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The dual notion of Baer modules and related topics

Faranak Farshadifar®

?Department of Mathematics Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran

Abstract. The aim of this paper is to introduce and investigate the dual notions of o-submodules of
modules, normal modules, and Baer modules over a commutative ring. Furthermore, we obtain some
results about the relations between them.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and Z will denote the ring of
integers. For a submodule N of an R-module M, a non-empty subset K of M, and a non-empty subset | of
R, the residuals of N by K and | are defined as (N ;g K) ={a€ R:aK C N}and (N ;1 J) = {me M : Jm C N},
respectively. In particular, we use Anng(M) to denote (0 :r M).

Let M be an R-module. A submodule N of M is said to be a o-submodule of M if m € N implies that
Anng(m)+(N ;g M) = R. Inparticular, anideal  of R is called a o-ideal if I is a o-submodule of the R-module R

[15]. A non-zero submodule N of M is said to be second if for each a € R, the homomorphism N 5 Nis either
surjective or zero [22]. A second submodule N of M is said to be a maximal second submodule of M, if there
does not exist a second submodule K of M such that N ¢ K ¢ M [4]. M is called a reduced module if rm = 0
implies that ¥M N Rm = 0, where r € R and m € M [20]. R is said to be a normal ring if it is reduced (without
nilpotent elements) and every two distinct minimal prime ideals are comaximal [13]. A finitely generated
reduced R-module M is said to be a normal module if every two distinct minimal prime submodules are
comaximal [16]. R is said to be a Baer ring if for each a € R, the annihilator Anng(a) = {r e R:ra =0} ofais
generated by an idempotent element e € R [17]. An element e € R is said to be a weak idempotent element if
em = ¢*m for each m € M, or equivalently, e — e? € Anng(M). Also, M is said to be a Baer module if for each
m € M there exists a weak idempotent element e € R such that Anng(m)M = eM [15].

Let M be an R-module. A proper submodule N of M is said to be completely irreducible if N = (;; N;,
where {Nj} is a family of submodules of M, implies that N = N; for some i € I. Every submodule of M is an
intersection of completely irreducible submodules of M. Thus the intersection of all completely irreducible
submodules of M is zero [12]. M is said to be coreduced module if (L :p1 ¥) = M implies that L + (0 ;i 7) = M,
where r € R and L is a completely irreducible submodule of M [6]. A submodule N of M is said to be a
co-Baer submodule if for each completely irreducible submodule L of M with N € L, we have N C (L :r M)M
[11].

In Section 2 of this paper, we define the dual notion of o-submodules of an R-module M and obtain
some results about do-submodules and co-Baer submodules. We say that a submodule N of an R-module
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M is a dual of o-submodule (do-submodule in short) if for each completely irreducible submodule L of M
with N € L we have Anng(N) + (L :r M) = R (see Definition 2.1). Among various results, we show that if
every submodule of M is a do-submodule of M, then M is a comultiplication R-module (see Proposition 2.3
(b)). Also, it is shown that every do-submodule of M is a copure submodule of M, but the converse is not
true in general (see Proposition 2.5 (c) and Example 2.6). Moreover, we prove that if M is an R-module such
that M/I}(M) is a finitely cogenerated R-module for each maximal ideal P of R, then a submodule N of M
is a do-submodule if and only if N = } Ig (M), where Q denotes any maximal ideal of R that containing
Anng(N) (see Theorem 2.7).

In Section 3, we introduce and investigate the dual notions of Baer R-modules and normal R-modules.
Also, we obtain some results about the relations of do-submodules, co-Baer submodules, normal R-modules
with co-Baer R-modules. We say that an R-module M is a co-Baer module if for each completely irreducible
submodule L of M there exists a weak idempotent element ¢ € R such that (0 :p (L :x M)) = (0 :m
e) (see Definition 3.1). Among the other results in this section, we show that every finitely generated
comultiplication co-Baer R-module is a coreduced R-module (see Theorem 3.8). Furthermore, it is proved
that if M is a finitely generated comultiplication co-Baer R-module, then R/Anng(M) is a Baer ring (see
Theorem 3.13). Also, we determine the condition under which if R/Anng(M) is a Baer ring, then M is a
co-Baer R-module. In particular, the Z-module Z, is a co-Baer Z-module if n is square free (Theorem 3.14
and Example 3.15). Let M be a comultiplication R-module. Then we show that M is a co-Baer module if
and only if every co-Baer submodule of M is a do-submodule of M (see Theorem 3.20). It is shown that if
M is a comultiplication R-module, then M is a co-Baer R-module if and only if for every submodule N of
M we have M/N is a co-Baer R-module (see Theorem 3.21). We say that a finitely cogenerated coreduced
R-module M is a conormal module if for any two distinct maximal second submodules S; and S, of M we have
51N 53 = 0 (see Definition 3.24). Every finitely generated comultiplication co-Baer R-module is a conormal
R-module (see Corollary 3.26). It is proved that if M is a finitely generated comultiplication R-module, then
M is a conormal module if and only if R/Anng(M) is a normal ring (see Theorem 3.27). Finally we determine
the conditions under which M is a normal R-module if and only if M is a conormal R-module (see Corollary
3.28).

