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Abstract. In this work, we study the problem of profile and lattice profile in aerodynamics. The first
kind of Fredholm singular integral equation solves this problem. The Cauchy-type singular integrals are
solutions to the first kind of Fredholm singular integral equation. However, the antiderivative function
of these singular integrals can only be found in some cases. To overcome this, we utilize the Sobolev
method to create an optimal quadrature formula for Cauchy-type singular integrals. By doing so, we can
approximately solve the Fredholm integral equation of type I with higher accuracy. We compare the exact

and approximate solutions of the first kind Fredholm singular integral equation, utilizing both the Sobolev
method and another approach.

1. Introduction.

Problems are frequently solved using differential and integral equations in fields such as mechanics,
hydrodynamics, aerodynamics, electrodynamics, quantum mechanics, and the theory of elasticity, as well
as various other areas of technology. These equations are studied in the course of mathematical physics
in science. It is well known that the main boundary value problems for the Laplace equation, namely
the Dirichlet and Neumann problems, are solved using the potentials of simple and double layers. These
boundary value problems lead to singular integral equations with Cauchy kernel, Hilbert kernel and
singularity of a higher order. Analytical solutions of singular integral equations are represented by singular
integrals [4, 17, 25]. The antiderivative function of the singular integral in the analytical solution can be
found in some cases. Obtaining approximate methods for calculating such singular integrals with high
accuracy is one of the important tasks of computational mathematics.

Various methods for approximating singular integral equations have been developed by numerous
scientists. Notable researchers in this area include S.M. Belotserkovskii and I.K. Lifanov [4], LK. Lifanov
[22], L.V. Boykov [6], S.A. Dovgy [13], G.V. Milovanovié, M.M. Spalevi¢ [24, 37], T.Hasegawa [18, 19],
C.Dagnino [9, 10] and K.Diethelm [11, 12]. In the book [13], the boundary value problem is introduced
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to the singular integral equation and is applied practically through approximate calculations. The book
addresses various task related to this topic. Below is one of the problem from the book.

1.1. Problem for a profile and a lattices of profiles

The flow of an inviscid, incompressible fluid around a profile moving at a speed equal to Uy = tg,i+ uoyj
was studied assuming a plane-parallel flow. The profile is considered immobile.

Let’s denote @ = ®(x, y) — the potential of the disturbed flow velocities, and V = grad® - the speed of
this at a point outside the profile or on its surface. Let us represent the velocity potential in the form of a
double layer potential along profile L with density g(M)

L[ = xo)ys = (¥ = yo)xs

P(xo, o) = 5~ =)+ (y = 1) g(M)dsy @
L

for My(xo, yo) points not lying on the L (My ¢ L), and in the form

+ _ 1 (= x0)ys = (¥ — yo)xs 1
PO = am ) e = yor TV 2 &

for My points lying on the L (M, € L).
In formulas (1), (2) and further in problems about profiles, we assume that L is specified parametrically.
Since the speed of a point in a potential flow is the gradient of the potential of the velocity field, i.e.

V = VO, then using the formula for the gradient from the potential of the double layer in the flat case

[22, 29, 38] and denoting /(M) by y(M), we obtain that the speed of the V perturbed flow will now be
written in the form

v-o | W= = B0 s, ®)
L

"M,

for My points not lying on the profile L, or in the form

— 1 [ (yo—yi—(x—2)j 1, - -
vV = b f T%AM y(M)ds,, + 3 (xOSz + .1/05]) (M), (4)
L 0

for M, points lying on the profile L. Since profile L is stationary, then
Vrelﬂtively =V+ UO

and therefore, the problem of finding the field of perturbed velocities will be solved if y(M), M € L, satisfies
equality

Ve = _UOZMO/ My€elL, (5)

"Mo

or

1 f Yos(Wo — y) + x((x0 — X)
27 . riAMO

y(M)ds,, = Uonpn,), Mo € L. (6)

Let first L be a smooth open curve, defined parametrically — x = x(t), y = y(¢), t € [-1,1], i.e. function

g = Vx2(t) + y2(t) is continuous on [-1,1] and does not vanish. In this case, equation (6) can be written
as
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1

f%dt = f(tO)/ to € (_1/ 1)/ (7)
0

-1

1
21

which is called the equation of a thin, slightly curved profile. (7) integral equation is Fredholm singular
integral equation of the first kind. In this article, we will explain the problem we aim to solve in the
following subsection.

1.2. Statement of the problem
In the work [22] is considered a singular integral equation

1

1 (¢ B

Ef_t =o@(t), te(-1,1). (8)
-1

Let us recall the definition of singular integrals in the sense of principal value of Cauchy.

b
Definition 1.1. The principal Cauchy value of the special integral f f%)dx, a <t <bis the limit

a

@ o ¢@)
s—»O f

if it exists.

It is known that if a function ¢ on the interval [a, b] satisfies the Holder condition with exponent a
(0 < a < 1) and coefficient A4, i.e. if

|p(x1) = plxa)| < Alxy = xal,

then there exists the integral f Xy, a <t <b.

Equation (8) has four dlstlnct solutions expressed as follows:
Case I: The function ¢(t) is bounded within a certain range at the two endpoints of t, which are t = -1
and f = 1, then a solution of (8) is

1
V1-t P(x)
f)=— dx, 9
N ©
provided that
1
P(x)
dx = 0.

Case II: The function ¢(f) is bounded at the end ¢ = 1, but unbounded at the end t = —1, then a solution
of (8) is

1+x(p(x)
¢2()___\/1+tf\/1 xx—t v (19
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Case III: The function ¢(t) is bounded at the end ¢ = —1, but unbounded at the end f = 1, then

B 1+t 1-x (x)
Ps(t) = __\/ f\/1+xx—t X (11)

Case IV: The function ¢(t) is unbounded at both the endpoints ¢t = +1,

1
_ 1 V1 - x%¢(x) C
o = [ T e (12
-1
where

It should be noted that if we find an approximate solution to singular integral equation (8), we can derive
an approximate solution to singular integral equation (7). For this purpose, the approximate calculation of
singular integrals (9)-(12) is sufficient.

Several methods have been developed for the calculation of the singular integrals (9)-(12). They are:
Discrete vortex method[13, 22], Interpolation methods [7, 8, 14, 15, 19, 24, 37], Piecewise interpolation
method [9, 10, 12] and other numerical quadrature methods [11, 18]. The Discrete Vortex Method employs a
singular point in the middle of successive nodes. Numerous scientific studies have focused on constructing
quadrature formulas using Interpolation methods. These formulas use the roots of Chebyshev polynomials
of the first kind as nodes. However, in several physical applications, singular integral equations need
to be solved even when the function g is not very smooth or unknown. In such cases, Gaussian and
transformation methods work efficiently only if the function g is smooth enough. The accuracy of numerical
integration is significantly influenced by mesh selection. The Gaussian method’s utility is constrained since
it relies on approximating integrals at Gaussian points. Conversely, the Newton-Cotes method becomes
impractical when the singular point is in close proximity to the quadrature formula nodes and even more
so when it coincides with them. Scholars have underscored the paramount importance of mesh selection
in guaranteeing the accuracy of numerical integration. During the initial phases, considerable emphasis
was placed on mesh selection to position the singular point at the centre of a subinterval, highlighting
its significant impact on the overall accuracy of the integration. In the reference [8], using the Lagrange
interpolation polynomial a quadrature formula was constructed. It is known that the obtained formula is
a classical quadrature formula. In our work, an optimal quadrature formula is constructed based on the
methods of functional analysis in the Sobolev space Lgm) of functions which are square integrable with m-th
derivative. For existence of such type of quadrature formulas the condition N +1 > m should be met, where
N + 1 is the number of nodes in the quadrature formula. It is known that in the case N + 1 = m one gets
classical quadrature formulas. Hence it can be concluded that classical quadrature formulas can be derived
using the condition N + 1 = m from optimal quadrature formulas which are constructed based on the
methods of functional analysis in the Sobolev space. In the work [16], a quadrature formula was developed
by utilizing a linear spline to estimate the singular integrals of the Cauchy type with weight function on
the interval. This new quadrature formula is precise for a linear function, providing excellent convergence
for any singular point f € (—1,1) for all types of solutions of the SIEs (8). There exist better techniques for
approximating numerical integration of Cauchy-type singular integrals than the method mentioned. In this
paper, we present the construction of an optimal quadrature formula for the space L(Zm)(—l, 1). It is worth
noting that our results align with the findings of the work [16] when m = 1.
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We consider the following quadrature formula

