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Abstract. We study mean-value interpolation of Hermite type by a polynomial of degree m in z−1 and n
in z. We show that the interpolation problem corresponding to the integrals over the segments of the form
{teiθ : ρ ≤ t ≤ 1} always has a unique solution. We point out that the sequence of interpolation functions of
a holomorphic function in a neighborhood of a closed annulus converges uniformly to the function when
the angles that define the line segments are equally spaced.

1. Introduction

LetF be a finite-dimensional vector space of functions defined on a subsetΩ ofRn orCn with d := dimF .
The classical problem in the theory of interpolation is to find d functionals {µ1, µ2, . . . , µd} in the dual space
of F for which the interpolation problem

µk(P) = cµk , 1 ≤ k ≤ d,

has a unique solution P ∈ F for any given preassigned data {cµk }. The set {µ1, µ2, . . . , µd} can be regarded as
the interpolation conditions. It reduces to the Lagrange interpolation problem when the µi’s are the Dirac
delta functionals, i.e., µk = δak , ak ∈ Ω, 1 ≤ k ≤ d. More precisely, µk( f ) = f (ak) for 1 ≤ k ≤ d. In the case
where the µi’s are induced from differential operators of the form

f 7→ (
∑
α

cαDα)( f )(ak), ak ∈ Ω,

it becomes the Hermite–Birkhoff interpolation problem. Many explicit solutions of the two particular
interpolation problems mentioned above are available in literature. For example, some types of unisolvent
sets, which solve the Lagrange interpolation problem, can be found in [3, 4, 10] and regular Hermite
interpolation schemes were constructed in [6, 7, 15, 19]. Another type of interpolation problem is the
mean-value interpolation problem, where the functionals f 7→ µk( f ) are given by the integrals. In [13, 14]
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the authors investigated the interpolation problem the case where the µk( f ) are the integrals of derivatives
of f over the standard simplices ∆k = {(u1, . . . ,uk) : u j ≥ 0,

∑k
j=1 u j ≤ 1}. Some authors considered the

mean-value interpolation problem based on Radon projection defined as follows. Let D be the open unit
disk in the plane. For θ ∈ [0, 2π) and t ∈ [0, 1), we denote by I(θ, t) the line segment ofD that passes through
the point (t cosθ, t sinθ) and is perpendicular to the vector (cosθ, sinθ). The Radon projection Rθ( f ; t) of a
real-valued function or complex-valued function f defined onD is the line integral of f over I(θ, t),

Rθ( f ; t) =
∫

I(θ,t)

f ds =

√

1−t2∫
−

√

1−t2

f (t cosθ − s sinθ, t sinθ + s cosθ)ds.

In [1, 2], the authors solved the problem of determining a bivaritate polynomial from its finite Radon
projections. Some classical and important results focusing on Radon projections in two and several variables
can be found in [8, 9, 16, 17, 25]. Georgieva and Hofreither investigated the Lagrange interpolation problem
using Radon projection, where F is the space of bivariate harmonic polynomials of total degree at most
n (see [11, 12]). The authors obtained interesting results. They gave sets of chords which determine an
element of F uniquely. In [21, 22], we generalized some results of Georgieva and Hofreither to Hermite
type interpolation. In a recent work [23], we studied polynomial interpolation of holomorphic functions
based on Radon projections. We constructed two types of regular Hermite interpolation schemes. The first
Hermite scheme contains the chords which are equidistant from the origin along with the derivatives with
respect to angles. The other one is formed by parallel chords. We also studied the convergence property
of interpolation polynomial of holomorphic functions in neighborhoods ofD. We proved in [23, Theorem
3.7] that the interpolation polynomials converge geometrically onD to the functions as n→∞ when n + 1
angles of chords are equispaced and the distance is sufficiently near 1.

In this paper, we give a new type of mean-value interpolation on an annulus and investigate the
convergence of the interpolation functions. For 0 ≤ ρ1 < ρ2, let A(ρ1, ρ2) be the closed annulus defined by
two circles {z ∈ C : |z| = ρ1} and {z ∈ C : |z| = ρ2},

A(ρ1, ρ2) = {z ∈ C : ρ1 ≤ |z| ≤ ρ2}.

In the special case ρ1 = 0 and ρ2 = 1, A(0, 1) is identical with the closed unit disk D. Let ρ ∈ [0, 1) be a
fixed radius. For 0 ≤ θ < 2π and a continuous complex-valued function f defined on A(ρ, 1), we denote by
µθ
(
A(ρ, 1); f

)
the line integral of f over the segment {teiθ : ρ ≤ t ≤ 1}. More precisely,

µθ
(
A(ρ, 1); f

)
=

1∫
ρ

f (teiθ)dt. (1)

For two natural numbers m,n, let Rm,n be the space of rational functions defined by

Rm,n = spanC
{
z−m, z−m+1, . . . , zn

}.