2. do-submodules and co-Baer submodules

Definition 2.1. We say that a submodule N of an R-module M is a dual of o-submodule (do-submodule in short) if
for each completely irreducible submodule L of M with N C L we have Anng(N) + (L :r M) = R.

Remark 2.2. (See [5].) Let N and K be two submodules of an R-module M. To prove N C K, it is enough to show
that if L is a completely irreducible submodule of M such that K C L, then N C L.

An R-module M is said to be a comultiplication module if for every submodule N of M there exists an ideal
I of R such that N = (0 :p1 I). For more information about comultiplication R-modules, we refer the reader
to [2].

Proposition 2.3. Let N be a do-submodule of an R-module M. Then we have the following.

(a) If K is a submodule of M such that N C K and M/K is a finitely cogenerated R-module, then Anng(N) + (K :r
M) =R.

(b) N = (0 :; Anng(N)). In particular, if every submodule of M is a do-submodule of M, then M is a comultipli-
cation R-module.

Proof. (a) Let K be a submodule of M such that N € K and M/K be a finitely cogenerated R-module. Then
there exist completely irreducible submodules L; for i = 1,2,...,n such that K = N | L;. By assumption,

Anng(N) + (Li :r M) = Rfori =1,2,...,n. Hence by [19, Proposition 3.59], Anng(N) + ﬂ?zl(Li ‘R M) = R.
Thus Anng(N) + (K :r M) = R.
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(b) Always we have N C (0 :p1 Anng(N)). Now let L be a completely irreducible submodule of M such
that N C L. By assumption, Anng(N) + (L :r M) = R. Thus we have

L= (L ‘M R) = (L M ATlTlR(N) + (L ‘R M)) =

(L :pp Anng(N)) N (L 2y (L :r M)) =
(L :pr Anng(N)) N M 2 (0 :p1 Anng(N)).
Now the result follows from Remark 2.2. [

Let M be an R-module. A submodule N of M is said to be pure if IN = N N IM for each ideal I of R [1].
A submodule N of M is said to be copure if (N :p1 I) = N + (0 :p I) for each ideal I of R [2].

Proposition 2.4. Let M be a multiplication R-module. Then we have the following.
(a) If N is a pure submodule of M, then N is o-submodule of M.
(b) If N is a copure submodule of M, then N is o-submodule of M.

Proof. (a) Let N be a pure submodule of M and x € N. Since M is a multiplication R-module, there exist
idealsIand J of R such that Rx = IMand N = JM. As N is pure, we get that Rx = IM = IMNJM = IJ]M = JRx.
Thus by [8, Corollary 2.5], Anng(Rx) + | = R. Since | € (JM :z M), we have Anng(Rx) + (JM :g M) = R.

(b) Let N be a copure submodule of M and x € N. Since M is a multiplication R-module, there exist
ideals I and | of R such that Rx = IM and N = [M. As IM C M, we have M = (JM :g I). Now since N is
copure, M = JM + (0 :p1 I). Thus Rx = IM = IJM = JRx and so Anng(Rx) + | = R by [8, Corollary 2.5]. Now
the result follows from the fact that ] C (JM (g M). O

A family {Nj}e; of submodules of an R-module M is said to be an inverse family of submodules of M
if the intersection of two of its submodules contains a module in {N;};c; . Also, M satisfies Grothendieck’s
condition AB5* (the property AB5* in short) if for every submodule K of M and every inverse family {Nj}e
of submodules of M, K + N;efN; = Nier(N; + K)[21, p.435].

An R-module M satisfies the double annihilator conditions (DAC for short) if for each ideal I of R we have
I= AT‘H’ZR(O ‘M I) [9]

An R-module M is said to be a strong comultiplication module if M is a comultiplication R-module and
satisfies the DAC conditions [2].

Proposition 2.5. Let M be an R-module. Then we have the following.
(a) If N1, Ny, .., Ny are do-submodules of M, then Zif:l N; is a do-submodule of M.

