
Filomat 38:30 (2024), 10519–10527
https://doi.org/10.2298/FIL2430519Z

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. Let the linear manifold S be

S =

{
A ∈ Cn×n

∣∣∣∣∣∣ f (A) = ∥AX1 − Z∥2 + ∥X∗1A −W∗
∥

2 = min,X1,Z,W ∈ Cn×k

}
,

where ∥.∥ is Frobenius norm. We consider the following problem:
Problem P. Given Y2 ∈ Cn×m, X2 ∈ Cn×p, D ∈ Cm×p, find A ∈ Cn×n

≥0 (S) (Cn×n
>0 (S)) such that

Y∗2AX2 = D,

where Cn×n
≥0 (S) =

{
A ∈ Cn×n

∣∣∣∣∣∣ 1
2 (A + A∗) ≥ 0,∀A ∈ S

} (
Cn×n
>0 (S) =

{
A ∈ Cn×n

∣∣∣∣∣∣ 1
2 (A + A∗) > 0,∀A ∈ S

})
.

In this paper, we consider a class of inverse problems for Re-nnd and Re-pd matrices on a linear
manifold. Utilizing variable substitution, the generalized inverses, and some matrix decompositions, the
solvability conditions are obtained and the representation of the general solution for Problem P are given.

1. Introduction

Throughout this paper, we will adopt the following terminology, Cm×n denote the set of all complex
m × n matrix, M∗, R(M),N(M) and M† denote the conjugate transpose, the range space, the null space and
the Moore-Penrose inverse (MPI) of a matrix M ∈ Cm×n, respectively. Also, the symbols EM and FM stand
for the two orthogonal projectors (OPs) EM = Im −MM†, FM = In −M†M induced by M ∈ Cm×n. Let the
largest singular value of the matrix M be σ, if σ ≤ 1 (< 1), we say that M is a (strict) contraction matrix (CM
(SCM)). For matrices M = (αi j) ∈ Cm×n,N = (βi j) ∈ Cm×n, M ∗N is used to define the Hadamard product of
M and N , that is, M ∗N = (αi jβi j) ∈ Cm×n.

Re-pd matrices play a crucial role in the context of stability analysis within the realms of control theory.
If given matrix M ∈ Cn×n, Duan et al. [4, 5] propose a new criterion that if −M < 0, then the system is
Hurwitz stable. The result has been widely applied to solve some problems in Cyber–security control,
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* Corresponding author: Zhanshan Wang
Email addresses: huiting_zhang123@163.com (Huiting Zhang), zhanshan_wang@163.com (Zhanshan Wang),

honglinzou@zjsru.edu.cn (Honglin Zou)



H. Zhang et al. / Filomat 38:30 (2024), 10519–10527 10520

Pinning control, Spatial quasi-neutral dynamics, DC microgrid, control of power networks, Cyber-Physical
Systems [8, 11, 15, 18, 20, 26]. Due to its significant applications, there has been considerable research on
the Re-nnd and Re-pd (see [24, p.1, Definition1.1]) solutions of the matrix equations (MEs) [12, 23, 24].

As a kind of classical ME, the ME

AXB = D (1)

has certainly received extensive attention. In 2008, Dragana [2] discussed the Re-nnd solutions of (1)
with the constraints that A,B are nonnegative definite by g–inverses. Different from [2], Yuan and Zuo
[25] considered the Re-nnd and Re-pd solutions to (1) without any constraints on coefficient matrices
by utilizing the MPIs and OPs. Setting B = I in (1), we have AX = D. In the early 20th century, Wu et
al. [10, 21, 22] discussed the Re-pd and Re-nnd solutions to the matrix inverse problem (IP) AX = D.
However, it appears that there is little research on the IPs of Re-pd and Re-nnd to (1). Concretely, given
Y ∈ Cn×m, X ∈ Cn×p, D ∈ Cm×p, seeking A ∈ Cn×n

≥0 (Cn×n
>0 ) (Cn×n

≥0 (Cn×n
>0 ) is Re-nnd ( Re-pd) set) such that

Y∗AX = D. (2)

In particular, when Y∗ = I,D = XΛ,Λ = diag(λ1, λ2, ..., λp) or X = I,D = ΩY∗,Ω = diag(ω1, ω2, ..., ωm),
it becomes an inverse eigenvalue problem (IEP) of Re-nnd and Re-pd matrices. When it comes to the
IEPs, there are many significant applications in various applied sciences and engineering technologies. In
1997, Li first put forward in [13] that the matrix IEP can be converted to a pole assignment problem in
control theory. Besides, the IEPs have been encountered in the Spring-Mass Systems [7, 17] and vibration
absorption [16]. However, we are aware of the kind of IPs, especially in the context of linear manifold,
seems to be rarely considered. In this paper, we will find the solvability conditions for the IP of Re-nnd
and Re-pd to (1) on a linear manifold, the details are as follows.
Let the linear manifold S be

