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Abstract. In this paper we calculate the strict s-numbers of Hardy type operators T, : LF(Y,) — L/ (Y,) for
1 < p < oo, defined by

T, f(x) = v(x) fx ftutdt, for o€,

where 1 and v are measurable functions on Y, satisfying the conditions u € L' (k),v € LP(Y,), f € LP(Y,)
and x € Y,, for every subtree x of a tree Y, such that the closure of x is compact subset of Y,. We obtain the
equality among strict s-numbers.

1. Introduction

Let X be a Banach space and T : X — X be an operator. There is a question to ask whether the operator
T is compact or not. If it is compact then one is interested in learning the degree of its compactness.
The s-numbers can be used as a tool to answer these questions [5, 9]. The s-numbers can also be used to
determine the degree of non-compactness of operators [2]. Among all strict s-numbers, the calculation of
Bernstein numbers (defined in Section 2) is applied to investigate the finite strict singularity of operators,
a weaker property than compactness (e.g. see [1, 16, 18, 19] or [26]). In 1974, A. Pietsch presented the
axiomatic theory of s-numbers [22] and later more general version of this definition came up [23]. By
generalizing the source and the target spaces in definition of s-numbers, we get strict s-numbers: Approx-
imation numbers, Kolmogorov numbers, Gelfand Numbers, Bernstein numbers, Mityagin numbers and
Isomorphism numbers. When X is an infinite dimensional Hilbert space and T a compact operator, then
all n'" strict s-numbers of T coincide and these are equal to the n eigen value of the operator (T* T)z (when
arranged in decreasing order) [22]. This is not true if X is not a Hilbert space [23]. However, in [11], the
coincidence of strict s-numbers for the simplest case of Hardy operators and for the embedding involving
L? and Sobolev spaces, has been proved. For the weighted Hardy operators H : LP(I) — LF(I),1 <p < oo, (I

is an interval of reals), defined by H(f) = v(x) fa * u(t) f(t)dt, it was shown in [10] that the strict s-numbers for
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H coincide. This operator from L? to L7, for different values of p and g, has been studied in [8, 20, 24] and
[25]. The boundedness of this operator on trees is proved in [14]. The asymptotic estimates and bounds for
the approximation numbers of weighted Hardy operators on trees have been obtained by Evans et. al. in
[13].

In this paper we calculate the exact values of all strict s-numbers of weighted Hardy operators by general-
izing the results of [10] to a tree.

2. Elementary Material

Tree
A tree Y is a connected graph without cycles or loops, where the edges are non-degenerate closed line
segments whose end points are vertices. Each vertex of Y is of finite degree, which means that only finite
number of edges can generate from a vertex. For every x1,x; € Y, there is a unique polygonal path in Y
which joins x; and x,, denoted by (x; : x2). The length of this polygonal path defines the distance between
x1 and x; and hence Y is endowed with the metric topology. For a subtree « of Y, E(x) and V(x) are used to
denote, respectively, the sets of edges and vertices of «. By 6(x) we denote the set of the boundary points
of x in Y. A subtree x of Y is said to be compact if it meets only a finite number of edges of Y. Let k be the
measurable subset of tree Y and |k| denotes its Lebesgue measure. Then, norm on Lebesgue space L (k) is

defined by
I, = [[1rrar]

f HP,Y = H f ||p. A connected subset of Y is a subtree if we add its boundary points

We will denote, for short,

to the set of vertices of Y and hence form the new edges from the existing ones. Hereafter, we adopt this
convention when we refer to subtrees. The characteristic function of a set K will be denoted by x,. We need
the following important results from [12, Lemma 2.1, p. 495]. Let 7(Y) be the metric topology on Y. Then
(i) The set A C Y is compact if and only if it is closed and meets only a finite number of edges;

(if) 7(Y) is locally compact;

(iif) Y is the union of countable number of edges; thus, if Y is endowed with the natural one-dimensional
Lebesgue measure, it is a o-finite measure space.