(b) If M satisfies the property AB5* and {Ni}ier is a inverse family of do-submodules of M, then NieN; is a
do-submodule of M.

(c) Every do-submodule of M is a copure submodule of M.
(d) If N is a pure submodule of a strong comultiplication R-module M, then N is do-submodule of M.

Proof. (a) Let N1, Ny, .., Ni be do-submodules of M and let L be a completely irreducible submodule of M
such that ):le N; € L. ThenN; € Lfori =1,2,..,k. Soby assumption, Anng(N;)+(L :r M) = Rfori=1,2,.., k.
This implies that AnnR(Zf=1 N)+ (L :x M) = ﬂi.‘zlAnnR(Ni) + (L :r M) = R by [19, Proposition 3.59]. Hence
YX | Niis a do-submodule of M.

(b) Let M satisfies the property AB5* and {Ni}ier be a inverse family of do-submodules of M. Let L be
a completely irreducible submodule of M such that NiN; € L. Then NieiN; + L = L. Since M satisfies the
property AB5*, we have Ni(N; + L) = L. Thus N; C L for some i € I because L is completely irreducible
submodule of M. So by assumption, Anng(N;) + (L :zr M) = R. This implies that Anng(NieiN;) + (L :r M) =R,
as needed.
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(c) Let N be a do-submodule of M and I be an ideal of R. Clearly N + (0 :p1 I) € (N :p I). Assume that L
is a completely irreducible submodule of M such that N + (0 : I) € L. By Remark 2.2, it is enough to show
that (N :py I) € L. As N is a do-submodule of M, we have Anng(N) + (L :x M) = R. Thus 1 = s + ¢ for some
s € Anng(N) and t € (L :r M). Let x € (N :p I). Then xI € N. We have x = 1x = sx + tx. Since Isx S sN =0,
we have sx € (0 :p I). Thus x € (0 :p1 I) + L = L, as needed.

(d) Let N be a pure submodule of a strong comultiplication R-module M. Suppose that L is a completely
irreducible submodule of M such that N C L. As M is a comultiplication R-module, there exist ideals I and
Jof Rsuchthat L =(0:p ) and N = (0 :p1 ]). As (0 :p J) S (0 :pr I), we have I(0 :p; J) = 0. Now since N is
a pure submodule of M, (0 :p1 J) N IM = 0. This implies that (0 :p1 | + Anng(IM)) = (0 :pm R). It follows that
J + Anng(IM) = R because M is a strong comultiplication R-module. Hence Anng((0 :p J)) + Anng(IM) = R,
asneeded. O

The following example shows that a copure submodule of an R-module M is not a do-submodule of M
in general.

Example 2.6. Consider the Z-module M = Z, ® Zp~ and N = 0@ Z,~. Then N is a copure submodule of M but N
is not a do-submodule of M.

Let M be an R-module and P be a prime ideal of R [3, 4, 7]. Then
BYM) = N{L | L is a completely irreducible submodule of M and
(L :x M) & P).

Theorem 2.7. Let M be an R-module such that M/IX(M) is a finitely cogenerated R-module for each maximal ideal
P of R. Then a submodule N of M is a do-submodule if and only if N = ¥ I’\Q’I(M), where Q denotes any maximal
ideal of R that containing Anng(N).

Proof. =: Let L be a completely irreducible submodule of M such that N € L. Since N is a do-submodule
of M, We have that Anng(N) + (L :r M) = R. Let P be a maximal ideal of R containing Anng(N). Then
(L :x M) ¢ P. Thus I}'(M) C L. This implies that ¥, Ig(M) C Landso Y, Ig[(M) C N by Remark 2.2.
Conversely, assume that L is a completely irreducible submodule of M such that }., Ig[(M) C L, where
Q is any maximal ideal containing Anng(N). Let P be a maximal ideal of R. If P contains Anng(N), then
IIAD/I(M) € Land so (L :x M) € P by using [7, Lemma 2.3]. This implies that (L :x M)p = Rp. Otherwise, we
would have Anng(N) € P and so Anng(N)p = Rp. In both cases we have Anng(N)p + (L :x M)p = Rp for all
maximal ideal P of R. This implies that Anng(N) + (L :r M) = R. Hence Anng(N)N + (L :x M)N = N and so
N C (L :r M)M C L. Therefore, N C Y, Ig(M) by Remark 2.2.