Remark that R0,n becomes the space Pn of all polynomials (of complex coefficients) of degree at most n in
C. Our purpose is to study the interpolation problem for the space Rm,n based on the functionals defined in
(1). The following theorem is our first main result

Theorem 1.1. Let 0 < ρ < 1. Let m, d be positive integers and n be a natural number. Let ν1, . . . , νd be positive
integers such that ν1 + · · · + νd = m + n + 1. Let θ1, . . . , θd ∈ [0, 2π) be pairwise distinct angles. Then, for arbitrary
complex numbers γk, j, there exists a unique R ∈ Rm,n such that

d j

dθ jµθ
(
A(ρ, 1); R

)∣∣∣∣
θ=θk

= γk, j, k = 1, . . . , d, j = 0, . . . , νk − 1.
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Next, we wish to investigate the convergence property of the interpolation functions. Letθ1, . . . , θm+n+1 ∈

[0, 2π) be pairwise distinct angles. Let f be holomorphic in a neighborhood of A(ρ, 1). Theorem 1.1 points
out that there exists a unique R ∈ Rm,n such that

µθk

(
A(ρ, 1); R

)
= µθk

(
A(ρ, 1); f

)
, k = 1, . . . ,m + n + 1. (2)

The rational function R in (2) is denoted by I[Rm,n,Θ; f ], where

Θ =
{
θ1, . . . , θm+n+1

}
.

We show that the sequence of interpolation functions converge uniformly on the closed annulus when
angles are equispaced. It is our second main result.

Theorem 1.2. Let 0 < ρ < 1 and f be holomorphic in a neighborhood of A(ρ, 1). Let m,n be positive integers. Let
Φm+n+1 be the set of equally spaced angles

Φm+n+1 =
{
φ(m+n+1)

j =
2 jπ

m + n + 1
: 0 ≤ j ≤ m + n

}
.

Then there exist three positive constants A,B,C and δ ∈ (0, 1) depending only on f such that

∥I[Rm,n,Φm+n+1; f ] − f ∥A(ρ,1) ≤ (m + n + 1)(Aδm + Bδn) + Cδm+n+1.

Consequently, if nkδmk and mkδnk tend to 0 as k→∞, then I[Rmk ,nk ,Φmk+nk+1; f ] converges to f uniformly on A(ρ, 1)
as k→∞.

Our article is organized as follows. In the next section we compute the value µθ
(
A(ρ, 1); zk

)
for k ∈ Z

and use the result to prove Theorem 1.1. Section 3 presents the proof of Theorem 1.2. We first give a
formula for the rational function I[Rm,n,Θ; f ]. Using the formula, we can estimate the error between the
interpolation function and the finite Laurent expansion of f . The estimate leads to an upper bound for the
uniform norm of I[Rm,n,Φm+n+1; f ]− f , and Theorem 1.2 follows. In Section 3 we also study the convergence
of interpolation polynomials based on the functional f 7→ µθ

(
D; f
)
. We show in Theorem 3.4 that the

interpolation polynomials converge geometrically on D to the functions as n → ∞ when n + 1 angles are
equispaced.

Finally, we note that the Lagrange interpolation problem by an element in Rn,n−1 was studied in [5, 24].
The interpolation set consists of 2n points, equally spaced around two circles of an annulus. Also in [24]
Mason conjectured that the Lebesgue function of the Lagrange interpolation on an annulus A(ρ−1, ρ), ρ ≥ 1,
attains its maximal value on the inner circle and the Lebesgue constant grows like 2 log n/π. Pan proved
that the conjecture is true (see [18]).

2. Mean-value interpolation of Hermite type

In this section, we calculate the value µθ
(
A(ρ, 1); zk

)
and prove Theorem 1.1. We also give some useful

properties of the parameter βk.

Lemma 2.1. If qk(z) = zk for k ∈ Z, then

µθ
(
A(ρ, 1); qk

)
=

1 − ρk+1

k + 1
eikθ, k ≥ 0, 0 ≤ ρ < 1,

µθ
(
A(ρ, 1); q−1

)
= −(lnρ)e−iθ, 0 < ρ < 1,

and

µθ
(
A(ρ, 1); q−k

)
=

1 − ρ−k+1

−k + 1
e−ikθ, k ≥ 2, 0 < ρ < 1.
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Proof. The proof is immediate. For k ≥ 0 and 0 ≤ ρ < 1, we have

µθ
(
A(ρ, 1); qk

)
=

1∫
ρ

(teiθ)kdt =
1 − ρk+1

k + 1
eikθ.