For the proof of the above see [12].

For 0 € Y, the notation t >, z (or z <, ) means that z lies on the path (o : t) joining 0 and t. We write z <, ¢
for z <, t and z # t. This defines the partial ordering on tree Y and the ordered graph so formed is referred
to as a tree rooted at 0 and it will be denoted by Y,. If 0 is not a vertex, then we split the edge containing o
in two edges emanating from o, making o a vertex. In this way Y, is the unique finite union of subtrees Y, ;
which intersect only at 0. Let 1), be the degree of the root 0. Then we can write

Yo = Ul Yox

Note thatif z ¢ (a : b) then z <, yif and only if z <, y.
Let f € LP(Y,) and S be a measurable subset of Y,. Then

fsf=; K

where ¢ denotes an edge of S. By |x| we denote the length of the path (0 : x). The distance between two
points x, y € Y, is the length of the path (x : y), where x <, y, denoted by |(x : y)|. For a detailed study of
trees, we refer the reader to [12, 14, 21].

Definition 2.1. A point 6 € 0(x), where « is a subtree of Y containing o, is said to be maximal if every z >, O lies
in Y\ x. By t, we denote the set of all subtrees x of Y containing o whose boundary points are all maximal.
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Definition 2.2. Let Y, be a tree. Then for x € Y, and f € LP(Y,), the Hardy operator T, : LP(Y,) — LP(Y,) for
1 < p < oo, is defined by

Tof(x) = v(x) f F(Hu(t)dt,

where uand v are measurable functions on Y, satisfying the conditions u € LV (x)and v € LP(Y,), wherep’ ' +p~! =1,
for subtrees « of Y, whose closures are compact subsets of Y.

The operator T, is bounded in view of [13, Theorem 2.4] for the proof of which one is referred to
[14]. For compactness of T,, one is referred to [6, 13].
From [13] we have the following.

Definition 2.3. Lef « be a subtree of tree Y, and T, . : LP(x) — LP(x) be the operator. Then

[70f - el

AK) 1= | ook W if u(x) > 0,
O if u(x) =0,
where
Tou f(x) = 0(x) X (%) fo ’ FOu) (bt
and

[lopdt  if1<p<eo,
p(x) = {ess sup lo(t)| ifp = 0.
K
LetI’ ¢ Y, be a subtree withy € I’ being the nearest point to 0. Then we have ([13], P. 394), T,r = T r.
Let 17, be the degree of y € T. ThenT = U 1“V x, where I', ;. are subtrees of I intersecting at y only. We will
call ', x to be a norming subtree of I if ||Tyr” = ||Tyr|U’(1") LP(F)|| = ||Ty,r,,,,k” for some 1 < k < 7, and
denote it by I7. In this way, || T, : LF(Y,) — LP(Y,)l := [|Tolly, = ITolly: - Note that if y is the root of a subtree

I'cY,, then HT%F“ =||T }r . A point x € Y, with degree 7 is said to be simple if there is a subtree Y, ;, such
that [ Tully,, > ITlly,, , 1 < i<y, i # do.

Definition 2.4. (The s-Numbers)[10]
Let B(X, Y) denote the Banach space of all bounded linear operators acting between Banach spaces X and Y. For an
operator T € B(X,Y), we associate a sequence s,(T) of scalars satisfying the following properties:

(51) Monotonicity: ||T|| = s1(T) = s2(T) = s3(T) = ... 2 0,
(52) s4(T + S) < 5,(T) + ISl for every S € B(X, Y),

(53) Ideal Property: s,(BoT o A) < ||Blls,(T)I|All for every A € B(Z1, X) and B € B(Y, Z,), where Z1, Z, are Banach
spaces,

(S4) Norming Property: s,(Id : €2 — (2) =1,
(55) Rank Property: s,(T) = 0 whenever rank T < n.