&: Let N = Y Ig[(M), where Q denotes any maximal ideal of R that containing Anng(N). We show
that N is a do-submodule of M. Let L be a completely irreducible submodule of M such that N C L.
Assume contrary that Anng(N) + (L ;g M) # R. Then there exists a maximal ideal O of R such that
Anng(N) + (L :x M) € Q. Since Igf(M) cYo I]g(M) = N C L, we have (L :x M) ¢ Q by using [7, Lemma 2.3].
Which is a contradiction. [

Proposition 2.8. Let N be a submodule of an R-module M. Then the following statements are equivalent:
(a) N is a co-Baer submodule of M;
(b) (L :r M) C (L :x M) with L, L are completely irreducible submodules of M and N C L implies that N C L;

Proof. (a) = (b) Let N be a co-Baer submodule of M and (L :x M) C (L :x M) with L,L are completely
irreducible submodules of M and N C L. Then

Nc(@L:gMMC(L:g M)MCL.

(b) = (a) Let N be a submodule of M and L be a completely irreducible submodule of M with N C L.
Assume that L is a completely irreducible submodule of M such that (L :x M)M C L. Then (L :x M) C (L :r
M). Thus by part (a), N € L. Thus N C (L :xr M)M by Remark 2.2. [
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Let R; be a commutative ring with identity and M; be an R;-module for i = 1,2,...,n. Let R =
RiXRyX---XR,,. Then M = My X M, X --- X M,, is an R-module and each submodule of M is in the form of
N = N; XN X --- X N, for some submodules N; of M; fori=1,2,...,n.

Proposition 2.9. Let M; be an R;-module for each i = 1,2. Set M := My X My, R := Ry X Ry, and N := Ny X Ny a
submodule of M. If N is a co-Baer submodule of M, then Nj is a co-Baer submodule of M; fori=1,2.

Proof. Let L1 be a completely irreducible submodule of M; such that Ny € L. Then L; X M, is a completely
irreducible submodule of M with N € L; X M, and so by assumption, Ny X N» € (L1 X My g,xr, M1 X
My)(M; X Mj3). Now the result follows form the fact that

(L1 XM2 ‘RyxR, M1 X Mz) = (L1 R Ml) X (Mz Ry Mz)
[

Proposition 2.10. Let f : M — M be an epimorphism of R-modules. If N is a co-Baer submodule of M, then f(N)
is a co-Baer submodule of M.

Proof. Let N be a co-Baer submodule of M and L be a completely irreducible submodule of M such that
f(N) € L. Then by [11, Lemma 2.8.(b)], L) is a completely irreducible submodule of M. Thus N C
FUfF(IN)) € f‘l(ﬁ) implies that N C (f‘l(ﬁ) :r M)M since N is a co-Baer submodule of M. Hence f(N) C
(f (L) :r MM. Now (f(L) :r M) C (L :r M) implies that f(N) C (L :x M)M, as needed. [

Corollary 2.11. Let M be an R-module and N, K be two submodules of M such that N € K € M. If K is a co-Baer
submodule of M, then K/N is a co-Baer submodule of M/N.

Proposition 2.12. Let M be an R-module. Then every submodule of M is a co-Baer submodule if and only if every
completely irreducible submodule of M is a co-Baer submodule.

Proof. Let N be a submodule of M and L be a completely irreducible submodule of M with N C L. Let L be
a completely irreducible submodule of M such that (L :x M)M C L. Then (L :x M) C (L :x M). Now since L
is a co-Baer submodule of M and L C L, we have L C L by Proposition 2.8. This implies that N € L. Now
the result follows from Remark 2.2.

The converse is clear. [J

3. co-Baer modules and conormal modules

Definition 3.1. We say that an R-module M is a co-Baer module if for each completely irreducible submodule L of
M there exists a weak idempotent element e € R such that (0 :p1 (L :r M)) = (0 :p1 €).

Example 3.2.  (a) Every prime R-module is a co-Baer module

(b) Every simple R-module is a co-Baer module.

Definition 3.3. We say that an R-module M is a po-module if for each finite number of ideals Iy, I, ..., 1, of R we
have

Y (O 1) = (0 tua [ )l + Anng(M))).
i=1

i=1
Example 3.4. By [2, Theorem 115 (c)], every strong comultiplication R-module is a po-module.
Proposition 3.5. Let an R-module M be a uo-module. The following statements are equivalent:

(a) M is a Baer R-module;
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(b) For any submodule N of M with M/N is a finitely cogenerated R-module, (0 :p1 (N :r M)) = (0 :m e) for some
weak idempotent e € R.

