □

Now let us set

H− = ∪s≥0U(s)D−, H+ = ∪s≤0U(s)D+.

This setting allows us to prove the property (3).

Lemma 4.2. The equalityH− +H+ =H holds.

Proof. Let H′ = H ⊖ (H− +H+) . Then one can consider that H′ is of the form H′ = ⟨0,H′, 0⟩, where H′ is
a subspace of H. Our assertion is that H′ = {0} . Otherwise, if the subspace H′ (and hence, also H′) were
nontrivial, then the unitary group {U(s)} restricted to this subspace, would be a unitary part of the group
{U(s)} . Consequently, the restriction L̃′B of the operator L̃B to H′ would be the self-adjoint operator in H′.
However the operator L̃B is simple and therefore H′ = {0} . This completes the proof. □

Consider the matrix-valued solutions Φ(x, λ) andΨ(x, λ) of the equation (2.1) satisfying the conditions

Φ (a, λ) = O, (PΦ′) (a, λ) = −I, Ψ (a, λ) = I, (PΨ′) (a, λ) = O. (4.1)

Let M (λ) be the matrix-valued function (Weyl function) (see [12]) with the rule

M (λ) 𭟋1Φ = 𭟋2Φ, M (λ) 𭟋1Ψ = 𭟋2Ψ. (4.2)

It is easy to show that the matrix-valued function M (λ) is meromorphic in C with all its poles on real axis
R, and that it has the following properties (see [12]):

(a) ℑM (λ) ≤ 0 for ℑλ > 0, and ℑM (λ) ≥ 0 for ℑλ < 0;
(b) M∗ (λ) =M

(
λ̄
)

for all λ ∈ C, except the real poles of M (λ).
Let u j (x, λ) and v j (x, λ) ( j = 1, 2, ..., 2m) be solutions of the equation (2.1) satisfying the conditions

𭟋1u j = (M (λ) + B)−1 Ke j, 𭟋1v j = (M (λ) + B∗)−1 Ke j ( j = 1, 2, ..., 2m), (4.4)

where e1, e2, ..., e2m are the orthonormal basis for E ⊕ E.
Consider the vectors Θ−λ j ( j = 1, 2, ..., 2m) defined by

Θ−λ j (x, ξ, ζ) = ⟨e−iλξe j,u j (x, λ) ,K−1 (M + B∗) (M + B)−1 Ke−iλζe j⟩.

It is clear that vectors Θ−λ j
(
j = 1, 2, ..., 2m

)
for all λ ∈ R do not belong to H. Beside this, these vectors Θ−λ j(

j = 1, 2, ..., 2m
)

satisfies the equation LV = λV and the boundary conditions (3.2). The transformation
F− : h → h̃− (λ) for the vectors h = ⟨ϕ−, y, ϕ+⟩ is determined using the vectors Θ−λ j

(
j = 1, 2, ..., 2m

)
by the

formula

(F−h) (λ) := h̃− (λ) :=
2m∑
j=1

h̃−j (λ) e j,

where ϕ−, ϕ+ and y are smooth, compactly supported vector-valued functions, and

h̃−j (λ) =
1
√

2π
(h,Θ−λ j)H

(
j = 1, 2, ..., 2m

)
.
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Lemma 4.3. The transformation F− isometrically maps H− onto L2 (R; E ⊕ E). For all vectors h, 1 ∈ H−, the
Parseval equality

(
h, 1

)
H = (h̃−, 1̃−)L2 =

∞∫
−∞

2m∑
j=1

h̃−j (λ) 1̃−j (λ)dλ,

and the inversion formula

h =
1
√

2π

∞∫
−∞

2m∑
j=1

Θ−λ jh̃
−

j (λ) dλ

hold, where h̃− (λ) = (F−h) (λ) , 1̃− (λ) =
(
F−1

)
(λ).