Then, s,(T) is called the n-th s-number of T. The number s,(T) is called the n-th strict s-number of T when the
following condition

(56) su(Id : E — E) =1 for every Banach space E of dimE > n,

is considered in place of (54).
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The s-numbers have varied definitions in literature. Initially, A. Pietsch gave the definition of s-numbers
(see [22]) which makes use of condition (S6). Later, the definition was refined so that a larger class of
s-numbers (such as Chang, Hilbert, Weyl numbers etc.) can be included. For more details of s-numbers,
we refer to [3, 7, 23] or [17].

ForT € B(X,Y)and n € IN, we define the n-th Approximation, Gelfand, Kolmogorov, Bernstein, Mityagin
and Isomorphism numbers by

a,(T)= inf |IT—F|,
FeB(X,Y)
rank F<n
(T) = inf  sup[ITxlly,
codim M<n
2,(T) = ﬁ;rclf sup ||Tx|lyn,
dimN<n eBx
b,(T) = sup inf ||Tx|ly,
McCX XESMm
dimM=>n
m,(T) = supsup{a =2 0: aByn C (ny o T)Bx},

NcY
codimN>n

where mty : Y — Y/N is a canonical surjection of closed subspace N of Y (see [4, 26] or [15]),

in(T) = sup [IPITMIQI,

dim(E)=n

respectively, where E is Banach spaceand P € B(Y, E), Q € B(E, X) such that PoTo(Q defines identity map on E.
The above s-numbers are connected through some inequalities which are bounded below by Isomorphism
numbers and bounded from above by Approximation numbers. To be concrete, for T € B(X,Y) and n € IN,
the following relation is obtained (see [10])

t,(T) < min{b,(T), m,(T)} < min{c,(T), d,(T)}
< max{c,(T), u(T)} < a,(T). 1)

3. Auxiliary Results

From now onwards we will assume 1 < p < oco.
Lemma 3.1. Let T, : LP(Y,) — LP(Y,), 1 < p < o0, be compact and I', I"” be two subtrees of Y, such that I" C I, and
[T\ I’| > 0 with |I’| > 0. Suppose that u,v # 0 almost everywhere on Y, and fY [0P|d(x) < co. Then

[Torl], = [[Tor |, > 0 2)
and
AT) = AT’) > 0. 3)

Proof. Let I C T be the subtrees of Y, with or- and or are the nearest point to o such that I, \ F'o’;,l > 0. If
possible, suppose ||Tg,p”p = 0. Then there existsan f # 0 such that ||T0,p f ||p = 0. This gives fr |Tor f(x)Pdx =
0, providing T, f(x) = 0 almost everywhere on I"”. Let b := or be the nearest point of I to 0. Then we can
write

V(X)X (x)f u(t) f(t)x,, (t)dt = 0, for almost every x € I’
b
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which implies that either v = 0 on I or u = 0 almost everywhere on I”, leading to contradiction, since
[T’| > 0. Therefore, To,r'“p > 0 for [I”| > 0. Next, on considering I' =I" U (I' \ I"), we have

o All, = fr ITor f)Pdx

_ f ITor fOPdx
U\

= |To,r f(x)Pdx + f |To,r f(x)Pdx.
r I\

We note that I' \ I” is either a subtree of I' with |I' \ I| > 0 or it is a finite union of subtrees I'; of I such
that [[; NT';| = 0 for i # j and at least one of them is positive, say |[';| > 0. Therefore, in both the cases,

Jops ITor f(x)Pdx > 0, and therefore

ITor AL > fr T, f ()P dx
= [Tor I, -

= [Tor A1l

yielding

| Tor|| > |Tor|| for T cT.