Proof. (a) = (b). Let N be a submodule of M with M/N is a finitely cogenerated R-module. Then there exist
completely irreducible submodules Ly, Ly, ..., L, of M such that N = NI | L;. As M is co-Baer module, there
exist weak idempotents e; € R such that (0 :;p (L; :r M)) = (0 :p ) for each i = 1,2,...,n. Since M is a
to-module, we have

Y Oie) =Y O u (Lizk M) = (O ag [ \(Li ir M) + Anng(M)).
i=1 i=1 i=1

Now the result follows from the fact that }/1(0 :p €;) = (0 :p1 €162+ -€,) and ege - - - e, is a weak idempotent
element of R.
(a) = (b). Thisis clear. O

Let R be an integral domain. A submodule N of an R-module M is said to be a cotorsion-free submodule
of M (the dual of torsion-free) if ISA (N) = N. Also, M said to be a cotorsion-free module if M is a cotorsion-free
submodule of itself [3].

Example 3.6. Every cotorsion free R-module is a co-Baer R-module.

Example 3.7. Let M be an R-module with Anng(M) be a maximal ideal of R and let L be a completely irreducible
submodule of M. As Anng(M) € (L :x M), we have that either (L :x M) = Anng(M) or (L :x M) = R. Thus
O :m (L:g M) =0 :p AnngM) =M =0 :p 0)or 0Oy (L:xg M)) =0 :y R) =0=(0:p1). Hence M isa
co-Baer R-module. For instance, for a prime number p, the Z-module Z,, X Z,, is a co-Baer Z-module, and also it is
neither a simple nor a cotorsion free Z-module.

Theorem 3.8. Every finitely generated comultiplication co-Baer R-module is a coreduced R-module.

Proof. Let M be a finitely generated comultiplication co-Baer R-module. Assume that L is a completely
irreducible submodule of M and a € R such that (L :p 4?) = M. Then a € (L :p a) :x M). By [7, Lemma 2.1],
(L :p a) is a completely irreducible submodule of M. Thus as M is a co-Baer R-module, there exists a weak
idempotent element e € R such that

(0 ‘M (L ‘R aM)) = (0 ‘M ((L ‘M a) ‘R M)) = (0 ‘M 6).

On the other hand, e(1 — e)M = 0 implies that (1 —¢)M € (0 :p €) € (0 :p a). Thusa(l —e)yM =0 C L. It
follows that (1 —e) € (L :r aM) and so (0 :p (L :r aM)) € (0 :pr 1 —€). Therefore (0 :p1 ) € (0 :pr 1 —e€). This
implies that (0 :p €) = (0 :m €) N (0 :p 1 —¢) = 0. Therefore, (0 :m (L :r aM)) = 0. Now we will show that
(L :r aM) = R. Assume to the contrary that (L :g aM) # R. Then there exists a maximal ideal Q of R which
containing (L :x aM). As (0 :p (L :r aM)) = 0, we get (0 :; Q) = 0. So by [2, Theorem 7 (d)], there exists
g € Q such that (1 — q)M = 0. Since Anng(M) € Q, we have that 1 € Q, which is a contradiction. Therefore
(L :x aM) = R and hence M is a coreduced R-module. [

Proposition 3.9. Let N be a copure submodule of a co-Baer R-module M. Then M/N is a co-Baer R-module.

Proof. Let L/N be a completely irreducible submodule of M/N. Then by using (M/N)/(L/N) = M/L and [12,
Remark 1.1], we have L is a completely irreducible submodule of M. Thus as M is a co-Baer R-module, we
get that (0 :p (L :r M)) = (0 :p ) for some weak idempotent e € R. Now since N is copure, we have

(0 :myn (L/N :g M/N)) = (N :p (L ;g M))/N = (N + (0 :p (L :r M))/N

= (N + (0 ‘M €))/N = (0 M/N 6).
Thus M/N is a co-Baer R-module. O
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Definition 3.10. We say that an R-module M is an annihilator comultiplication module if for each completely
irreducible submodule L of M there exists a finitely generated ideal I of R such that (L :x M) = Anng(IM).

Lemma 3.11. Every comultiplication R-module M is an annihilator comultiplication module.

Proof. Let L be a completely irreducible submodule of M. Then by assumption, L = (0 :p1 Anng(L)). Thus
L = Macanng@)(0 :m Ra). This implies that L = (0 :py Ra) for some a € Anng(L) since L is a completely
irreducible submodule of M. Hence M is an annihilator comultiplication R-module. [

An R-module M is said to satisfy the condition () if (0 :p Q) = 0 implies that (1 — )M = 0 for some
g € Q, where Q is a maximal ideal of R.