1 m-1 N
fwi(xkp(X) =Y Y CalBlg® - 1), i=1,2,3,4, (13

x—t Ry

Q

-1

where

() = G, @) = Ty @509 = T @s0 = VI,

with the error functional

wz(x)fl 1 1]

ti(x) = ZZ( 12 CoilBI6@ (x — x5 +1), i = 1,2,3,4, (14)

a=0 p=0

where —1 <t <1, C,,[f] are the coefficients, x3 — 1 (€ [-1, 1]) are the nodes, N is a natural number, &[_1,1j(x)
is the characteristic function of the interval [-1, 1], 6 is the Dirac delta function, ¢ is a function of the space

LY (~1,1). Here LY"(~1,1) is the Sobolev space of functions with a square integrable mth generalized
derivative and equipped with the norm

1/2

1
lpILS (=1, 1)l =2 | (@™ (x))*dx
/

1
and [ (™ (x))?dx < oo.
-1

Since the functional ¢ of the form (14) is defined on the space L(Zm)(—l, 1) it is necessary to impose the
following conditions (see [35])

(i, x*)=0, a=0,1,2,..,m—1, i=1,2,3,4. (15)

Hence it is clear that for existence of the quadrature formulas of the form (13) the condition N > m — 1
has to be met.

The difference
©0 1 W (X)) m=1 N
()= [ gt = [0 a3 Y Clplp ) 16)
—00 0 a=0 =0

is called the error of the formula (13).
By the Cauchy-Schwarz inequality

)] < o]l ™

the error (16) of the formula (13) on functions of the space L(zm)(—l, 1) is estimated by the norm of the error

functional ¢; in the conjugate space Lg”>*(—1, 1).

Obviously the norm of the error functional ¢; depends on the coefficients and the nodes of the quadrature
formula (13). The problem of finding the minimum of the norm of the error functional ¢; by coefficients
and by nodes is called the S.M. Nikol’skii problem, and the obtained formula is called the optimal quadrature
formula in the sense of Nikol’skii. This problem was first considered by S.M. Nikol’skii [26], and continued by

many authors, see e.g. [27] and references therein. Minimization of the norm of the error functional ¢; by
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coefficients when the nodes are fixed is called Sard’s problem and the obtained formula is called the optimal
quadrature formula in the sense of Sard. First this problem was investigated by A. Sard [28].

There are different ways to create optimal quadrature formulas according to Sard’s definition. The
spline method, ¢-function method (see, e.g. [5, 21]), and Sobolev’s method (see e.g.[20, 30, 31, 33-36]) are
some of them. Sobolev’s approach involves developing discrete versions of a linear differential operator.

The goal of my research is to develop accurate quadrature formulas in the sense of Sard [28]. Specifically,
I am working on constructing formulas of the form (13) in the space Lgm)(—l, 1) using the Sobolev method.
These formulas will be used for approximating integrals of the Cauchy type singular integral. This means
to find the coefficients C,;[f] which attain the quantity

P ()
6Ly || == C{ﬂglllfilem - (17)

Consequently, to construct optimal quadrature formulas in the form (13) in the sense of Sard, we must
solve the following problems sequentially.

Problem 1.2. Find the norm of the error functional (14) of the quadrature formula (13) in the space L(zm)*(—l, 1).
Problem 1.3. Find the coefficients C,[] which give the minimum to the norm ||€;]|.

Numerous studies have addressed the problem of approximate integration of Cauchy-type singular
integrals (see, for instance, [1-4, 13, 14, 22, 30-32] and references therein).

The rest of the paper is organized as follows.

In Section 2, we use the concept of extremal function to determine the norm of the error functional (14).
Section 3 focuses on minimizing ||¢||> with respect to the coefficients C,;[3] in a successive manner. Section
4 provides definitions and known results that are used in proving the main results. In Section 5, we present
the algorithm for constructing optimal quadrature formulas of the form (13). Finally, Section 6 contains
numerical results that validate our theoretical findings.

2. An extremal function and the expression for the norm of the error functional

In order to solve Problem 1.2, which involves finding the norm of the error functional (14) in the space

L(zm)(—l, 1), the concept of an extremal function is utilized [35, 36]. The function i, is referred to as the
extremal function for the error functional (14) if the following equality holds:

(€, pe) = ALY N el LS. (18)

In the space Lgm) the extremal function 1, of a functional ¢ is found by S.L. Sobolev [35, 36]. This extremal
function has the form

Pe(x) = (=1)"(x) * Gu(x) + Pr-1(x), (19)
where
B |x|2m—1
Gm(x) = T am=1l (20)

is a solution of the equation
2m

S On0) = (), @1)

P,,—1(x) is a polynomial of degree m — 1, and = is the operation of convolution and it is defined as

fx)*g(x) = I flx=y)g(y)dy = f f()g(x — y)dy.
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It is well known [35] that for any functional £; in Lg”)* the equality

IGILS™ P = (L, ¥e) = (L(x), (=1)"6(x) * Gin(x)) = f fz«(x)((—l)'" f 6i(Y)G(x — y)dy | dx

holds [35].
Applying this equality to the error functional (14) and taking into account (19) we obtain the following
m-1m-1 N N —1—a—
(hB — hy)?"~1=0"ksgn(hp — hy)
12 — _1\ym
Gf = | XYY Y D IC e
k=0 a=0 y=0 =0
m-1 N —1-
o wi(x)(x = hB)*""*sgn(x — hp)
-2 Z(—l) Ca,z[,B] f 2(27’1’1 —1- C()!(X — t) dx
=0 =0
([ @ @) -y son(x~ y)
wi(x)wi(y)(x — y)" sgn(x -y
e e )
00

where sgnx is the signum function.

Thus Problem 1.2 is solved for quadrature formulas of the form (13) in the space L(Zm)(—l, 1).
Further we consider Problem 1.3.

3. Minimization of the norm of the error functional £(x)

Now we consider the minimization problem of the norm (22) of the error functional ¢ under the
conditions (15).

It should be noted that minimization of ||£||* by Cuilfl,=0,1,2,..,m-1,=0,1,2,..,N,i=1,2,3,4is
very hard. Here we suggest successive minimization of ||£||* by C,,[f], i.e. first we consider the case m = 1
and the expression (22) of ||(i|[*> we minimize by Cy,[]. Further we consider the case m = 2, and using the
obtained values for Cy;[f], the expression (22) of |I€:||> we minimize by Ci,[f]. After that in the case m = 3,
using the obtained values of Cy;[S] and Ci,[], the expression (22) for |1€:|> we minimize by C,,[f] and so
on.