Proof. It should be shown that the transformation F− maps D−to H2
−

(E ⊕ E). Let H2
±

(E ⊕ E) denote the
Hardy classes in L2(R;E ⊕ E) consisting of the vector-valued functions analytically extendable to the upper
and lower half-planes, respectively. Then for arbitrary two vectors h, 1 ∈ D−, h = ⟨h−, 0, 0⟩, 1 = ⟨1−, 0, 0⟩,
h−, 1− ∈ L2 (R−; E ⊕ E) ,we have

h̃−j (λ) =
1
√

2π
(h,Θ−λ j)H =

1
√

2π

∫ 0

−∞

(
h− (ξ) , e−iλξe j

)
E⊕E

dξ ∈ H2
−,

h̃− (λ) =
2m∑
j=1

h̃−j (λ) e j ∈ H2
−

(E ⊕ E) ,

and the Parseval equality:

(
h, 1

)
H = (h̃−, 1̃−)L2 =

∞∫
−∞

2m∑
j=1

h̃−j (λ) 1̃−j (λ)dλ.

Now, we want to extend this equality to the whole H−. For this aim, we consider in H− the dense set
H′
−

of vectors, obtained on smooth, compactly supported vector-valued functions belonging toD− by the
following way: h ∈ H′

−
, h = U(s)h0, h0 = ⟨ϕ−, 0, 0⟩, ϕ− ∈ C∞0 (R−; E ⊕ E)). For these vectors, noting LB = L

∗

B
and using the fact that U(−s)h ∈ ⟨C∞0 (R−; E ⊕ E) , 0, 0⟩ and (U(−s)h,Θ−λ j)H = e−iλs(h,Θ−λ j)H

(
j = 1, 2, ..., 2m

)
for s > sh, s1,we have(

h, 1
)
H =

(
U(−s)h,U(−s)1

)
H

=
1

2π

∞∫
−∞

2m∑
j=1

(U(−s)h,Θ−λ j)H(U(−s)1,Θ−λ j)Hdλ =

∞∫
−∞

2m∑
j=1

h̃−j (λ) 1̃−j (λ)dλ.

Passing to the closure, it is obtained that the Parseval equality holds for the whole spaceH−. The inversion
formula follows from the Parseval equality if all integrals in it are understood as limits in the mean of the
integrals on a finite intervals. Consequently, we get that

F−H− = ∪s≥0F−U(s)D− = ∪s≥0eiλsH2
−

(E ⊕ E) = L2 (R; E ⊕ E) .

Hence F− mapsH− onto whole L2 (R; E ⊕ E). So, the lemma is proved. □
Consider the vectors

Θ+λ j (x, ξ, ζ) = ⟨SB (λ) e−iλξe j, v j (λ) , e−iλζe j⟩ ( j = 1, 2, ..., 2m),
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where

SB (λ) = K−1 (M (λ) + B) (M (λ) + B∗)−1 K. (4.5)

Using the vectors Θ+λ j
(
j = 1, 2, ..., 2m

)
, we will see that the transformation F+ : h → h̃+ (λ) for the vectors

h = ⟨ϕ−, y, ϕ+⟩ is determined by the formula

(F+h) (λ) := h̃+ (λ) :=
2m∑
j=1

h̃+j (λ) e j,

where ϕ−, ϕ+, and y are smooth, compactly supported functions, and

h̃+j (λ) =
1
√

2π
(h,Θ+λ j)H

(
j = 1, 2, ..., 2m

)
.

The proof of the next result is analogous to that of Lemma 4.3.

Lemma 4.4. The transformation F+ isometrically maps H+ onto L2 (R; E ⊕ E). For all vectors h, 1 ∈ H+, the
Parseval equality

(
h, 1

)
H = (h̃+, 1̃+)L2 =

∞∫
−∞

2m∑
j=1

h̃−j (λ) 1̃−j (λ)dλ,

and the inversion formula

h =
1
√

2π

∞∫
−∞

2m∑
j=1

Θ+λ jh̃
+
j (λ) dλ,

are valid, where h̃+j (λ) = (F+h) (λ) , 1̃+ (λ) = (F+1) (λ).

It is not so hard to see that the matrix-valued function SB (λ) is meromorphic in C, and all poles are in
the lower half-plane. From (4.5) it is obvious that ∥SB (λ)∥E ≤ 1 for ℑλ > 0 and SB (λ) is the unitary matrix
for all λ ∈ R.

Since SB (λ) is the unitary matrix for λ ∈ R, using the vectors Θ+λ j and Θ−λ j
(
j = 1, 2, ..., 2m

)
we get that

Θ+λ j =

2m∑
k=1

S jk (λ)Θ−λk
(
j = 1, 2, ..., 2m

)
,

where S jk (λ)
(
j, k = 1, 2, ..., 2m

)
are entries of the matrix SB (λ). Lemmas 4.3 and 4.4 show that H− = H+.