Proposition 3.12. Let M be a finitely generated co-Baer R-module satisfying the condition (%). Then M is an
annihilator comultiplication R-module.

Proof. Assume that L is a completely irreducible submodule of M. Then there exists a weak idempotent
e € R such that ((0 :p; (L :r M)) = (0 :p1 e). It follows that

0= (@LrM)NOm1=e)=(0:n (L :x M)+R(1-e)).

Now we will show that (L ;g M) + R(1 — e) = R. Assume to the contrary that (L :x M) + R(1 —e) # R. Then
there exists a maximal ideal Q of R that containing (L :x M) + R(1 —¢). This implies that (0 :py Q) = 0. As
M satisfying the condition (x), we get (1 — r)M = 0 for some r € Q. Since 1 —r € Anng(M) C Q, we get
1 € Q, which is a contradiction. Thus we have (L :x M) + R(1 —¢) = R. Then r; + (1 —e)x = 1 for some
r1 € (L :;g M) and x € R. This implies that ¢ = er; + (1 — ¢)x and so e € (L ;g M) + Anng(M) = (L :x M).
Therefore, Re C (L :x M). Now let r, € (L :x M). Then

M =(0:m(L:rM)(1—¢)C(0:m12(l—e))

and hence (1 — ¢) € Anng(M). This implies that v, = re + 12(1 — €) € Re + Anng(M). Thus we have
(L :r M) = Re + Anng(M). Since Anng((1 — e)M) = Re + Anng(M), we get (L ;g M) = Anng((1 — e)M) as
needed. [

Theorem 3.13. Let M be a finitely generated comultiplication co-Baer R-module. Then R/Anng(M) is a Baer ring.

Proof. Let R = R/Anng(M) and a + Anng(M) € R. It is enough to show that Anng(a + Anng(M)) = (e +
Anng(M))R for some idempotent e + Anng(M) € R. Clearly, Anng(a + Anng(M)) = Anng(aM)/Anng(M).
By using [2, Theorem 24], M is a finitely cogenerated R-module. Thus there exist completely irreducible
submodules L; of M for i = 1,2,...,n such that N L; = 0. Thus (0 :p; @) = N (L; :m a). It follows that
Anng@M) = N, ((L; :m a) :k M). As M is a finitely generated comultiplication co-Baer R-module, a similar
argument as in the proof of Proposition 3.12 shows that ((L; :m a) :r M) = Re; + Anng(M) for some weak
idempotente; € R. Thisimplies that (L; :um 4) :r M)/Anng(M) = (e;+Anng(M))R. Thennote that e;+Anng(M)
is an idempotent of R and hence

Anng(@M)/Anng(M) = O (Li 2 0) x M)/Anng(M) =
O (Li :m @) :r M)/Anng(M)) = NI, ((e; + Anng(M))R)
= (e1ep - - - e, + Anng(M)) = (e + Anng(M))R,
where e = eje, - - - ¢, and e + Anng(M) is an idempotent of R. O

Theorem 3.14. Let M be an annihilator comultiplication R-module and let R/Anng(M) be a Baer ring. Then M is a
co-Baer R-module.
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Proof. Let L be a completely irreducible submodule of M As M is an annihilator comultiplication R-module,
we have (L :g M) = Anng(IM) for some finitely generated ideal I = R(ay,4ay, ...,a,) of R. This implies that
(L :x M) = Anng(@M + +a,M) = NI Anng(a;M). Since R/Anng(M) is a Baer ring, for each a; € R we have

ANNR anngovy (@i + Anng(M)) = Anng(a;M)/Anng(M)
= ((e)R + Anng(M))/Anng(M)
for some weak idempotent ¢; € R. This implies that Anng(a;M) = (e;)R + Anng(M). Then we have
(L :r M) = N Anng(a;M) = N, ((er)R + Anng(M)).

Since ne, ((e)R + Anng(M)) = (e)R + Anng(M), where e = e1e; - - - ¢, is a weak idempotent of R, we conclude
that (0 :pr (L :r M)) = (0 :p1 €), which completes the proof. [

Example 3.15. By Theorem 3.14, the Z-module Z., is a co-Baer Z-module if n is square free.
Proposition 3.16. Let {M;}ie; be a family of R-modules. Consider the following cases:

(a) Tl M is a co-Baer R-module.

(b) .., M; is a co-Baer R-module.

(c) M; is a co-Baer R-module for each i € 1.
Then (a) = (b) = (c) always holds.
Proof. The proof is straightforward. [

The following example shows that in Proposition 3.16 the implication (c) = (a) is not true in general.