First we consider the case m = 1 then the quadrature formula (13) has the form

f VO g = Z CodBlpip) 3)

0

and ||6;]I> depends only on Cy[] (8 = 0, N).
Here we use conditional extremum of a function of several variables

(Dl 1(C0 ir /\0 z) - ”{) ”L(l

't 2A0,i(t;, 1),

where ||]|? is defined by (22) and Cy; = (Co,[0], Co,[1], ..., Coi[N]).
Equating to zero partial derivatives of ®;;(Cq;, Ao;) by Co,[f] and Ag; we get the following system of
linear equations

(hﬁ — hy) sgn(hp — hy)
2

+ Ao = Fo,i(hp), (24)

YMZ
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N
Z Co,ilyl = g0,
r=0

where
1
3 _ [ wix)(x — (hB - 1))sign(x — (hp - 1))
Foi(hB) = yoi(hp) = f 2(x— 1)
a
1
wi(x) .
go;i = de, i=1,2,3,4,
:[ x—t
here
) t—(hB-1 1-thB-1)+ /(1 =) - (B —1)?)
yo1(hp) = —arcsin(hf-1)+ \/(15—_t2 )ln P h‘;/— T3 P ,
Yor(iB) = J1— (B —1)2 - (2 . hﬁ)arcsin(hﬁ _1)
1+t |[1-thB—1)— /A -1 - (hB—1)?)
—(t - (hp-1)) _tln WE—1—t ,

Yoshp) = —/1-(hB—-1)>+ (t - hﬁ)arcsin(hﬁ -1
M=t [1-tp-1- JA-PA-B-17)
~(E = = 1)y Tl F—hp+1 '

You(hp) = (hﬁT - t) Ji—mp-1p+ (t2 g —1) - %)arcsin(hﬁ ~1)

+(t— (p— ) NT = P | PP D +h;/(_11_ DE-®-D)

1

w1(X
Joqg = fxl_(t)dx=0,

-1

1
w2(x)
Jop2 = fx—tdx:n'

-1
1

_ w3(x) _
90,3 = fx_tdx— TU

Joa = fw4—mdx:—nt.

Further, we consider the case m = 2. In this case the quadrature formula (13) takes the form

N
fwz(x)<P(x) =y (Col[ﬁ](p (hB) + C1,[Ble’ (hﬁ))
B=0

x—t
-1

10772

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)
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and expression (22) of [|¢;||> depends on Cy;[8] and C1,[8]. Then using the solution Cy,[8] and Ao, of the
system (24)-(25), equating to zero partial derivatives of the following function by C; ;[f] and A4,

Dy i(Cqi, A1) = ”[i”i(zy( = 2A4,i(€, x),
2

-1,1)

where ||€1||2 is defined by (22) and Cl,i = (Cl,i[O]/ Cl,i[l], ceey Cl,i[N])/ we get

N hB —h hg —h
Y e ST ) ) @)
r=0
B=0,1,..,N,
N o o
Y (Cotyny = 1)+ Culy1) = s 36)
y=0
where
N hB — hy)? sgn(hp — h
0 = i)+ Y Coly LT SEZIY))
y=0
1
() — (B — 1)) — (-1
i) = - fw(x)(x (B 4(9)c)—stg)n(x (=1)
-1
( (x)
w;i(x)x .
i = —-dx, 1=1,23,4,
_jl‘x t
here

yia(hp) = —%[ - mp-1p+ (t —ohg+ 2)arcsin(hﬁ —1y- 37)

(t= (=12 1=t~ 1)+ (T P)I - (B~ 1P)
T vice -1t |

yia(i) = —%[(Z(hﬁ —1)- %(hﬁ e 1)) J1—mp—12+ (38)
+(%(2t2 12t 1) =201 — 1)(1 + ) + (B — 1)2)arcsin(hﬁ 1+
[T+t [1=thp=1) = /A -2)(1~- "B ~-1))
+(t—(l’lﬁ—1))2 mln h‘B—l—t ’
yis(h) = }1[(3115 Y 1) Ji—mp-17+ (Z(hﬁ PR 26— 1)arcsin(hﬁ -

[1—t [1-tnp-1)— /A -P)(1-Hp—-1))
=2(t - (hg - 1)) mln
(39)

t—hp+1
yia(hp) = —%[é(z(hﬁ)z —HB4+9) + 9t + 6t2) Ji-mp -1y (40)

+(%(t —2(hg-1)) —t(t — (hB — 1))2)arcsin(hﬁ -1)-

1t -1)+ T - 21— (- 1)
hp—1—t

—_

)

—_—
<

~(t = (hp—1))* V1 - 2In

|
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and
1
w1 (x)x
J11 = f—xl(_)tdxzn,
-1
1
X)X
Go = f%dx=n(1+t),

T3 = f@dx:n(l—t)

X

_ w4 (x)x _ T a2
Ja = f—x_tdx—z(l 2t%).

-1

In the case m = 3 the quadrature formula (13) has the form

f wy(X)(P %) 4

-1

IIZ

N
Y (CoslBlpth) + Crilple’(45) + CailBle (1))
=0

10774

(41)

(42)

(43)

(44)

(45)

and |||, defined by equality (22), depends on Cy,[8], C1,[] and C,,[f]. Then using solutions Cy,;[f] and Ag; of system

(24)-(25) and Cy4[B], A1, of system (35)-(36), equating to zero partial derivatives of

D3i(Cpi, A2i) = I ||L(3>( T 20,1, x%),

by C,,[f] and A,; we have, where 161 is defined by (22) and Cy; = (C5,[0], C2,i[1], .., C2,i[N]).

(hp — hy) sgn(hB — hy)

N
Z Coilyl > + Ao = Fai(hf),
y=0
B=0,1,..,N,
N
Y (Costlny = 17 + 260100y = 1 + 2C01) = g2,
y=0
where
SN hB — hy)? sgr(hB — h AN hB — hy)? sgr(hf — h
R0 = yz,i(hﬁ)—Zco,i[yl( Pl SoEZID) 3 ¢y BT s tB )

[ @b = (B~ ) sarte— (8- 1)
v2.) f G x,

-1
1

Py = f"’x(’j)x dx, i=1,2,3,4,

e}
here
yor(hp) = %[(m 58— 1)) \J1— (h — 1)? - (1 + 28— 6(hB — 1) + 6(h 1)2)arcsin(hﬁ —1y-

2= -1, 1105 = 1) + TP (=1
Ti-e -1t |
1

Yar(hp) = E[( “2(E— B+ 1) — 6(hB — 1) +3(hB — 1)@t + 1) — 26> — ¢ - 1)arcsin(h[3 _1)

(46)

(47)

(48)

(49)
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+(%(hﬁ — 1 =5 = 1)(t+ 1) + %(61}2 + 6t + 4)) m

2= (p-1)V1+ tln 1-thp-1)— A -2)1 - (hB—1)?)
Vit hg—1-t

|

yonlhp) = %[( “2(hB— 1) + 6(hB — 1)%(t — 1) = 3(hf — )22 — 26 + 1) + 26 — 282 + £ - 1)arcsin(hﬁ ~1)  (50)
+( - %(hﬁ 1P 450 - 1)(E—1) - %(61&2 6t + 4)) J1—mp—1y
1-t |1-thp—1)— /1)1 - (hp-1)?)
2= hp+ 1) i F—hp+1 ]
You(h) = %[(%(kﬁ -1)° - %(hﬁ =17t + 5B — 1)* - 28 — Z(hﬁ -1+ %t) 1-(hg - 1) (51)
+( - i(—sﬂ FAP 1) + 301 — 1)(E — 26%) — 3(hB — 1)2(1 — 262) — 24(h 1)3)arcsin(h[3 _1)
11—t - 1) + A= P - (i — 1)
+2(t— (hp—1))* x V1 - £In -1t ]
and
[ @
w1(X)Xx
g1 = — —dx =, (52)
_[ x—t
1
Joy = f w;(—f):zdx: g(2t2+2t+1), (53)
]
1
J2s = f "’;(—f)fzdp g(—2t2+2t—1) (54)
|
1
Jou = fa);(f)f dx = g(t -2f%). (55)