S =

{
A ∈ Cn×n

∣∣∣∣∣∣ f (A) = ∥AX1 − Z∥2 + ∥X∗1A −W∗
∥

2 = min,X1,Z,W ∈ Cn×k
}
,

where ∥.∥ is Frobenius norm. We consider the following problem:
Problem P. Given Y2 ∈ Cn×m, X2 ∈ Cn×p, D ∈ Cm×p, find A ∈ Cn×n

≥0 (S) (Cn×n
>0 (S)) (Cn×n

≥0 (S) (Cn×n
>0 (S)) is the

Re-nnd ( Re-pd) set on the linear manifold S) such that

Y∗2AX2 = D. (3)

The solvability conditions and the expression of the general solution (GS) for Problems P are provided
by using some matrix decompositions and MPIs.

2. Preliminaries

In order to solve Problem P, we introduce the following lemmas.

Lemma 2.1. [27] Let the singular value decomposition (SVD) of X1 be

X1 = P
[
Ω 0
0 0

]
Q∗, (4)

whereΩ = diag(ω1, ω2, ..., ωr), r = rank(X1), P = [P1,P2] ∈ Cn×n,Q = [Q1,Q2] ∈ Ck×k are unitary matrices (UMs)
with P1 ∈ Cn×r,Q1 ∈ Ck×r, the partition of P∗AP be

P∗AP =
[

Ã11 Ã12

Ã21 Ã22

]
.
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Then, the linear manifold S can be expressed as

S =

{
P
[
Φ ∗ (P∗1ZQ1Ω+ΩQ∗1W∗P1) Ω−1Q∗1W∗P2

P∗2ZQ1Ω
−1 Ã22

]
P∗

∣∣∣∣∣∣Ã22 ∈ C
(n−r)×(n−r)

}
,

where Φ = ϕi j ∈ Cr×r, ϕi j =
1

γ2
i +σ

2
j
, 1 ≤ i ≤ r, 1 ≤ j ≤ r. Let

A1 = P
[
Φ ∗ (P∗1ZQ1Ω+ΩQ∗1W∗P1) Ω−1Q∗1W∗P2

P∗2ZQ1Ω
−1 0

]
P∗, (5)

then the linear manifold S can be expressed as

S =

{
A1 + P2Ã22P∗2

∣∣∣∣∣∣Ã22 ∈ C
(n−r)×(n−r)

}
.

From Lemma 2.1, we can see that
A = A1 + P2Ã22P∗2,

where Ã22 ∈ C(n−r)×(n−r) is arbitrary. To facilitate the subsequent solutions of Problem P, we have made a trick
transformation as follows.

Note that Ã22 is arbitrary, if take Ã22 = P∗2A22P2, then we have A = A1 + P2P∗2A22P2P∗2. On the other hand,
according to (4) we know that X1 = P1ΩQ∗1,X

†

1 = Q1Ω
−1P∗1, which implies that P2P∗2 = I − P1P∗1 = I −X1X†1 = EX1 ,

namely

A = A1 + EX1 A22EX1 , (6)

where A22 ∈ Cn×n is arbitrary. Eq. (6) will play a crucial role in the process of solving Problem P.

Lemma 2.2. [1] Let G ∈ Cm×p,H ∈ Cq×n, C ∈ Cm×n. Then the ME GXH = C have a solution if and only if

GG†CH†H = C,

or equivalently,
EGC = 0, CFH = 0.

In this case, the GS is
X = G†CH† + FGV1 + V2EH,

where V1,V2 ∈ Cp×q are arbitrary matrices.

Lemma 2.3. [1] Let PT and PS be the OPs on the subspaces T and S, respectively. Then PTPS is an OP if and only
if PTPS = PSPT . In this case, PTPS = PT∩S.

Lemma 2.4. [3] Suppose that G ∈ Cm×p and T is a subspace of Cp. Let T̃ = R(PTG∗) = PTR(G∗), then

T̃ = T ∩ (T ∩N(G))⊥, T̃ ⊥ = T ⊥
⊥

⊕(T ∩N(G)).

Lemma 2.5. [9, 14] Let G ∈ Cm×p,H ∈ Cq×m and D = D∗ ∈ Cm×m. Then the ME

GXH + (GXH)∗ = D

has a solution if and only if
EGDEG = 0, FHDFH = 0, [G,H∗][G,H∗]†D = D.