Similarly, for 0 < ρ < 1, we can write

µθ
(
A(ρ, 1); q−1

)
=

1∫
ρ

(teiθ)−1dt = −(lnρ)e−iθ

and

µθ
(
A(ρ, 1); q−k

)
=

1∫
ρ

(teiθ)−kdt =
1 − ρ−k+1

−k + 1
e−ikθ, k ≥ 2.

The proof is complete.

For convenience, we set

βk(ρ) =

1∫
ρ

tkdt, k ∈ Z.

We have

β−1(ρ) = −ln(ρ), βk(ρ) =
1 − ρk+1

k + 1
, k , −1. (3)

Note that, for k < 0, βk(ρ) is well-defined only if 0 < ρ < 1. However, βk(ρ) is well-defined for k ≥ 0 and
ρ ∈ [0, 1). We will write βk(ρ) simply βk when no confusion can arise. In this setting, Lemma 2.1 gives

µθ
(
A(ρ, 1); qk

)
= βkeikθ, k ∈ Z. (4)

Proof. [Proof of Theorem 1.1] Since the number of interpolation conditions is equal to m+ n+ 1 = dimRm,n.
It is sufficient to show that if R ∈ Rm,n satisfies the following conditions

d j

dθ jµθ
(
A(ρ, 1); R

)∣∣∣∣
θ=θk

= 0, k = 1, . . . , d, j = 0, . . . , νk − 1. (5)

then R ≡ 0. Let us set R(z) =
∑n

k=−m ckzk. By Lemma 2.1 (see also (4)), we can write

µθ
(
A(ρ, 1); R

)
=

n∑
k=−m

ckβkeikθ.

The polynomial Q(z) =
∑m+n

k=0 ck−mβk−mzk belongs to the space Pm+n and admits the relation

e−imθQ(eiθ) = µθ
(
A(ρ, 1); R

)
.

Hence, relation (5) is equivalent to

d j

dθ j

(
e−imθQ(eiθ)

)∣∣∣∣
θ=θk

= 0, k = 1, . . . , d, j = 0, . . . , νk − 1. (6)
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Using [20, Lemma 2.6] in (6) we obtain

d j

dθ j Q(eiθ)
∣∣∣∣
θ=θk

= 0, k = 1, . . . , d, j = 0, . . . , νk − 1.

Lemma 3.3 in [23] now implies

Q( j)(eiθk ) = 0, k = 1, . . . , d, j = 0, . . . , νk − 1. (7)

By the uniqueness of univariate Hermite interpolation, we conclude from (7) that Q = 0. It follows that
ck−mβk−m = 0 for k = 0, 1, . . . ,m+n. Since βk > 0 for any k ∈ Z, we get ck = 0 for −m ≤ k ≤ n, and hence R = 0,
which completes the proof.

Examining the proof of Theorem 1.1, we see that it still holds true when ρ = 0 and m = 0. In this case,
R0,n is replaced by Pn. We state the result without proof.

Corollary 2.2. Let n be a natural number. Let ν1, . . . , νd be positive integers such that ν1 + · · · + νd = n + 1. Let
θ1, . . . , θd ∈ [0, 2π) be pairwise distinct angles. Then, for arbitrary complex numbers γk, j, there exists a unique
P ∈ Pn such that

d j

dθ jµθ
(
D; P
)∣∣∣∣
θ=θk

= γk, j, k = 1, . . . , d, j = 0, . . . , νk − 1.

Example 2.3. We compute the interpolation function R ∈ R1,1 of the function f (z) = e
1
z

z2 on the annulus A( 1
2 , 1)

corresponding to the set of angles {0, π2 , π}. The interpolation function is determined by the following three equations

µ0

(
A(

1
2
, 1); R

)
= µ0

(
A(

1
2
, 1); f

)
, µ π

2

(
A(

1
2
, 1); R

)
= µ π

2

(
A(

1
2
, 1); f

)
µπ
(
A(

1
2
, 1); R

)
= µπ

(
A(

1
2
, 1); f

)
.

We first evaluate the integrals of f over three line segments. We have

µ0

(
A(

1
2
, 1); f

)
=

1∫
1
2

e
1
t

t2 dt = e2
− e, µπ

(
A(

1
2
, 1); f

)
=

1∫
1
2

e−
1
t

t2 dt =
1
e
−

1
e2 ,

µ π
2

(
A(

1
2
, 1); f

)
=

1∫
1
2

e
1
it

(it)2 dt = −

1∫
1
2

cos 1
t

t2 + i

1∫
1
2

sin 1
t

t2 = sin 1 − sin 2 + i(cos 1 − cos 2),

Let us set R(z) = c−1z−1 + c0 + c1z. We see that

µ0

(
A(

1
2
, 1); R

)
=

1∫
1
2

(
c−1

t
+ c0 + c1t)dt = c−1 ln 2 +

c0

2
+

3c1

8
,

µπ
(
A(

1
2
, 1); R

)
=

1∫
1
2

(
c−1

−t
+ c0 − c1t)dt = −c−1 ln 2 +

c0

2
−

3c1

8
,

µ π
2

(
A(

1
2
, 1); R

)
=

1∫
1
2

(
c−1

it
+ c0 + c1(it))dt = −ic−1 ln 2 +

c0

2
+

3ic1

8
.
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Hence, we obtain a system of equations
c−1 ln 2 + c0