Together with Lemma 4.2, this implies that H− = H+ = H. Hence, the property (3) for {U(s)} above has
been established for the incoming and outgoing subspaces.

Hence the transformation F− mapsH isometrically onto L2(R; E ⊕ E); the subspaceD− is mapped onto
H2
−

(E ⊕ E), and the operators U(s) mapped to operators of multiplication by eiλs. This means that F− is an
incoming spectral representation of the group {U(s)}. Similarly, F+ is an outgoing spectral representation
of {U(s)}. From the explicit formulas for Θ−λ j and Θ+λ j ( j = 1, 2, ..., 2m), it follows that the passage from the

F−-representation of a vector h ∈H to itsF+-representation is accomplished as follows: h̃+(λ) = S−1
B (λ)h̃−(λ).

Thus by [21], we have now proved

Theorem 4.5. The matrix S−1
B (λ) is the scattering matrix of the group {U(s)} (of the operator LB).

Let S(λ) be an arbitrary non-constant inner matrix-valued function on the upper half-plane (the analytic
matrix-valued function S(λ) on the upper half-planeC+ is called inner function onC+ if ∥S(λ)∥ ≤ 1 for λ ∈ C+
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and S(λ) is a unitary matrix for almost all λ ∈ R). Define K = H2
+ ⊖ SH2

+. Then K , {0} is a subspace of
the Hilbert space H2

+. We consider the semigroup of the operators V(s) (s ≥ 0) acting in K according to
the formula V(s)ϕ = P

[
eiλsϕ

]
, ϕ := ϕ(λ) ∈ K, where P is the orthogonal projection from H2

+ onto K. The
generator of the semigroup {V(s)} is denoted by B : Bϕ = lims→+0(is)−1(V(s)ϕ−ϕ). B is a maximal dissipative
operator acting in K and its domain D(B) consists of all vectors ϕ ∈ K for which the above limit exists.
The operator B is called a model dissipative operator (we remark that this model dissipative operator, which
is associated with the names of Lax and Phillips [21], is a special case of a more general model dissipative
operator constructed by Sz.-Nagy and Foiaş [24]). We claim that S(λ) is the characteristic function of the
operator B.

Hence it is obtained with the unitary transformation F− that

H→ L2 (R; E ⊕ E) , h→ h̃− (λ) = (F−h) (λ) , D− → H2
−

(E ⊕ E) ,

D+ → SBH2
+ (E ⊕ E) , H ⊖ (D− ⊕D+)→ H2

+ (E ⊕ E) ⊖ SBH2
+ (E ⊕ E) ,

U(s)h→ (F−U(s)F−1
− h̃−) (λ) = eiλsh̃− (λ) .

These formulas show that the operator L̃B (LT) is a unitary equivalent to the model dissipative operator
with the characteristic function SB (λ). Since the characteristic functions of unitary equivalent dissipative
operators coincide with [24, 26- 28], we have proved

Theorem 4.6. The characteristic function of the maximal dissipative operator L̃B (LT) coincides with the matrix-
valued function SB(λ) determined by formula (4.5). The matrix-valued function SB (λ) is meromorphic in the complex
plane C and is an inner function in the upper half-plane.

5. Completeness of the system of root vectors of the dissipative operator

Characteristic function may help us to find the answer of the questions of the spectral analysis of
the maximal dissipative operator LT (L̃B). It is known that the absence of the singular factor s (λ) in the
factorization det SB (λ) = s (λ)B (λ) (B (λ) is the Blaschke product) proves the completeness of the system
of eigenvectors and associated vectors of the operator LT (L̃B) in the space H (see [24, 26]).

We first use the following

Lemma 5.1. The characteristic function S̃T (λ) of the operator LT has the form

S̃T (λ) := SB (λ) = Y1

(
I − T1T∗1

)− 1
2 (Υ (ξ) − T1)

(
I − T∗1Υ (ξ)

)−1 (
I − T∗1T1

) 1
2 Y2,

where T1 = −T is the Cayley transformation of the dissipative operator B, and Υ (ξ) is the Cayley transformation of
the matrix-valued function M (λ) , ξ = (λ − i) (λ + i)−1 , and

Y1 = (ℑB)−
1
2 (I − T1)−1

(
I − T1T∗1

) 1
2 , Y2 =

(
I − T∗1T1

)− 1
2
(
I − T∗1

)
(ℑB)

1
2 ,

|det Y1| = |det Y2| = 1.