The equality holds when I’and I have a common root o’ such thatI'y, 1 C I" C I', where I'y ; is the connected
component of I' rooted at o', the nearest point to o, such that ||T0,FH = ( Tg,ro,,ln. Now, to prove (3.2), let
x €I’ cT. Then, by [13, Lemma 3.5, Theorem 3.8], there exist k, [ such that r, #I,and

T”’r;,k

7

To,r;JH} < min [T, || = AT).

max { |
xel”

Since [I’| > 0, we may assume that [[7 |, [I" ;| > 0 and therefore A(I") > 0. Let C # C’ be two non-simple
points in I" and I respectively, such that A(l') = “Tc,r” and A(I") = ||Tcr,p , Then A(') = ”Tgr” > ”T(;,p” >
“Tc,r/ ” = A(I"). The case of C = (' is obvious. This completes the proof. [J

Lemma 3.2. Let T, : LP(Y,) — LP(Y,) be compact. Then there exists a path A, €Y, such that ||T,|ly, = [|T,|l, -

Proof. Let Y, be the norming subtree of Y,. Then ”To,n” = ||T0,y;

there is an fi € LP(Y,) such that | T,|ly, = ||T,f
that Y, = (0: 01) UY,,. Then

v = IT,lly; and by compactness of T,

HY*. Let 01 be the nearest point of subtree Y,, C Y} to o such

ITAlL = f T AP+ fY mAwp
= f 1 ITo fiPdx + || Tofilfy,

1
S
[
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and by compactness of T,, there is an f, € L(Y,) and norming subtree Y}, CY,, such that

IT Al < f“l ITo fi(x)Pdx + || T, f21|§;] .

By the similar arguments as above, there is a point 0, € Y,, C Y such that

IToAilly. = f TP+ f TP + f |T, fo(x)Pdx

Y(?z

1 2
= f |To fi(x)Pdx + f |T0fz(x>|"dx+1|nfz||§02
< f |To fi(x)Pdx + f ITofa)Pdx + | Tolly_ -
0 01

Continuing in this manner, we obtain a path A, = ‘Li\(o,-_l : 0;) contained in Y}, emanating from o (:= op)
1€

and an f € LP(Y,) such that f = Z fiX¢, sy for some index set A C IN, so that we have ||T,|" = “TU f1||§* <

ieA ’
ITofIl, < IT,If, - Since A, C Y;, therefore by Lemma 3.1, we have |[Tylly, = [IT,lla,, proving the Lemma
32. O

We have the following definitions.
Definition 3.3. Let Iy be a subtree of Y, rooted at b € A, which is the nearest point of Iy, to 0. We define
P ={T, CY,:|A; NIy > 0}

and
P = {Fb € P : |Tyllr, is attained on the path A, N Fb} .

It is easy to see that Y, belongs to .

Remark 3.4. For I', € P’, by [13, Theorem 3.8 | and by Lemma 3.2, there is a non-simple point 0 € I'y N A, such
that A(Ty) = Tollr, = lITolla,nr, -

Remark 3.5. In view of Definition 3.3 and Remark 3.4, there are by, by, ..., b, € A, with by = o (say) and bi_1 =<,
by for 3 <1 < n, such that I'y, € P’ with |, N Iyl =0 for i # j, and a subtree T, of Y, containing A, such that
UL, Iy, = E. In this way (T, : 1 =1,2,3, ..., n} forms a partition ofi:o. Denote all such partitions ofﬁ by pn(ﬁ).

Definition 3.6. For each N € IN '\ {1}, we define
€, =1>0: ||Tb1 ”Fh = Aly,) =€,2<i <N, wherel'y, € P’ is the largest subtree rooted at b;
1

such that {I';,,1 <i < N} € pN(Yo)for some subtree ’fo such that A, C ?0 cY,}

In the above definition, note thatfor N =1,
by itself.

Ty, Hfbl = [|Tylly, = €,. In future, the closure of fo will be denoted

Remark 3.7. Since A, C R*, the existence of €,, is guarenteed by Remarks 3.4, 3.5 and [10, Lemma 3.5].