Example 3.17. Consider the Z-module M = Z, & Z3. For completely irreducible submodule L = 0 @ Z3 of M we

have (0 :p1 (L :r M)) # (0 :p 0) and (0 :pq (L :x M)) # (0 :p 1). Thus we have M is not a co-Baer Z-module since
the only weak idempotents of Z. are 0 and 1. But Z, and Zg are co-Baer Z-modules by Example 3.15.

Lemma 3.18. Let L be a completely irreducible submodule of an R-module M. Then (L :x M)M is a co-Baer
submodule of M.

Proof. Let Lbea completely irreducible submodule of M such that (L :x M)M C L. Then (L :x M) C (L :x M).
Thus (L :x M)M C (L :x M)M as needed. [

Lemma 3.19. Let N be a submodule of a comultiplication R-module M and e be a weak idempotent of R such that
(0:p (N :g M)) = (0:p €). Then (N :x M) = Re + Anng(M).

Proof. As M is a comultiplication R-module, (0 :pr (N :r M)) = (0 :pr ) implies that (N :x M)M = eM. Thus
eM € N and so Re C (N :g M). Hence Re + Anng(M) € (N :g M). On the other hand (1 —¢)M C (0 :p; e). Thus
(1 —-e)(N :x M)M = 0. Hence
(N :g M) C Anng((1 — e)M) C Re + Anng(M).
O

Theorem 3.20. Let M be a comultiplication R-module. Then M is a co-Baer module if and only if every co-Baer
submodule of M is a do-submodule of M.
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Proof. Let M be a co-Baer R-module and N be a co-Baer submodule of M. Assume that L is a completely
irreducible submodule of M such that N C L. As N is a co-Baer submodule of M, we have N C (L :g M)M.
Since M is a co-Baer R-module, (0 :p (L :g M)) = (0 :pm e) for some weak idempotent e € R. Thus
(L :r M) = Re + Anng(M) by Lemma 3.19. As we can see in the proof of Lemma 3.19, (L :x M)(1 —e)M =0
and N C (L :r M)M = eM. These in turn imply that R = Re + Anng(M) + R(1 — e) € Anng(N) + (L :r M).
Therefore, Anng(N) + (L :r M) = R as needed. For the converse, assume that every co-Baer submodule of
M is a do-submodule of M and L is a completely irreducible submodule of M. By Lemma 3.18, (L :r M)M
is a co-Baer submodule of M. Thus by assumption, (L :x M)M is a do-submodule of M. Hence, Anng((L :r
M)M) + (L :x M) = R because (L :x M)M < L. Now since Anng((L :x M)M)(L :x M) € Anng(M), we have
(L :r M) + Anng(M) = Re + Anng(M) for some weak idempotent ¢ € R by [14, Lemma 2 (i)]. It follows that
(0 :p1 (L :r M)) = (0 :p1 €) for some weak idempotent e € R and so M is a co-Baer R-module. [

Theorem 3.21. Let M be a comultiplication R-module. Then M is a co-Baer R-module if and only if for every
submodule N of M we have M/N is a co-Baer R-module.

Proof. The “only if” part is clear. Now let M be a co-Baer R-module and N be a submodule of M. Assume
that L/N is a completely irreducible submodule of M/N. Then L is a completely irreducible submodule of
M. Thus (0 :p (L :r M)) = (0 :p e) for some weak idempotent ¢ € R. So, (L :r M) = Re + Anng(M) by Lemma
3.19. Therefore,

(0 :myn (L/N :r M/N)) = (N :m (L :r M))/N =

(N :pm e) N (N iy Anng(M)))/N = (N :pm €)/N = (0 :pyn e),
as desired O

Proposition 3.22. Let M be a second R-module. Then M is a co-Baer R-module.

Proof. Let L be a completely irreducible submodule of M. As M is second, (L :;x M)M =0or M = (L «x
M)M C L. Hence (0 :p; (L :g M)) =M = (0 :p1 0) or (0 :p1 (L :g M)) = (0:p1 (M :g M)) =(0:p 1), asneeded. O

The following example shows that the converse of Proposition 3.22 is not true in general.

Example 3.23. By Example 3.15, the Z-module Z is a co-Baer Z-module. But the Z-module Z is not a second
Z-module.

Definition 3.24. We say that a finitely cogenerated coreduced R-module M is a conormal module if for any two
distinct maximal second submodules Sy and S, of M we have S1 N S, = 0.