-1

Suppose, continuing by this way, for the cases m = 1,2, ..., k—1 we have found the coefficients Cy,[8], C1,[], ..., Ck—2,[f]
and Agj, A1, ..., Ax—2i.  We consider the case m = k. Then square of the norm (22) of the error functional ¢; of
quadrature formulas (13) depends on Cy,[f], Ci,[p], ..., Ck—,[B] and C_1,[f]. Further using the obtained solutions
Co,ilBl, C1ilBl, ..., CeailB] and Agj, A1, ..., Akn,i Of corresponding systems, equating to zero partial derivatives of the
function

D (Crei, Ar) = NG = 2(=1) Aoy i€, 7Y,
)

(m)+
L2 (-1,1

by Ci-1,[8] and A_1,, here ||£[* is defined by (22) and
Ci-1,i = (Ci-1,i[0], Cx-1,i[1], ..., Cx-1,/[N]), we arrive to the following system of linear equations

N 28— b .
Z Ck,i[V]( p V)Sgn( B — hy) + (=1 (k= 1)1 = Froi[B), 5
7=0

=0,1,..,N,

N o -1 k-2 N . (hy)k—/'—l

;Z:(; Ceilyl = (k-1)! L Ly Cj,ib/]m. -
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Here
gl e (hﬁ — hy)*-isgn(hB — hy)
FerilB] = vl = ) ) (-0 Culy T , (58)
j=0 =0 o
( w;(x)(x — hf + 1)Y'sgn(x — hf + 1)
Ye-ilfl = f 20— b dx,
1
w;i(x)xk1
Jr-1i = = dx
:[ x—t
~ (x hB + 1) sgn(x — hp + 1) 1 k e (t—hp + 1)k
IR v e M e e = 2 B
(2] i1 . .
B a-1 ne2ic L)Z it (2j -1D2j-3)...2j-21+1) vt
hs ;;( 2j )(” ) ( T L Z; Ty U A
+(2]27]') arcsin(hp — 1))
(] _ I (Cpe2-2_1)+1 [ 20+1 .
T N
D e e 0l R
T hg—1—t
1
1 _ h 1 k _ ]’l 1 1 k . i-1 -
Yio(hp) = f 1J_ri(x ﬁ+2.)k;in_(i) F+1), =_E[Z( )(t ng+ 1) (_]( znl )(_l)n (60)

-1

x(1—t)i‘1‘"(31+Bz)+(1—t)"—l(—1/1—(hﬁ—1)2+arcsin(hﬁ—1)))+(t hg + 1)f [W/I B; + arcsin(hf — 1))]
(2] 1— (g -1y IR

B - Z(nz_jl )[_\/ (B )[ , . i sz 21 5_1)2]._2,_1]
j=1

2j+1 2
rr T G A U G-

=1 p=1

H 2j- p arcsin(hﬁ -1,
2(] +1) 2(j -

(5] j-1 1 2p+3
hg -1 _ —1)
B, = ﬁT,ll—(hﬁ 1) +—arcsm(hﬁ 1)—2(2”] 11 )Z( ]pl )((2;1_3)( 1-(hp 1)2)
j=1 p=0

LMWA%Jw#m4w1n
hp—1—t

B 3 = In

1
hp + 1)F hg +1 : i _
vira(hp) = f 1-x (- 5+2 )le(zn_(xt) P+l L [Z:‘( )(t hﬁ+1)k_[ _1( an )(—t—l)’*’H (Ty +T2)

1+x
-1 = n



T3 =

Yi-1,4 (h.B) =

and

Jk-11

Jk-1,2

Jk-13

x
- j\/l—x%x—t)
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=t 1) ( J1— (1B — 1% + arcsin(ip — 1))] B+ 1)’%], (61)

[51] T REEEY] j-1 . . .
(" )[_ | 20 -+ Y B BB D |

=\ 2 4j(j + 1) (-1DG -2 -1

ne 27]1)' arcsin(ip — 1))

Ezl] ( ;]_—11 ):,Zlg( j;l )(_1)’”1(\/?)% * hﬁz_ 1 m —arcsm(h,B 1),
% N thp - 1) _h;;/(_l 1— _t2t)(1 —(hp-1)7)  arcsin(ip 1),

k
f\/ —x2(x — hf + 1)ksgn(x — hﬁ+1) _ l[z( )(t 1B +1) Q1 + Q2 + (E = hp + 1)F

2k (x-1) K| £
}
(Jl—(hﬁ 1)?2 — tarcsin(hf — 1) — Vl—t2Q3)} (62)
(2], . e Ry 1
=1 i1 _M i 1)2j+1 1y (2j-2p+1) ol
j_l( 2] )( v [ 4j(j+1) [ 2/ =177+ (p = DT+ HLI 2(j-p) (ﬁ_l)zju]
1 ei-2p-1)
+2(],+1)g 2G-p) arcsin(hp — 1)
(5], . =l — 1)\
=1\ Ly S [ )y VA1) o (1B -
;(zm)(‘” 2’;(;7)(‘1)”1 s O >1( = U 0= 12 + 3 arcsin€i - 1))
1=t -1) + A - B)1 = (i — 1P
In ,
Wp—1-t
dx (63)

1 (=1, . 2 ,
HZ( k . 1 )tk_l_l[ ( 12]1 )( t)z 1- /( ]21]') (_t)l—l},

i=1 j=

=N

1

1+ x x&1 = (e .
f 1-xx— tdx = - ( i )t = []_1 ( )( 1)/(1 - ) ”
[%] i—1 1 n-1 @2n-2p-1) Lo .
§ 7Tn:l ( 2n )2(ﬂ+1)g 2(n—p) +E +( H T+,

f\/:x—t kz.(kl)[Z( ) 1= (65)

1
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ﬂ]
2 n-1 .
T p-1 1 2n-2j-1 =n - 1
= |+ 1= |-
% 2n_1( n )n+1]]-,_! -y Ta|tCiToTT T
1
V1= 2 v k1 e
_ = —d = . tilil 66
s f G-n o ”Z,-_l( i ) 0

(2], . 1 g i
i—-1 _pi-1-2j 1 (2]_2p+1) (_t)ll Lk
X[Z( o ) el | e J T

j=1
Further, we solve systems (24)-(25), (35)-(36), (46)-(47) and (56)-(57), i.e. we find optimal coefficients of quadrature
formulas of the form (23), (34), (45) and (13).

4. Preliminaries

In this section we give some definitions and formulas that we need to prove the main results. Here we use the
concept of discrete argument functions and operations on them. The theory of discrete argument functions is given in
[35, 36]. For completeness we give some definitions.

Assume that the nodes x; are equally spaced, i.e., xg = hf, h = %, N =1,2,..., functions ¢(x) and ¢/(x) are real-valued
and defined on the real line R.

Definition 4.1. The function @(hp) is a function of discrete argument if it is given on some set of integer values of p.

Definition 4.2. The inner product of two discrete functions @(hp) and Y(hp) is given by
[p(B), pup)] = ), p(B) - w(1p),
ﬁ:—oo

if the series on the right hand side of the last equality converges absolutely.

Definition 4.3. The convolution of two functions @(hB) and Y(hp) is the inner product

P(hp) = Y (hp) = [@(hy), Y(hp = hy)] = Z p(hy) - Y(hp = hy).

y=—co

In addition,in the calculations we need a discrete analogue D, (1) of the differential operator d?/dx? which is defined
by the following formula (see [34])

0, 1Bl >2,
Di(hp) =4 B2, |BI=1, (67)
—2h72, B=0.