2 +
3c1
8 = e2

− e
−c−1 ln 2 + c0

2 −
3c1
8 =

1
e −

1
e2

−ic−1 ln 2 + c0
2 +

3ic1
8 = sin 1 − sin 2 + i(cos 1 − cos 2)

The exact solution of the system of equations is

c−1 =
e4
− e3
− e + 1 − 2e2(cos 1 − cos 2) + i

(
− e4 + e3

− e + 1 + 2e2(sin 1 − sin 2)
)

4e2 ln 2
,

c0 =
e4
− e3 + e − 1

e2 ,

c1 =
2
3
·

e4
− e3
− e + 1 + 2e2(cos 1 − cos 2) + i

(
e4
− e3 + e − 1 − 2e2(sin 1 − sin 2)

)
3e2 .

The above solution gives precise formula for R(z).

We need some elementary properties of the sequence {βk} that are used in the next section.

Lemma 2.4. Let 0 < ρ < 1.
i) For j, k ∈ Z and n ∈ Z+, we have

β j > βk > 0, j < k

and
βk−n < ρ

−nβk.

ii) If k ≥ 1 and N ≥ k + 2, then βk−N ≤ Nρk+1−Nβk.
iii) If k ≥ 0 and N ≥ k + 2, then β−k+N ≤ Nρk−1β−k.

Proof. i) For j < k, we have t j > tk for all t ∈ (ρ, 1).Hence,
1∫
ρ

t jdt >
1∫
ρ

tkdt. Consequently, β j > βk. To prove the

second inequality, we write

βk−n =

1∫
ρ

tk−ndt <

1∫
ρ

ρ−ntkdt = ρ−nβk.

ii) Since ρ ∈ (0, 1), we see that

βk−N

βk
=

1 − ρk+1−N

k + 1 −N
·

k + 1
1 − ρk+1

=
k + 1

N − k − 1
·

1 − ρN−k−1

1 − ρk+1
·

1
ρN−k−1

=
1

1 + ρ + · · · + ρk
·

1 + ρ + · · · + ρN−k−2

N − k − 1
·

k + 1
ρN−k−1

<
k + 1
ρN−k−1

<
N
ρN−k−1

.

iii) We first consider the case k ≥ 2. We can write

β−k+N

β−k
=

1 − ρN+1−k

N + 1 − k
·
−k + 1

1 − ρ−k+1
=

k − 1
N + 1 − k

·
1 − ρN+1−k

1 − ρk−1
· ρk−1

=
1

1 + ρ + · · · + ρk−2
·

1 + ρ + · · · + ρN−k

N + 1 − k
· (k − 1)ρk−1

≤ (k − 1)ρk−1 < Nρk−1.
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If k = 1, then
β−1+N

β−1
=

1 − ρN

N(− lnρ)
=

1 − ρ
− lnρ

·
1 + ρ + · · · + ρN−1

N
≤ 1 < N,

because ρ ∈ (0, 1) and 1 − ρ ≤ − lnρ.
Finally, for k = 0, we write

βN

β0
=

1 − ρN+1

(N + 1)(1 − ρ)
=

1 + ρ + · · · + ρN

N + 1
< 1 <

N
ρ
.

The inequalities are proved completely.

3. Convergence of interpolation functions

3.1. Convergence of interpolation functions on an annulus

In this subsection, we assume that 0 < ρ < 1. Let f be holomorphic in a neighborhood of A(ρ, 1). We
can find ρ1 and ρ2 with 0 < ρ1 < ρ < 1 < ρ2 such that f is holomorphic on a neighborhood of A(ρ1, ρ2). By
the Laurent theorem we can write

f (z) =
∞∑
ℓ=−∞

aℓzℓ, ρ1 ≤ |z| ≤ ρ2, (8)

where

aℓ =
1

2πi

∫
|t|=ρ2

f (t)dt
tℓ+1

, ℓ ≥ 0 and a−l =
1

2πi

∫
|t|=ρ1

tl−1 f (t)dt, l ≥ 1.