We now prove the following lemmas.

Lemma 3.8. Let I' € Y, be a subtree and Tr : LP(I') — LP(T') be compact. Let by, by, ..., by € A, be points such that
Iy, €P - “TblHrb = Aly,) = €y, 2 <i < N} € pn(Yy), for some €y > 0. Then in(T5 ) = €.
1 o
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Proof. By compactness of Ty and Remark 3.4, there exist points 0; € I'y, and functions f; supported on I,
: - - ; - 1 2

with ”ﬁ”Fh,-_ 1 such that ATy,) = ”Tefﬁ”l“h,. ,2<i<Nand ”Tbl“lth = ||Tb1f1||rbl. Let I'y and I'y be two

subtrees of I, such that I, = l"é‘ U l"é[ and l"é‘ N 1%[ = {0} forall1 <i<N.Ifx; € (0:xp) and 2 NT} = {x},

for some x € (x1 : x7), then we write F)zcl << I’}Q. By this convention, we have

1 2 1 2 1 2
1“91 << 1“61 << 1“62 << 1“62.... << FQN << FQN.

Define Q; =T}, UFéZ,QN = l"éN and Q; =T7 UT, for2 < j < N-1,and functions g; = (a;f; +B;fir1)xo
] I+
for1 <j<N-1,with g, = B, f,, where a; and §; are constants. Then, we have

loile, =llassi + Bifiallo, < ot Ll + Bl il -

Since ”fj”th =1,s0 ”fJ”rg] <1land ||_fj+1Hré/H < 1. Thus, by choosing suitable a; and ;, we have ||ngQ/ =1,

from which we obtain

oy o (s i) )
ol (st Bifir) )
[ (sl

>¢, for 2<j<N.
Similarly, we get
”Te/‘gf*l”rg
*>¢, for 3<j<N.
lgi-1ll,
]
For Qj - ’fo,
Lt GACURLID

- HTﬁ (a1 fl)”rbl + ||T?n B1f)

0y
0 o

= (laal + |B1] Jen.,
andfor2<j<N-1,

2.9l = 7.t + 150

= |7z @)

|Q/‘

S e
0

|l"1
i1

=lail 7551, + 181 [P s
)

= (|ij| + |81 Jex-

1"1
ej+1
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“Q; =1, |,B]‘ >1,andfor j=N, Qy = 1"29N, and for ay =0, By > 1, give us

H Yg;”

- >¢, for1<j<N.
Moo,

Next, B : l;\’ — Lp(?o) and B, : Lp(’fo) - l;\’ are the operators defined by
N
Bi(x) = Zx;gj,
=1

for x = {x1,x2,%3,..., XN} € l;\’, and

N
B Joy, 9T g)p ()
2g)\X) =

7

P
gt
H Y"g] Qj j=1
where (9), = |glP~%g. Then it is easily seen that B, o T3, o B, is an identity map on lN We compute
N

181l = sup BN, 5, = sup Y xgj| = sup }:Ix]lllgfllo

x|| v =1 X|| N = i - =
I ”1;1\1 ||,y =1 ) ,N

The definition of 8B, implies that the operator norm of Bz is attained on the functions of the form g(x) =
Z;\il riTs gj(x), for constants ;. We have

12
HQHLP ) LDI;W 7. 9i)Fdx > € (|{riL, y
and
N
1Bl = sup [Bo| ) riT5 g(x)
||g||Lp(x7g):1 j=1 n
N N
Jo, (B me(x)) (T 90)y (x)x
= sup
_ N
[l
1
<—,
eN
and hence iN(Tﬁ) = sup 1B 1Ball ™ = 1B )71 1By > €, proving the Lemma 3.8.
|

Lemma 3.9. Let I' € Y, be a subtree and Tr : LP(I') — LP(I') be a compact operator and ?o be as in Remark 3.5.
Then, for all n € N, i,(T5 ) < i(Tx,).
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Proof. Let Ar, : ZZ — LP(I,) and Br, : LP(T,) — ZZ be the operators on a subtree I', C Y, containing the root o.