Here are some properties of the discrete function D; (1) (see [35]):

Dy(hp)+1=0, Di(hp)=(hp) =0, (68)
el

hD1(h) » == = Sa(hp)- (69)

where 64(hp) is the discrete delta-function.
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Now we solve the system (56)-(57), which depends on m. Then we substitute instead of m the values m = 1,2, 3 and

it provide coefficients for quadrature formulas of (23), (34) and (45). The following theorem is valid.

Theorem 5.1. The optimal coefficients for the quadrature formulas of the form (13) in the Sobolev space L;m)(—l, 1) are defined as

follows
G0 = Fiasl1] - Feoyif0] + ’%(Ufk_’ i —kaz,,-)],
Cinlpl = I [Feoaalp = 11 = 2P ]+ P + 1)
for =1,..,N-1
GonNT = BN = 1] = By INT+ (2 ]
k—1,i = ] k—1,i k-1,i 2 (k—l)' k=2 |-

(rp)fot

k-2 N
k=0,1,2,..,m—1, where vi_p; = Y, Y, Ca,i[y]m, Fiov,i and gy ,; are defined by (58) and (59).

a=07y=0

Proof. Now we solve the system (56)-(57). This solution we find by the following way.

We denote

= hg —h hg—h
wp) = Y Gt LSBTy,
y=0

Assume $ < 0, then using (57) we have

h ny
ui(hp) = —7ﬁ ((l;qk_ ]1')! - Vk—z,i) = e+ (1 e = DA

Now suppose that § > N, then taking into account (57), we get

h 1,
ui(hp) = 75 ((kgk_ 11')! - Vk—z,i) + e + (1) (k= D) Ay,
Here
k=2 N e
(h]/)k a—1
—2,i = Ca' Y
Vi-2, ;;& /J[Vl(k_a_l)!
&
et = =3 Z Cro1,ily1(hy).
r=0
We denote
My = i (k- DD A,
a,f_l,i = U1+ (k- D=1 A,
Then we obtain that
hy 1, _
_Tﬁ (% - Vk*Z/i) - ak—],i’ ﬁ < Or
ui(hp) = I;k—l,z'[ﬁ]/ 0<B<N,
%ﬁ (% - Vk—Z,i) + 11]::][{, ﬁ >N,
where [ a,jﬁl/l. are unknowns.

Hence, taking into account the values of the function u;(h$) at the points = 0 and f = N, we get

al:—l,i = Fk—l,i[o]/

(70)

1)

(72)

(73)
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1 Gk,
a_,; = FeINT- 5 ((k 11~ Vk—Z/i)-

Using properties (69) of the operator D1 (hf) from (67) and (73), for the optimal coefficients Crors [flwhen0 < <N
we get the following

Cro1,[B] = D11 * ui(hp)

or

. 0 N 0 h oy
Coridfl = k) Dilp—yluhy) = h[ Y Dil - yIFeaidy + Y Dilg + 1 ((,fk_ ol vH,,-) ~ )
y=0 y=1 ’

y=—00

> 1+h —1i
+ Y DuN +y -l V((,f"_ o —vk-z,f)+a;_1,i)]-
y=1 '

Hence, using (67), (68) and formula (69), taking into account (58) and (59), after some calculations, we arrive at the
expressions for the coefficients Ci_1,[f],f = 0,1, 2, ..., N which are given in the statement of Theorem 5.1. Theorem 5.1
is proved.

From Theorem 5.1, we get the following results by recalculating the cases when m = 1,2 and m = 3. These results
are convenient in use.

Corollary 5.2. In the space L;l)(—l, 1) when w(x) = ﬁ, t#hg—-1,8=0,1,..,N, the coefficients of optimal quadrature
formulas of the form (23) are defined as follows
Corl0] = 1 (yoalt]- 3,

Cox [8] h_l(yo,l 6~ 11— 201161 + you [ + 1]),
p=12,.,N-1,

Cor NI = '(yoalN-11+3)

where 11 is defined by (26).

Corollary 5.3. In the space L;l)(—l, 1) when wy(x) = %, t#hp—-1,8=0,1,.. N, the coefficients of optimal quadrature
formulas of the form (23) are defined as follows
Coal0] = '(yall]- 3@+ t-h)

CZ,Q 8] h! (yo,z[ﬂ =11 = 2yo2[B] + yo2lB + 1]),
B=1,2,.,N-1,

I (yoalN ~ 11+ 5+ 1),

Coz [N]
where Y, is defined by (27).

Corollary 5.4. In the space Lg)(—l,l) when wy(x) = B, ¢t # hB—1, =0,1,..,N, the coefficients of optimal quadrature
formulas of the form (23) are defined as follows

Cos 0] = h‘l(yw[l] +E(t- h)),

C:)/3 Bl = h_l(y(w[ﬁ =11 = 2y0s[B] + yos[B + 1]),
p=1,2,.,N-1,

Cos[N] = h‘l(yg,g[N -1+22-t- h)),

where v 3 is defined by (28).
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Corollary 5.5. In the space Lgl)(—l,l) when wa(x) = V1-x2,t #hf -1, =0,1,...,N, the coefficients of optimal quadrature
formulas of the form (23) are defined as follows

Cosl0] = h(yoalt] + 22 + 26— 1) - mt),

CoslB) = 1™ (yoal = 11 - 2y0lp] + yo.lp + 1),
B=1,2,.,N-1,

CZA [N] = h_l(]/o,4[N -1]-Z@F-2t-1)— gm),

where Yo 4 is defined by (29).

Corollary 5.6. In the space L;z)(—l, 1) when w(x) = ﬁ, t#hp—-1,8=0,1,..,N, the coefficients of optimal quadrature
formulas of the form (34) are defined as follows '

Clol = I (yualt]+ fyoalt] + b= 5 +2),
o ﬁ
Coulpl = h_l(]/m 6 - 11— 2y01[B] + yialf + 1] - g(ym 6~ 11 - 201161 + you[6 + 1]) +12 1. Coy [)/]),
-
=12,.,N-1,
CtINI = I (yualN =11 = byoa N = 1]+ b + 5 - 2),

where y1,y1,1 are defined by (26),(37) respectively.

Corollary 5.7. In the space L;z)(—l, 1) when wy(x) = %, t#+hp—-1,8=0,1,.. N, the coefficients of optimal quadrature
formulas of the form (34) are defined as follows

Cal0] = h-l(yl,z[u + hyoall] + bt +2) = 5 + 3¢+ )

Calfl = h‘l(yl,z[ﬂ—ll—2y1,z[ﬁ]+y1,z[ﬁ+1]—%(yo,z[ﬁ—1]—2yo,z[ﬁ]+

B
FyoalB + 1]) 12 Y. Coaly] - §n), B=1,2,.,N-1,

y=0

Ci2 [N]

I (naIN = 11 = byoalN =10+ bt + 32— £ = D),
where Yo, Y1, are defined by (27) (38) respectively.

Corollary 5.8. In the space ng)(—l,l) when ws(x) = %ﬁ, t#hg—-1,8=0,1,..N, the coefficients of optimal quadrature
formulas of the form (34) are defined as follows

Ci,s [0y = h*(ym[l] + Lyos[l] - bt + F(22 + 2t - 1)),

Cis 161 = ™ (ynal6 = 11= 2ys5081 + ool + 11 = 4{voslp — 11~ 2yualpl+
+Yoalp + 1]) +1 éo Coalyl + %n), g=1,2,.,N-1,

CalN] = h_l(y1,3[N —1] = by [N - 1]+ bn2 - t) - 22 -t + 2t - 1)),

where Y3, Y13 are defined by (28) (39) respectively.
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Corollary 5.9. In the space ng)(—l,l) when wa(x) = V1-x2,t #hf -1, =0,1,...,N, the coefficients of optimal quadrature
formulas of the form (34) are defined as follows

Ci,4 [0] = h-l(y1,4[1] + hyoall] - 2P +2t - 1) + QP + 42 + 1 - 2)),
Clalpl = 1 {yralf =11 = 2904081 + yualf + 11~ 2(yoal6 — 11 = 20alf1+
Yol + 1]) L2 fo Coaly] + @m), B=12,.,N-1,
CiaINl = h*l(yM[N —1]- ;ZiyOA[N 1] - En@P -2~ 1) - EQP - 42 + 1+ 2)),

where Y4, Y14 are defined by (29), (40) respectively.