Let us set
M = max{∥ f ∥|t|=ρ1 , ∥ f ∥|t|=ρ2 },

where ∥ f ∥X = sup{| f (t)| : t ∈ X}. Applying standard arguments we obtain the estimate for the coefficients
of the Laurent expansion

|aℓ| ≤
M
ρℓ2
, ℓ ≥ 0, |a−l| ≤Mρl

1, l ≥ 1. (9)

The above settings and results for f will be used throughout the subsection. We also use the following
simple relations

d∑
k=0

1
ρk

2

<
∞∑

k=0

1
ρk

2

=
ρ2

ρ2 − 1
and

d∑
k=0

(ρ1

ρ

)k
<
∞∑

k=0

(ρ1

ρ

)k
=

ρ

ρ − ρ1
.

Let us define the generalized Vandermonde determinant corresponding to the set of functions Fm,n :=
{ f−m, f−m+1, . . . , fn} and the set of points exp(iΘ) := {eiθ1 , . . . , eiθm+n+1 }. We set

VDM(Fm,n; exp(iΘ)) =

∣∣∣∣∣∣∣∣∣∣∣∣
f−m(eiθ1 ) f−m+1(eiθ1 ) · · · fn(eiθ1 )
f−m(eiθ2 ) f−m+1(eiθ2 ) · · · fn(eiθ2 )
...

...
. . .

...
f−m(eiθm+n+1 ) f−m+1(eiθm+n+1 ) · · · fn(eiθm+n+1 )

∣∣∣∣∣∣∣∣∣∣∣∣
A useful formula I[Rm,n,Θ; f ] is given in the following lemma.
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Lemma 3.1. If f (z) =
∑
∞

ℓ=−∞ aℓzℓ, then I[Rm,n,Θ; f ](z) =
∑n

k=−m ckzk, where

ck =
1
βk

∞∑
ℓ=−∞

aℓβℓ
VDM(Mm,n[qk ← qℓ]; exp(iΘ))

VDM(Mm,n; exp(iΘ))
, −m ≤ k ≤ n. (10)

HereMm,n := {q−m, q−m+1, . . . , qn} with q j(z) = z j andMm,n[qk ← qℓ] means that we substitute qℓ for qk inMm,n.

Proof. Since the series at the right hand side of (8) converges uniformly on the closed annulus A(ρ, 1) to f ,
Lemma 2.1 (see also (4)) yields

µθ( f ) =
∞∑
ℓ=−∞

aℓβℓeiℓθ, θ ∈ [0, 2π). (11)

Observe that the series at the right hand side of (11) converges absolutely. Indeed, from Lemma 2.4(i) we
see that

βℓ ≤ β0 = 1 − ρ, ℓ ≥ 0

and
β−l ≤ ρ

−lβ0 = ρ
−l(1 − ρ), l ≥ 1.

It follows that

∞∑
ℓ=−∞

|aℓβℓeiℓθ
| =

∞∑
ℓ=0

|aℓβℓ| +
∞∑

l=1

|a−lβ−l| ≤

∞∑
ℓ=0

M(1 − ρ)

ρℓ2
+

∞∑
l=1

M(1 − ρ)
(ρ1

ρ

)l
< ∞,

where we use (9) in the second relation.
Since I[Rm,n,Θ; f ](z) =

∑n
k=−m ckzk, we can use Lemma 2.1 again to obtain

µθ
(
I[Rm,n,Θ; f ]

)
=

n∑
k=−m

ckβkeikθ, θ ∈ [0, 2π). (12)

Since I[Rm,n,Θ; f ] satisfies the interpolation conditions

µθ j (I[Rm,n,Θ; f ]) = µθ j ( f ), j = 1, . . . ,m + n + 1,

we conclude from (11) and (12) that

n∑
k=−m

ckβk(eiθ j )k =

∞∑
ℓ=−∞

aℓβℓ(eiθ j )ℓ, j = 1, . . . ,m + n + 1. (13)

Hence, we get a system of m + n + 1 linear equations, where c−mβ−m, c−m+1β−m+1, . . . , cnβn are unknown. We
can use the Cramer rule to compute its solution. The determinant of the coefficient matrix is equal to

VDM(Mm,n; exp(iΘ)).

Hence, from (13), we have

ckβk =

∞∑
ℓ=−∞

aℓβℓ
VDM(Mm,n[qk ← qℓ]; exp(iΘ))

VDM(Mm,n; exp(iΘ))
. (14)

The proof is complete.
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Proof. [Proof of Theorem 1.2] The proof is inspired from the proof of Theorem 3.7 in [23]. For simplicity of
notation, we let N stand for m + n + 1. Since I[Rm,n,ΦN; f ] ∈ Rm,n, we can write

I[Rm,n,ΦN; f ](z) =
n∑

k=−m

c(m,n)
k zk.