WhenT, = Y,, we simply denote Ar, and Br, by A and B, respectively. Define an operator I : L*(Y,) — L? (’fo)
-1

by I(f) = f;(i. Then we have HBﬁIH < ”B’f0”||1“ < ”Bi , > HB?O” . Next, consider

subtrees I';, € P such thatI'y, N Y, =17, € $',1 < k < n. With this, one can easily construct the subtrees (),
and functions g as in Lemma 3.8, where oy € T, is same as 6y € T},,. Now, corresponding to 81 of Lemma
3.8, we define the operator A by A(< (x >) = Y.p_; Gigx for < § >€ . Then it is easy to see that [|All = 1,
which proves the Lemma 3.9. [J

Lemma 3.10. Let I' C Y, be a subtree and Tr : LP(I') — LF(I') be compact operator and ﬁ be as in Remark 3.5.
Then, for all n € IN, a”(Tiﬁ,) = a,(T,).

Proof. Let Pr : LP(I') — LP(I') be an operator of rank(P) < n. When T = 7Y,, we denote Tt and Pr by T and P
respectively. By compactness of T and P, there exists an f € Y}, such that

IT = Plly, = [T~ P) ..

By the same arguments as in Lemma 3.3 and by continiuty of ||Tx|| on A, ([13, Lemma 3.4]), there is a path
A, € A, €Y} and a function ¢ € LF(A}) such that

T =P flly. = [T =P s, <IT = Pl -
But A} C Y7, therefore [|T — Plly, = ||T — Pl - Since A; € ?o, we have

IT = Plly, = [T = PY g, =]|(T. —Pﬁ)‘i’f“A;

= H(T@ - Pi,)H?a = |IT - Plly.

Noting To C Y,, from above we can write ||T — Plly, = HT?Q - Pi”'f . Hence an(Ti) =a,(Ty,). O

Lemma 3.11. Let T C Y, be a subtree and Tr : U’(F) — LP(T') be compact. Let by, b, ..., by € A, be points such that
Ty, €P - ||T;,1Hr = Aly,) =€,,2 <i <N} e pn( Y o) for some €, > 0. Then an(T5) < €

Proof. Let L : LP(?O) - U’(?O) be the operator defined by L(y) = Zﬁz Li(y) + Ox;, , where Li(y)(x) =
1
Xr, (x)v(x) frl u(t) f(t)th (t)dt (1"1 is defined in Lemma 3.8). Then rank(L) < N — 1. Now by definition of

approxnnatlon numbers and by compactness of Ty and L, there exists an f € LV (Y,) with ” f ”A = 1such
that

ool ly

[ZL(f +0xrb]
=ZzllTef||r,, Al <e Z”f”rh +eulfllr,

=|r5.s - 1A =

Z

N

= ) Ik, =<

i=1

which proves the lemma. O
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4. Main Results
From Lemmas 3.8, 3.11 and Remark 3.7, we obtain the following main result.

Theorem 4.1. Let T, : LP(Y,) — LF(Y,),1 < p < oo, be compact. Then there exists a subtree ?0 C Y, witha
partition {I'y, € P’ : ”T}“Hrb = A(ly) = €,, 2 <i < N} € pn(Yo) for some €, > 0, such that ||Tollg = [ Tolly, and
1 0

an(Tg) = €, = in(T)-
Using Lemmas 3.9, 3.10 and Theorem 4.1, by inequality (1), we have

Theorem 4.2. Let T, : LP(Y,) — LP(Y,),1 < p < oo, be compact. Then all strict s-numbers of T, coincide.

5. Conclusions

We obtained the exact values of all strict s-numbers of weighted Hardy operators on trees and observed
that N terms of all coincide and equal to €.
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