Corollary 5.10. In the space Lf)(—l, 1) when wq(x) = ﬁ, t#+hp-1,6=0,1,..,N, the coefficients of optimal quadrature
formulas of the form (45) are defined as follows

Cil0] = K (yz,l[l] + g+ Syoall] - B+ bn(t+2) - Z(22 + 6t + 7)),
C;,l Bl = n?! [yz,l [B=1] = 2y21[B] + you[p + 1] - g(}/m[ﬁ =11 = 2y11[Bl+
+ysalf +11) + 5 (voal6 — 11 - 2004181 + yoalp + 11+
L, B , B
%(2 ¥ Cualyl - n) + 2 Y Coulyl@y - 26 - 1)], B=1,2,.,N-1,
y=0 y=0
G IN] = h-l[yz,l[N 1] = Bys [N = 1]+ EyoaN = 1]+ B+ bt - 2) + £8P — 6t + 7)],

where Y1, Y1,1 and Yy, are defined by (26),(37) and (48) respectively.

Corollary 5.11. In the space Lf)(—l, 1) when wo(x) = %, t#hg—-1,8=0,1,..,N, the coefficients of optimal quadrature
formulas of the form (45)are defined as follows

Cal0] = h-l[yz,z[u T hyal1]+ Eyoall] - Br(t+2) + (P + 3t + D) — 2263 + 82 + 13t + 12)],

Ca [B]

h_l[]h,z[ﬁ = 1] =2y (Bl + y22[f + 1] = g(yl,z[ﬁ =11 =2y2[Bl + 2B + 1])+
+%(!/0,2[ﬁ — 1] = 2y02[Bl + yorlp + 1]) + %(2 éo Cialyl =m(2+ f))
+§(2 éo Coaly1@y — 28— 1) + (1 + 25))], B=1,2,.,N—1,
Cop [N] = h-l[yz,z[N 1] = ByoIN =10+ By [N =11+ Brt+ b —t = 1) + 2P - 42+t + 2)],
where Yoo, Y1 and Yy, are defined by (27) (38) and (49) respectively.

Corollary 5.12. In the space LS)(—l,l) when ws(x) = J12,t #hp—1,p =0,1,..,N, the coefficients of optimal quadrature
formulas of the form (45) are defined as follows

Cosl0] = h_l[yz,s[l] + by a1+ Byos[1]+ Bt — LR 426 —1) + 2P + 42+ — 2)],
CoalBl = I [yaal = 11~ 2922181 + yaalf + 11 = b{unal — 11~ 2003061 + yaalf + 11)+
4 sl = 11= 205181 1,0+ o+ 11-1,0) + 5{2 £ Culy + )
+§(2 éo Cosly1Qy —28 - 1) — (2B + 1))], B=1,2,..,.N-1,
Cs[Nl = I [ym[N ~1] = byiaIN = 1+ ByosIN - 1]+ Br@ - ) - Ln@P -6t +7) - 22 -8 + 13t — 12),

where yo3, Y13 and Y3 are defined by (28) (39) and (50)respectively.
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Corollary 5.13. In the space Lf)(—l, 1) when wy(x) = V1—-x2,t #hp -1, =0,1,...,N, the coefficients of optimal quadrature
formulas of the form (45) are defined as follows

Coul0] = h‘l[ym[l] + a1+ Byoal1]+ Bn@R2 +2t - 1) — Lr(2P + 42 + 1 —2) + 22 + 667 + 56 — t - %)],
Coalf) = I [yoal = 11— 22alp] + yoalp + 11 = §(yaalp = 11 = 214081 + ol + 1)
2 2 ﬁ
+15 (v0alB — 11 = 200401 + yoalp + 1) + 5(m(22 +2t = 1) +4 T Caly)

: i
+%( — 1+ 26) + L Coalyl(dy -4 - 2))], p=12,.,N-1,

Cas [N] h’1|y2/4[N ~1] = bypalN =11+ Byoa[N - 1] - Br@f -2t - 1) - Lr@f — 42 + 1 +2)

—E(tt -6 + 512+ — %)],
where Yoa, Y14 and Yy, 4 are defined by (29), (40) and (51), respectively.

In the next section, we will obtain an approximate solution to equation (7). Equation (8) is derived from equation
(7) by multiplying it by 2 in this work. Since the solution to equation (8) has been approximated in many scientific
studies, we will also use the optimal quadrature formula to approximate the solution to equation (8).

6. Numerical results

In this section, previous work [16] found the approximate roots of equation (8) when the right side was ¢(t) =

5+ 5t + 20 and @(t) = L2, To compare with their findings, we also find the approximate solution of equation (8)

1+t2
when the right side is ¢(f) = £ + 5t> + 20 and ¢(t) = 22 using the optimal quadrature formula. Dividing the resulting
approximate solution by 2, we obtained the approximate solution of equation (7). This approximate solution will serve
as an estimate for the problem in section 1.1 in this work.
The formula for determining the error between the exact solution of the singular integral equation (8) and its

approximate value obtained using the optimal quadrature formula form (13) is given below

m=1 N
Run1(9) = i) =~ 3 )" Colflo ), 1=1,2,3,4. 79
! a=0 B=0

Example 1. Let us consider a singular integral equation of the form (8) and with the right-hand side ¢(t) = ££+5£3+20,
we have

1
% %dx = q(t), te(-1,1). (75)
-1

Here are the solutions for the integral equation, along with their corresponding cases

Casel :  ¢1(x) = V1 —x2 (x4+5%x2+2§),

Casell 1 ¢ha(x) = V1 —x2 (x4+51x2+22)+20 1-x
RS 2 8 T+x
L 1, 7 1+x
Caselll :  ¢s(x) = Vl—xz(x +5§x +2§)—20 Ty
1 7 5(4x +7/16

CaselV :  y(x) = V122 (x4 45222 +2-)— S@x+7/16)
2 8 V1=a2

We use our optimal quadrature formula to approximate the solutions of the integral equation (75), utilizing Corol-
laries 5.2-5.13.
Example 2. Let ¢ in (8) be the following rational functions ¢(t) = %
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Here are the exact solutions for the integral equation of (8), along with their corresponding cases

Casel :  ¢1(x) = V2(5 - x)11+—_xf2,

V1 —«2 1-x
Casell : ¢)2(x) = \/5(5 - X)W + \/5. 1+
V1 —«2 1+x
Caselll :  a(x) = «/E(5—x)w -\2 T

Vi-22 52— V2)+ Vax
1+ x2 V1 =2 ’

For examples 1 and 2, the following results are obtained. The Ry ,-1(¢;), i = 1,2, 3,4 error values at specific points
of the singular point t are presented in Tables 1-8. These tables demonstrate that the results obtained when Ryo(¢) (i.e.,
m =1, N =40,i=1,2,3,4) are better than those obtained when N = 40 in the work [16]. The values of Ry(¢;) and
Rn2(¢;) are also shown in Tables 1-8, which allows us to calculate the solutions of the given singular integral equation
with higher accuracy. Furthermore, Figures 1-32 provide complete information about Ry,,,—1(¢;) errors.