By Lemma 3.1, we have

c(m,n)
k =

1
βk

∞∑
ℓ=−∞

aℓβℓ
VDM(Mm,n[qk ← qℓ]; exp(iΦN))

VDM(Mm,n; exp(iΦN))
, −m ≤ k ≤ n. (15)

Since ΦN =
{
φ(N)

j =
2 jπ
N : 0 ≤ j ≤ m + n

}
, we see that if ℓ ∈ j +NZ = { j +Nk : k ∈ Z}, then(

qℓ
(
eiφ(N)

0

)
, . . . , qℓ

(
eiφ(N)

m+n
))
=
(
q j

(
eiφ(N)

0

)
, . . . , q j

(
eiφ(N)

m+n
))
.

It follows that

VDM(Mm,n[qk ← qℓ]; exp(iΦN)) =
{

VDM(Mm,n; exp(iΦN)) if ℓ ∈ k +NZ
0 otherwise

Substituting this into (15) we obtain

c(m,n)
k =

1
βk

∞∑
l=−∞

ak+lNβk+lN, −m ≤ k ≤ n. (16)

We denote by em,n(z) the error between the interpolation function and the finite Laurent expansion of f ,

em,n(z) := I[Rm,n,ΦN; f ](z) −
n∑

k=−m

akzk =

n∑
k=−m

(
c(m,n)

k − ak

)
zk. (17)

In view of (17), we get

∥em,n∥A(ρ,1) ≤

n∑
k=−m

|c(m,n)
k − ak| · ∥zk

∥A(ρ,1)

≤

n∑
k=1

|c(m,n)
k − ak| +

m∑
k=0

|c(m,n)
−k − a−k| ·

1
ρk

(18)

We need to estimate the quantity |c(m,n)
k − ak| for −m ≤ k ≤ n. From inequality (9) and relation (16), we get,

for −m ≤ k ≤ n,

|c(m,n)
k − ak| =

∣∣∣∣ ∞∑
l=−∞,l,0

βk+lN

βk
ak+lN

∣∣∣∣
≤

∞∑
l=1

∣∣∣∣βk+lN

βk
ak+lN

∣∣∣∣ + ∞∑
l=1

∣∣∣∣βk−lN

βk
ak−lN

∣∣∣∣
≤

∞∑
l=1

βk+lN

βk
·

M
ρk+lN

2

+

∞∑
l=1

βk−lN

βk
·MρlN−k

1 . (19)

We will use Lemma 2.4 to get upper bounds for

βk+lN

βk
and

βk−lN

βk
, −m ≤ k ≤ n, l ≥ 1.



A. N. Nguyen at el. / Filomat 38:30 (2024), 10723–10736 10732

We first consider the case k ∈ {1, . . . ,n}. Since lN ≥ m + n + 1 ≥ k + 2, the inequality in Lemma 2.4(ii) yields
βk−lN

βk
< Nρ−lN+k+1. In addition, βk+lN

βk
< 1 by Lemma 2.4(i). It follows that

|c(m,n)
k − ak| ≤

∞∑
l=1

M
ρk+lN

2

+

∞∑
l=1

Nρ−lN+k+1
·MρlN−k

1

=
M
ρN+k

2

∞∑
l=0

1
ρlN

2

+
MNρN−k

1

ρN−k−1

∞∑
l=0

(ρ1

ρ

)lN
≤

M
ρN+k

2

∞∑
l=0

1
ρl

2

+MNρ ·
ρN−k

1

ρN−k

∞∑
l=0

(ρ1

ρ

)l
=

M
ρ2 − 1

·
1

ρN+k−1
2

+
MNρ2

ρ − ρ1
·
ρN−k

1

ρN−k
. (20)

Next, we treat the case −m ≤ k ≤ 0. Since lN ≥ m+n+ 1 ≥ −k+ 2, Lemma 2.4(iii) gives βk+lN

βk
< Nρ−k−1. Using

Lemma 2.4 (i), we get βk−lN

βk
< ρ−lN. Substituting these estimates into (19) we obtain

|c(m,n)
k − ak| ≤

∞∑
l=1

Nρ−k−1
·

M
ρk+lN

2

+

∞∑
l=1

ρ−lN
·MρlN−k

1

=
MNρ−k−1

ρN+k
2

∞∑
l=0

1
ρlN

2

+
MρN−k

1

ρN

∞∑
l=0

(ρ1

ρ

)lN
≤

MNρ−k−1

ρN+k
2

∞∑
l=0

1
ρl

2

+
MρN−k

1

ρN

∞∑
l=0

(ρ1

ρ

)l
=

MNρ−k−1

ρ2 − 1
·

1
ρN+k−1

2

+
Mρ
ρ − ρ1

·
ρN−k

1

ρN , −m ≤ k ≤ 0. (21)