Proposition 3.25. Let M be a finitely generated comultiplication co-Baer R-module. Then for any two distinct
maximal second submodules S1 and Sy of M we have S1 N Sy = 0.

Proof. First note that minimal submodules and hence second submodules and maximal second submod-
ules exist in comultiplication R-modules [2, Theorem 7 (e)]. Let S; and S, be two distinct maximal sec-
ond submodules of M. Then Anng(S1) and Anng(S;) are prime ideals of R containing Anng(M). Thus
Anng(S1) contains P; and Anng(S,) contains P, where Py and P, are prime ideals which are minimal over
Anng(M). Therefore P1/Anng(M) and P,/Anng(M) are minimal prime ideals of R/Anng(M). By Theo-
rem 3.13, R/Anng(M) is a Baer ring. Hence P;/Anng(M) + P>/Anng(M) = R/Anng(M), which implies that
P1 + P, = R. It follows that Anng(51) + Anng(S;) = RandsoS1NS;=0. O

Corollary 3.26. Every finitely generated comultiplication co-Baer R-module is a conormal R-module.

Proof. By using[2, Theorem 24], M is a finitely cogenerated R-module. Now the result follows from Theorem
3.8 and Proposition 3.25. [

Theorem 3.27. Let M be a finitely generated comultiplication R-module. Then M is a conormal module if and only
if R/Anng(M) is a normal ring.
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Proof. =: Let M be a conormal R-module. Since M is a coreduced R-module, we have R/Anng(M) is reduced
ring by [10, Proposition 2.16 (b)]. Take two distinct minimal prime ideals P;/Anng(M) and P,/Anng(M) of
R/Anng(M). Then P; and P, are two distinct minimal prime ideals of Anng(M). By [10, Proposition 2.1 (a),
(d)], (0 :p P1) and (0 :p; P;) are two distinct maximal second submodules of M. Therefore (0 :p P1) N (0 1
P;) = 0and so (0 :p P1 + P;) = 0. Thus as M is a comultiplication R-module, (P; + P,)M = M. Hence
since M is finitely generated and Anng(M) C P; + P,, we have P; + P, = R by [8, Corollary 2.5]. Thus
Py/Anng(M) + Py /Anng(M) = R/Anng(M) and so R/Anng(M) is a normal ring.

&: Let R/Anng(M) be a normal ring. Then as R/Anng(M) is a reduced ring, we have M is a coreduced
module by [10, Proposition 2.16 (a)]. Now let S; and S, be two distinct maximal second submodules of
M. Then Anng(S1) and Anng(S;) are two distinct minimal prime ideals of R containing Anng(M) by [10,
Proposition 2.1 (c)]. Thus Anng(S1)/Anng(M) and Anng(S,)/Anng(M) are two distinct minimal prime ideals
of R/Anng(M). Hence

Anng(S1)/Anng(M) + Anng(S2)/Anng(M) = R/Anng(M),
which implies that Anng(S1) + Anng(Sz) = R. It follows that S N S, =0, as needed. O

Corollary 3.28. Let M be a finitely generated multiplication and comultiplication R-module. Then M is a normal
R-module if and only if M is a conormal R-module.

Proof. This follows from [16, Proposition 2.12] and Theorem 3.27. [

Proposition 3.29. Let M; be an R;-module for each i = 1,2,...,n. Set M := My X My X --- X M, and R :=
Ri X Ry X - X Ry. Then the following statements are equivalent:

(a) M is a conormal R-module;

(a) M, is a conormal R;-module for eachi=1,2,...,n.

Proof. First note that M is a finitely cogenerated coreduced R-module if and only if each M; is a finitely
cogenerated coreduced R;-module fori=1,2,...,n.

(a) = (b) Let M be a conormal R-module and choose i € {1,2,...,n}. Assume that S;; and S, are two
distinct maximal second submodules of M;. Then N1 = 0X0X---XS;;X---X0and N, = 0X0X---XSpX---X0
are two distinct maximal second submodules of M. As M is a conormal R-module, we have N "N, = 0
which implies that S;; N S;, = 0. Therefore, M; is a conormal R;-module.

(b) = (a) Let M; be a conormal R;-module for eachi =1,2,...,n. Suppose that S and K are two maximal
second submodules of M. Then S = 0X0X X §;X---x0and K=0X0X---xK;X---x0 for some maximal
second submodules S; of M; and K; of M;. If j # t, we have SN K = 0. So assume that j = t. Since K # S and
My is conormal, we have S; # K; so that S; N K; = 0 which implies that SN K = 0. Therefore, M is a conormal
R-module. O
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