CaselV :  ¢y(x) = V2(5 - x)

7. Conclusion

In this article, the problem of aerodynamics leading to Fredholm’s I kind Cauchy type singular integral equation
was studied. As a result, it was determined that singular integrals represent the solutions of the integral equation.
We then constructed an optimal quadrature formula using the Sobolev method to approximate these solutions. Using
the established optimal quadrature formula, the solutions of the above two integral equations were approximated.
Approximate results are given in Tables and Figures. The results in the tables and graphs show that by increasing the
value of N and m, the roots of Fredholm’s I kind Cauchy type singular integral equation can be approximated with
high accuracy.
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Table 1: The table displays the errors between the exact solution of singular integral equation (8) and its approximate
value calculated by the optimal quadrature formula form (13). The second, third, and fourth columns show the errors
form =1, m = 2, and m = 3, respectively. The error for m = 1 is defined as Ry,(¢1), the error for m = 2 is defined
as Rn1(¢1), and the error for m = 3 is defined as Ry2(¢1). The fifth and sixth columns of the table show the error
corresponding to the weight w;(t) = —2= in the reference [16].

ie
i=1 N=40 N=40 N=200
t RN,O((Pl) RNJ ((]51) RN,Z((pl) Error in the work [16]
-0.997 0.005957819 0.000031029 0.000000564 0.006003030 0.000549209
-0.993 0.006994973 0.000005340 0.000000912 0.007077908 0.000374527
-0.875 0.004555772 0.000078994 0.000000394 0.026921662 0.007629757
-0.685 0.004172268 0.000027913 0.000000088 0.085630364 0.004636713
-0.485 0.005939075 0.000021023 0.000000427 0.126267059 0.013167619
-0.185 0.007296553 0.000015543 0.000000808 0.129480728 0.019433972
0.185 0.007296553 0.000015543 0.000000808 0.129478578 0.019436590
0.485 0.005939075 0.000021023 0.000000427 0.126267036 0.013162577
0.685 0.004172268 0.000027913 0.000000088 0.085636840 0.004660408
0.875 0.000405421 0.000039918 0.000000397 0.002692523 0.007637017
0.993  0.006994973 0.000005340 0.000000912 0.007077417  0.000373201
0.997  0.005957819 0.000031029 0.000000564 0.006002708 0.000548340
0.0101 0.00010°
0.00008
0.005- 0.00006-
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Table 2: The table displays the errors between the exact solution of singular integral equation (8) and its approximate
value calculated by the optimal quadrature formula form (13). The second, third, and fourth columns show the errors
form =1, m = 2, and m = 3, respectively. The error for m = 1 is defined as Ryy(¢.), the error for m = 2 is defined
as Ry1(¢2), and the error for m = 3 is defined as Rya(¢p2). The fifth and sixth columns of the table show the error
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corresponding to the weight w,(t) =

1+t

1-t

in the reference [16].

i=2 N=40 N=40 N=200
t RN,O(qbZ) RN,l(qi)z) RN,2(¢2) Error in the work [16]
20997 0.005957819 0.000031029 0.000000564 0.006600493  0.000552332
20993 0.006994973 0.000005340 0.000000912 0.007768718 0.004935831
-0.875 0.004555772 0.000078994 0.000000394 0.027011257  0.008676590
-0.685 0.004172268 0.000027913 0.000000088 0.085576885 0.004011676
-0.485 0.005939075 0.000021023 0.000000427 0.126227641 0.012708680
-0.185 0.007296553 0.000015543 0.000000808 0.129452858 0.019107945
0.185  0.007296553 0.000015543 0.000000808 0.129459336 0.019212361
0.485  0.005939075 0.000021023 0.000000427 0.126253464 0.013003395
0.685 0.004172268 0.000027913 0.000000088 0.085636840 0.004660408
0.875 0.004555772  0.000078994 (0.000000394 0.026931131 0.007706881
0.993 0.006994973  0.000005340 0.000000912 0.007078533 0.000388372
0.997  0.005957819 0.000031029 0.000000564 0.006003393  0.000558550
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Table 3: The table displays the errors between the exact solution of singular integral equation (8) and its approximate
value calculated by the optimal quadrature formula form (13). The second, third, and fourth columns show the errors
form =1, m = 2, and m = 3, respectively. The error for m = 1 is defined as Ryy(¢s3), the error for m = 2 is defined
as Ry,1(¢3), and the error for m = 3 is defined as Ry(¢p3). The fifth and sixth columns of the table show the error
1=t
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corresponding to the weight ws(t) =

1+t

in the reference [16].

i=3 N=40 N=40 N=200

t RN,O (qt)g) RN,l ((1)3) RN,2(¢3) Error in the work [16]
-0.997  0.005957819 0.000031029 0.000000564 0.006002167 0.000539051
-0.993  0.006994973  0.000005340  0.000000912  0.007076629  0.000358970
-0.875 0.004555772  0.000078994 0.000000394 0.026915548 0.007559893
-0.685 0.004172268 0.000027913 0.000000088 0.085640393 0.031126637
-0.485 0.005939075 0.000021023 0.000000427 0.126280633 0.013326970
-0.185 0.007296553  0.000015543  0.000000808 0.129500006 0.019657706
0.185  0.007296553 0.000015543  0.000000808 0.129506499 0.019763381
0.485 0.005939075 0.000021023 0.000000427 0.126305801 0.013621551
0.685  0.004172268 0.000027913 0.000000088 0.085688461 0.005286086
0.875  0.004555772 0.000078994 0.000000394 0.026836727 0.006588314
0.993  0.006994973 0.000005340 0.000000912 0.006697705 0.004197069
0.997  0.005957819  0.000031029 0.000000564 0.005407755 0.005133064

Table 4: The table displays the errors between the exact solution of singular integral equation (8) and its approximate
value calculated by the optimal quadrature formula form (13). The second, third, and fourth columns show the errors
form =1, m = 2, and m = 3, respectively. The error for m = 1 is defined as Ry(¢4), the error for m = 2 is defined
as Rn1(¢4), and the error for m = 3 is defined as Ry2(¢ps). The fifth and sixth columns of the table show the error

corresponding to the weight w4(t) = V1 — #2 in the reference [16].

i=4 N=40 N=40 N=200

t Rnyo ((P4) Rna ((]54) RN/2(¢4) Error in the work [16]
-0.997 0.060829040 0.000084316 0.000029273 0.106981360  0.007219397
-0.993 0.042952649 0.000040260 0.000012413 0.073248012  0.004736049
-0.875 0.004217035 0.000070475 0.000024873 0.043060333  0.008628876
-0.685 0.001657335 0.000022252 0.000003001 0.074911861 0.004044323
-0.485 0.001082529 0.000016307 0.000002921 0.1173427797 0.01273519
-0.185 0.002974837 0.000011346 0.000007872 0.121546630  0.019132022
0.185 0.002974837 0.000011346 0.000007872 0.121553123  0.019236266
0.485 0.001082529 0.000016307 0.000002921 0.117368424  0.013030732
0.685 0.001657335 0.000022252 0.000003001 0.074962313  0.004575426
0.875  0.004217035 0.000070475 0.000024873 0.042979724  0.007659442
0.993  0.042952649 0.000040260 0.000012413 0.072854470  0.000192117
0.997  0.060829040 0.000084316 0.000029273 0.106397181  0.000257045
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Table 5: The table displays the errors between the exact solution of singular integral equation (8) and its approximate
value calculated by the optimal quadrature formula form (13). The second, third, and fourth columns show the errors
form =1, m = 2, and m = 3, respectively. The error for m = 1 is defined as Ry(¢1), the error for m = 2 is defined
as Ry1(¢1), and the error for m = 3 is defined as Rya(¢p1). The fifth and sixth columns of the table show the error

corresponding to the weight w,(t) = ﬁ in the reference [16].