We will use (20) to estimate the first term in (18). We have

n∑
k=1

|c(m,n)
k − ak| ≤

n∑
k=1

( M
ρ2 − 1

·
1

ρN+k−1
2

+
MNρ2

ρ − ρ1
·
ρN−k

1

ρN−k

)
=

M
ρ2 − 1

·
1
ρN

2

n−1∑
l=0

1
ρl

2

+
MNρ2

ρ − ρ1

(ρ1

ρ
)m+1

n−1∑
l=0

(ρ1

ρ
)l

≤
Mρ2

(ρ2 − 1)2 ·
1
ρN

2

+
MNρ3

(ρ − ρ1)2

(ρ1

ρ
)m+1.

Similarly, using relation (21) we obtain

m∑
k=0

|c(m,n)
−k − a−k| ·

1
ρk

≤

m∑
k=0

(MNρk−1

ρ2 − 1
·

1
ρN−k−1

2

+
Mρ
ρ − ρ1

·
ρN+k

1

ρN

)
·

1
ρk

≤

m∑
k=0

(MNρ−1

ρ2 − 1
·

1
ρN−k−1

2

+
Mρ
ρ − ρ1

·
ρN+k

1

ρN+k

)
≤

MNρ−1ρ2

(ρ2 − 1)2 ·
1
ρn

2
+

Mρ2

(ρ − ρ1)2 ·
(ρ1

ρ

)N
.
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We conclude from (18) and the above estimates that

∥em,n∥A(ρ,1) ≤
Mρ2

(ρ2 − 1)2 ·
1
ρN

2

+
MNρ3

(ρ − ρ1)2

(ρ1

ρ
)m+1 +

MNρ−1ρ2

(ρ2 − 1)2

1
ρn

2
+

Mρ2

(ρ − ρ1)2

(ρ1

ρ

)N
. (22)

On the other hand, using inequality (9), we get

∥

∞∑
ℓ=n+1

aℓzℓ∥A(ρ,1) ≤

∞∑
ℓ=n+1

M
ρℓ2
=

M
ρ2 − 1

·
1
ρn

2
(23)

and

∥

∞∑
ℓ=m+1

a−ℓz−ℓ∥A(ρ,1) ≤

∞∑
ℓ=m+1

Mρℓ1
1
ρℓ
=

Mρ1

ρ − ρ1

(ρ1

ρ

)m+1
. (24)

Combining (22), (23) and (24) we obtain

∥I[Rm,n,ΦN; f ] − f ∥A(ρ,1) ≤ ∥I[Rm,n,ΘN; f ](z) −
n∑

k=−m

akzk
∥A(ρ,1)

+ ∥

∞∑
ℓ=n+1

aℓzℓ∥A(ρ,1) + ∥

∞∑
ℓ=m+1

a−ℓz−ℓ∥A(ρ,1)

≤ ANδm + BNδn + CδN,

where δ = max{1/ρ2, ρ1/ρ} ∈ (0, 1) and the constants A,B,C depend only on M, ρ, ρ1, ρ2. The last estimate
directly implies the desired assertion, and the proof is complete.

The following corollary is a simple consequence of Theorem 1.2.

Corollary 3.2. Let 0 < ρ < 1 and f be holomorphic in a neighborhood of A(ρ, 1). Let m,n be positive integers such
that m − n ∈ {0,±1}. Let Φm+n+1 be the set of equally spaced angles

Φm+n+1 =
{
φ(m+n+1)

j =
2 jπ

m + n + 1
: 0 ≤ j ≤ m + n

}
.

Then there exists δ ∈ (0, 1) depending only on f such that

lim sup
n→∞

(
∥I[Rm,n,Φm+n+1; f ] − f ∥A(ρ,1)

) 1
n
≤ δ.

3.2. Convergence of interpolation polynomials on the unit disk

In this subsection, we consider the case ρ = 0. In this case A(0, 1) = D.
Let n be a positive integers. Let θ1, . . . , θn+1 ∈ [0, 2π) be pairwise distinct angles. Let f be holomorphic

in a neighborhood ofD. By Corollary 2.2, there is a unique P ∈ Pn such that

µθk

(
D; P
)
= µθk

(
D; f
)
, k = 1, . . . ,n + 1. (25)

The polynomial P in (25) is denoted by I[Pn,Θ; f ], where

Θ =
{
θ1, . . . , θn+1

}
.