Proof. Using Theorem 4.6, we get that

SB (λ) = (ℑB)−
1
2 (M (λ) + B) (M (λ) + B∗)−1 (ℑB)

1
2 .

Hence

ℑB =
1
2i

(B − B∗) =
1
2

[(I − T1)−1 (I + T1) +
(
I + T∗1

) (
I − T∗1

)−1
]



B. P. Allahverdiev / Filomat 38:30 (2024), 10505–10518 10516

=
1
2

[(I − T1)−1 + (I − T1)−1 T1 +
(
I − T∗1

)−1
+ T∗1

(
I − T∗1

)−1
]

=
1
2

[(I − T1)−1 + (I − T1)−1
− I +

(
I − T∗1

)−1
+

(
I − T∗1

)−1
− I]

= (I − T1)−1 +
(
I − T∗1

)−1
− I

= (I − T1)−1
[
I − T∗1 + I − T1 − (I − T1)

(
I − T∗1

)] (
I − T∗1

)−1

= (I − T1)−1
(
I − T1T∗1

) (
I − T∗1

)−1

. (5.1)

Similarly we get that

ℑB =
(
I − T∗1

)−1 (
I − T∗1T1

)
(I − T1)−1 . (5.2)

Consider the Cayley transformation Υ1 (λ) of the accumulative operator M (λ) for ℑλ > 0. Therefore we
get that M (λ) = −i (I − Υ1 (λ))−1 (I + Υ1 (λ)). Hence

M (λ) + B = −i[(I − Υ1 (λ))−1 (I + Υ1 (λ)) − (I − T1)−1 (I + T1)]

= −i[− (I − Υ1 (λ))−1 (I − Υ1 (λ) − 2I) + (I − T1)−1 (I − T1 − 2I)]

= −i[−I + 2 (I − Υ1 (λ))−1 + I − 2 (I − T1)−1]

= −2i[(I − Υ1 (λ))−1
− (I − T1)−1]

= −2i (I − T1)−1 (Υ1 (λ) − T1) (I − Υ1 (λ))−1 . (5.3)

Similarly,

M (λ) + B∗ = −2i
(
I − T∗1

)−1 (
I − T∗1Υ1 (λ)

)
(I − Υ1 (λ))−1 ,

and

(M (λ) + B∗)−1 = −
1
2i

(I − Υ1 (λ))
(
I − T∗1Υ1 (λ)

)−1 (
I − T∗1

)
. (5.4)

Therefore from (5.1)-(5.4) we obtain that

S̃T (λ) = SB (λ) = Y1

(
I − T1T∗1

)− 1
2 (Υ (ξ) − T1)

(
I − T∗1Υ (ξ)

) (
I − T∗1T1

) 1
2 Y2.

Here

Υ(ξ) := Υ1(−i (ξ + 1) (ξ − 1)−1),

Y1 := (ℑB)−
1
2 (I − T1)−1

(
I − T∗1T1

) 1
2

,

Y2 :=
(
I − T∗1T1

)− 1
2
(
I − T∗1

)
(ℑB)

1
2 .

Obviously |det Y1| = |det Y2| = 1. Hence, the lemma is proved. □
It is known [16, 24, 26] that the inner matrix-valued function S̃T (λ) is a Blaschke–Potapov product if

and only if det S̃T (λ) is a Blaschke product. Then it follows from Lemma 5.1 that the characteristic function
S̃T (λ) is a Blaschke–Potapov product if and only if the matrix-valued function

YT (ξ) =
(
I − T1T∗1

)− 1
2 (Υ (ξ) − T1)

(
I − T∗1 Υ (ξ)

)−1 (
I − T∗1T1

) 1
2
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is a Blaschke–Potapov product in a unit disk.
In order to state the completeness theorem, we will first define a suitable form for the Γ-capacity (see