i=1 N=20 N=20 N=100

t RN,O(Q’)l) RN,l ((Z)l) RN,Z((Pl) Error in the work [16]
-0.998 0.002266247 0.000041821 0.000000529 0.002024041 0.000234694
-0.978 0.004145320 0.000043481 0.000001754 0.003340472 0.000589171
-0.893  0.003957352 0.000105556  0.000003506 0.002216034 0.000891600
-0.773  0.003709544 0.000064744 0.000008723 0.009017059 0.008687685
-0.568 0.000042179  0.000068073 0.000019368 0.062942750 0.002993924
-0.368 0.006560796 0.000062021 0.000017583 0.123760122 0.014045816
-0.035 0.017905786 0.000349827 0.000033634 0.187487254 0.010014735
0.035  0.019755505 0.000326825 0.000040459 0.148838406 0.065850842
0.368  0.000986770 0.000027036 0.000025782  0.105055092  0.013285722
0.568  0.003934099 0.000123260 0.000018859 0.032789464 0.025239776
0.773  0.005343446 0.000073686  0.000005050 0.018374471 0.008639889
0.893  0.004467696 0.000123301 0.000001510 0.005113167 0.003758796
0.978  0.003421113 0.000042108 0.000004167 0.003402971 0.000961914
0.998  0.001725892  0.000044508 0.000001156 0.001707279  0.000271750

Table 6: The table displays the errors between the exact solution of singular integral equation (8) and its approximate
value calculated by the optimal quadrature formula form (13). The second, third, and fourth columns show the errors
form =1, m = 2, and m = 3, respectively. The error for m = 1 is defined as Ryp(¢.), the error for m = 2 is defined
as Rn1(¢2), and the error for m = 3 is defined as Rn(¢). The fifth and sixth columns of the table show the error

corresponding to the weight w,(f) = /1* in the reference [16].

i=2

N=20

N=20

N=100

t

Rno(92)

Rn1(¢2)

Rnp(¢2)

Error in the

work [16]

-0.998
-0.978
-0.893
-0.773
-0.568
-0.368
-0.035
0.035
0.368
0.568
0.773
0.893
0.978
0.998

0.008603270
0.000884481
0.002510877
0.002748443
0.000612997
0.007066752
0.018261937
0.020087568
0.001220516
0.003753591
0.005220394
0.004385935
0.003384845
0.001715012

0.000012186
0.000052372
0.000101612
0.000067364
0.000069859
0.000060641
0.000348856
0.000325919
0.000027673
0.000123752
0.000074021
0.000123078
0.000042207
0.000044479

0.000012894
0.000002272
0.000005292
0.000009910
0.000020178
0.000018208
0.000033194
0.000040049
0.000026071
0.000019082
0.000005202
0.000001611
0.000004123
0.000001142

0.008885592
0.000567553
0.001064237
0.008981736
0.063600348
0.124267947
0.187844720
0.149171693
0.105289691
0.032970634
0.018250953
0.005031050
0.003366496
0.001696376

0.000404501
0.000397386
0.000806539
0.008744210
0.002955408
0.014075567
0.010035676
0.065870367
0.013271973
0.025229167
0.008647105
0.003753993
0.000959753
0.000271203
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Table 7: The table displays the errors between the exact solution of singular integral equation (8) and its approximate
value calculated by the optimal quadrature formula form (13). The second, third, and fourth columns show the errors
form =1, m = 2, and m = 3, respectively. The error for m = 1 is defined as Ry(¢s3), the error for m = 2 is defined
as Ry1(¢3), and the error for m = 3 is defined as Rya(¢p3). The fifth and sixth columns of the table show the error

Kh.M. Shadimetov et al. / Filomat 38:30 (2024), 10765-10796

corresponding to the weight ws(t) =

1t

1+t

in the reference [16].

i=3 N=20 N=20 N=100

t RN,o(qL’)g,) RN,l((PfS) RN,2(¢3) Error in the work [16]
-0.998 0.002277127 0.000041851  0.000000542 0.002034972  0.000235374
-0.978 0.004181588 0.000043383 0.000001799  0.003376837  0.000591274
-0.893  0.004039113 0.000105779  0.000003405 0.002298069  0.000896406
-0.773  0.003832596 0.000064408 0.000008571 0.007893472  0.006680492
-0.568  0.000222687 0.000067581 0.000019145 0.062761641 0.003004693
-0.368  0.006327051 0.000062658 0.000017295 0.123525676  0.014031944
-0.035 0.017573723 0.000350733  0.000034044 0.187154011 0.010995179
0.035  0.019399354 0.000327796  0.000040890 0.148481025 0.065829887
0.368  0.000480815 0.000025656  0.000025157  0.104547327 0.013315374
0.568  0.004589276 0.000121474 0.000018050 0.032131903 0.025278336
0.773  0.006304547 0.000071065 0.000003863 0.019339077 0.008583314
0.893  0.005914171 0.000127245 0.000000276  0.006564749 0.003843916
0.978  0.006681952 0.000033217 0.000008195 0.006675945 0.001153217
0.998  0.012595410 0.000074144 0.000014580 0.012615531 0.000912040

Table 8: The table displays the errors between the exact solution of singular integral equation (8) and its approximate
value calculated by the optimal quadrature formula form (13). The second, third, and fourth columns show the errors
form =1, m = 2, and m = 3, respectively. The error for m = 1 is defined as Ry(¢s), the error for m = 2 is defined
as Rn1(¢4), and the error for m = 3 is defined as Ry2(¢ps). The fifth and sixth columns of the table show the error

corresponding to the weight w4(t) = V1 — 2 in the reference [16].

i=4 N=20 N=20 N=100

t RN,O ((;[)4) RN,l ((1)4) RN,2(¢4) Error in the work [16]
-0.998 0.063255976  0.000146957  0.000025398 0.030602557 0.001015765
-0.948 0.012487161 0.000133726 0.000007764 0.008609104 0.000466156
-0.887 0.013040699 0.000072617 0.000006613 0.001905165 0.005949221
-0.778 0.010586117 0.000011641 0.000011046 0.014159086 0.030178490
-0.567 0.004649756 0.000062470 0.000020769 0.065268322 0.002908423
-0.355 0.005838531 0.000140411 0.000004319 0.125744508 0.014117167
-0.015 0.013706566 0.000179528 0.000032007 0.189218380 0.010074475
0.015 0.017475564 0.000116692 0.000041532 0.150545394 0.065908944
0.355  0.000952665 0.000006798 0.000013168 0.106766158 0.013230389
0.567  0.009014790 0.000120981 0.000019863 0.034638644 0.025182245
0.778  0.012958572  0.000006354 0.000006178 0.009854598 0.045014099
0.887  0.014743527 0.000088918 0.000002162 0.002708428 0.006516463
0.948  0.015293560 0.000132532 0.000004866 0.003836374 0.000809926
0.998  0.073574260 0.000179250 0.000011360 0.020018720 0.000342511
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Figure 27: Value of Ry -1(¢3) whenm = 2,N =
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Figure 28: Value of Ry -1(¢3) whenm = 3,N =

Figure 26: Value of Ry u-1(¢3) whenm = 1,N =
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Figure 29: Value of Ry u-1(¢s) whenm = 1,N = Figure 31: Value of Ry -1(¢s) whenm = 2,N =
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Figure 30: Value of Ry u-1(¢s) whenm =1,N = Figure 32: Value of Ry -1(¢s) whenm = 3,N =
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