We can repeat the arguments in the proof of Lemma 3.1 to get a formula for I[Pn,Θ; f ].
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Lemma 3.3. If f (z) =
∑
∞

ℓ=0 aℓzℓ, then I[Pn,Θ; f ](z) =
∑n

k=0 ckzk, where

ck =
1
βk

∞∑
ℓ=0

aℓβℓ
VDM(M0,n[qk ← qℓ]; exp(iΘ))

VDM(M0,n; exp(iΘ))
, 0 ≤ k ≤ n,

where exp(iΘ) = {eiθ1 , . . . , eiθn+1 },M0,n = {q0, q1, . . . , qn} with q j(z) = z j and the βℓ’s are given in (3).

Theorem 3.4. Let f be holomorphic in a neighborhood ofD. Let n be a positive integer. LetΦn+1 be the set of equally
spaced angles

Φn+1 =
{
φ(n+1)

j =
2 jπ

n + 1
: 0 ≤ j ≤ n

}
.

Then there exists a positive constant δ ∈ (0, 1) such that

lim sup
n→∞

(
∥I[Pn,Φn+1; f ] − f ∥D

) 1
n
≤ δ. (26)

Proof. The proof is similar to the proof of Theorem 1.2, For convenience to the readers, we give the precise
arguments. Since f be holomorphic in a neighborhood ofD, there exists ρ2 > 1 and f is holomorphic on a
neighborhood of D(0, ρ2). We can write

f (z) =
∞∑
ℓ=0

aℓzℓ, |z| ≤ ρ2.

By the Cauchy inequality, we have

|aℓ| ≤
M
ρℓ2
, ℓ ≥ 0, M = ∥ f ∥|t|=ρ2 . (27)

Since I[Pn,Φn+1; f ] ∈ Pn, we can write

I[Pn,Φn+1; f ](z) =
n∑

k=0

c(n)
k zk.

Using Lemma 3.3, we get a formula for coefficients

c(n)
k =

1
βk

∞∑
ℓ=0

aℓβℓ
VDM(M0,n[qk ← qℓ]; exp(iΦn+1))

VDM(M0,n; exp(iΦn+1))
, 0 ≤ k ≤ n. (28)

Since Φn+1 =
{
φ(n+1)

j =
2 jπ
n+1 : 0 ≤ j ≤ n

}
, we can check at once that if ℓ ∈ j + (n + 1)Z then(

qℓ
(
eiφ(n+1)

0

)
, . . . , qℓ

(
eiφ(n+1)

n
))
=
(
q j

(
eiφ(n+1)

0

)
, . . . , q j

(
eiφ(n+1)

n
))
.

Consequently,

VDM(M0,n[qk ← qℓ]; exp(iΦn+1)) =
{

VDM(M0,n; exp(iΦn+1)) if ℓ ∈ k + (n + 1)Z
0 otherwise

Combining the above relation with (28) we obtain

c(n)
k =

1
βk

∞∑
l=0

ak+l(n+1)βk+l(n+1), 0 ≤ k ≤ n. (29)
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From relations (27) and (29), we get, for 0 ≤ k ≤ n,

|c(n)
k − ak| =

∣∣∣∣ ∞∑
l=1

βk+l(n+1)

βk
ak+l(n+1)

∣∣∣∣ ≤ ∞∑
l=1

βk+l(n+1)

βk
·

M

ρk+l(n+1)
2

≤

∞∑
l=1

M

ρk+l(n+1)
2

=
M
ρk+n+1

2

∞∑
l=0

1

ρl(n+1)
2

≤
M
ρk+n+1

2

∞∑
l=0

1
ρl

2

=
M
ρ2 − 1

1
ρk+n

2

,

where we use Lemma 2.4(i) in the second relation, that is βk+l(n+1)/βk ≤ 1. Therefore, we get an estimate for
the error between the interpolation polynomial and the finite Taylor expansion

∥I[Pn,Φn+1; f ](z) −
n∑

k=0

akzk
∥D = ∥

n∑
k=0

(
c(n)

k − ak

)
zk
∥D

≤

n∑
k=0

|c(n)
k − ak| · ∥zk

∥D

≤

n∑
k=0

M
ρ2 − 1

·
1
ρk+n

2

≤
Mρ2

(ρ2 − 1)2 ·
1
ρn

2
(30)

In addition, relation (27) gives

∥

∞∑
ℓ=n+1

aℓzℓ∥D ≤
∞∑
ℓ=n+1

M
ρℓ2
=

M
ρ2 − 1

·
1
ρn

2
(31)

Combining (30) and (31), we obtain

∥I[Pn,Φn+1; f ] − f ∥D ≤ ∥I[Pn,Φn+1; f ](z) −
n∑

k=0

akzk
∥D + ∥

∞∑
ℓ=n+1

aℓzℓ∥D

≤

( Mρ2

(ρ2 − 1)2 +
M
ρ2 − 1

) 1
ρn

2
.

The desired assertion follows directly from the last estimate. The proof is complete.
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