[16, 32]).
Let E be an N-dimensional (N < +∞) Euclidean space. In E, we fix an orthonormal basis φ1, φ2, ..., φN

and denote by Ek (k = 1, 2, ...,N) the linear span vectors φ1, φ2, ..., φk. If M ⊂ Ek, then the set of v ∈ Ek−1 with
the property Cap

{
µ : µ ∈ C,

(
v + µφk

)
∈M

}
> 0 will be denoted by Γk−1M. (CapG is the inner logarithmic

capacity of the set G ⊂ C). The Γ-capacity of the set M ⊂ E is a number

Γ − CapM := sup Cap
{
µ : µ ∈ C, µφ1 ⊂ Γ1Γ2...ΓN−1M

}
,

where the sup is taken with respect to all orthonormal basics in E. It is known [16, 32] that every set M ⊂ E
of zero Γ-capacity has zero 2N-dimensional Lebesgue measure (in the decomplexified space E), however,
the converse is false.

Let L[E ⊕ E] be the set consisting of all linear operators acting in E ⊕ E. To convert L[E ⊕ E] into the
4m2-dimensional Euclidean space, we introduce the inner product ⟨T,S⟩ = trS∗T for T,S ∈ L[E ⊕ E] (trS∗T
is the trace of the operator S∗T). Hence, we may introduce the Γ-capacity of a set of L[E ⊕ E].

We will utilize the following important result of [16].

Lemma 5.2. Let Y (ξ) (|ξ| < 1) be a holomorphic function with the values to be contractive operators in L[E ⊕ E]
(i.e., ∥Y (ξ)∥ ≤ 1). Then for Γ-quasi-every strictly contractive operators T inL[E⊕E] (i.e., for all strictly contractive
T ∈ L[E ⊕ E] with the possible exception of a set of Γ-capacity zero), the inner part of the contractive function

YT (ξ) = (I − TT∗)−
1
2 (Y (ξ) − T) (I − T∗Y (ξ))−1 (I − T∗T)

1
2

is a Blaschke–Potapov product.

Denote by S being the linear operator in the Hilbert space H with the domainD(S). The complex number
λ0 is called an eigenvalue of the operator S if there exist a nonzero element z0 ∈ D(S) such that Sz0 = λ0z0.
Such element z0 is called the eigenvector of the operator S corresponding to the eigenvalue λ0. The elements
z1, z2, ..., zk are called the associated vectors of the eigenvector z0 if they belong to D(S) and Sz j = λ0z j + z j−1,
j = 1, 2, ..., k. The element z ∈ D(S), z , 0 is called a root vector of the operator A corresponding to the
eigenvalue λ0, if all powers of S are defined on this element and (S − λ0I)mz = 0 for some integer m. The
set of all root vectors of S corresponding to the same eigenvalue λ0 with the vector z = 0 forms a linear set
Kλ0 and is called the root lineal. The dimension of the lineal Kλ0 is called the algebraic multiplicity of the
eigenvalue λ0. The root lineal Kλ0 coincides with the linear span of all eigenvectors and associated vectors
of S corresponding to the eigenvalue λ0. Consequently, the completeness of the system of all eigenvectors
and associated vectors of S is equivalent to the completeness of the system of all root vectors of this operator.

Summarizing all the obtained results for the maximal dissipative operators LT (L̃B),we have proved the
following

Theorem 5.3. For Γ-quasi-every strictly contractive T ∈ L[E⊕ E], the characteristic function S̃T (λ) of the maximal
dissipative operator LT is a Blaschke–Potapov product, and the spectrum of LT is purely discrete and belongs to the
open upper half-plane. For Γ-quasi-every strictly contractive T ∈ L[E ⊕ E], the operator LT has a countable number
of isolated eigenvalues with finite algebraic multiplicity and limit point at infinity, and the system of all eigenvectors
and associated vectors (or root vectors) of this operator is complete in the space L2

A(I; E).

Remarks: 1. Since a linear operator S acting in the Hilbert space H is maximal accumulative if and only if−S
is maximal dissipative, all results concerning maximal dissipative operators can be immediately transferred
to maximal accumulative operators.

2. The results are valid for regular matrix Sturm–Liouville operators (with regular end points a and b).
In this case the maps 𭟋1 and 𭟋2 have the form

𭟋1y =
(
−y(a)
y(b)

)
, 𭟋2y =

(
(Py′)(a)
(Py′)(b)

)
, y ∈ Dmax.
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