In this case, the GSs X ∈ Cp×q gives

X = G†
(
Θ̃ + FLSXFLGG†

)
H† +M − G†GMHH†,

where SX ∈ Cm×m is skew-Hermitian, and M ∈ Cp×q is arbitrary (If SX = −S∗X, then SX is skew-Hermitian), and Θ̃ is
given by Θ̃ = 1

2 D(2I − GG†) + 1
2 (Ψ −Ψ∗)GG† withΨ = 2L†FHD +

(
Im − L†FH

)
DL†L, L = FHGG†.
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Lemma 2.6. [6, 28] Let G ∈ Cm×p, D ∈ Cm×p, and the SVD of G be G = P
[
Ω 0
0 0

]
Q∗, whereΩ = diag(ω1, ω2, ...,

ωr),r = rank(G), P = [P1,P2] ∈ Cm×m,Q = [Q1,Q2] ∈ Cp×p are UMs with P1 ∈ Cm×r,Q1 ∈ Cp×r. Then:
(a). The ME GX = D has a X ∈ Cp×p

H ≥ 0 ( Cp×p
H ≥ 0 is the Hermitian nonnegative definite set) if and only if

DG∗ ≥ 0, R(D) = R(DG∗), in this case, the GSs are

X = X0 + FGHFG,

where X0 = G†D + FG(G†D)∗ + FGD∗(DG∗)†DFG, and H ∈ Cp×p
H ≥ 0 is arbitrary.

(b). The ME GX = D has a X ∈ Cp×p
H > 0 ( Cp×p

H > 0 is the Hermitian positive definite set) if and only if
GG†D = D, P∗1DG∗P1 > 0, in this case, the GSs are

X = X0 + FGHFG,

where X0 = G†D + FG(G†D)∗ + FGD∗(DG∗)†DFG, and H ∈ Cp×p
H > 0 is arbitrary.

3. Main results

In this section, we will put forward a general theory elaborating how to solve Problem P.
Firstly, inserting (6) into (3) yields

Y∗2(A1 + EX1 A22EX1 )X2 = D. (7)

For notation simplicity, we set Y21 = Y∗2EX1 , X12 = EX1 X2. By Lemma 2.2, (7) has a solution A22 if and only if

Y21Y†21(D − Y∗2A1X2)X†12X12 = D − Y∗2A1X2. (8)

In this case, the GS is

A22 = Y†21(D − Y∗2A1X2)X†12 + FY21 S1 + S2EX12 , (9)

where S1,S2 are arbitrary. Substituting (9) into (6) leads to

A = A1 + EX1 (Y†21(D − Y∗2A1X2)X†12 + FY21 S1 + S2EX12 )EX1 . (10)

Thus, solving Problem P can be deduced equivalently to finding suitable matrices S1,S2 such that

A + A∗ = A0 + EX1 FY21 S1EX1 + EX1 S2EX12 EX1 + EX1 S∗1FY21 EX1 + EX1 EX12 S∗2EX1 ≥ 0 (> 0), (11)

where
A0 = A1 + EX1 Y†21(D − Y∗2A1X2)X†12EX1 + A∗1 + EX1 (Y†21(D − Y∗2A1X2)X†12)∗EX1 .

According to Lemmas 2.3 and 2.4, we can obtain that

FY21 EX1 = EX1 − (Y∗2EX1 )†Y∗2EX1 = EX1 FY21 = PN(X∗1)∩N(Y21) ≜ E21, (12)

EX1 EX12 = EX1 − EX1 X2(EX1 X2)† = EX12 EX1 = PN(X∗12)∩N(X∗1) ≜ E12. (13)

Then, (11) can be written as

A + A∗ = A0 + E21S1EX1 + EX1 S2E12 + EX1 S∗1E21 + E12S∗2EX1 ≥ 0 (> 0). (14)

To solve the Problem P, we introduce a variable R to rewrite (14) as follows:

A0 + E21S1EX1 + EX1 S2E12 + EX1 S∗1E21 + E12S∗2EX1 − R = 0, R ≥ 0 (> 0), (15)
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which can be equivalently written as

A0 +
[

E21 E12

] [ S1
S∗2

]
EX1 + EX1

[
S∗1 S2

] [ E21
E12

]
− R = 0, R ≥ 0 (> 0). (16)

Let G =
[

E21 E12

]
,S∗ =

[
S∗1 S2

]
, then we have

GSEX1 + (GSEX1 )∗ = R − A0, R ≥ 0 (> 0), (17)

thus, we will elucidate how to solve (17) in the following.
Combined with Lemma 2.5, Eq. (17) has solutions S if and only if

EG(R − A0)EG = 0,
X1X†1(R − A0)X1X†1 = 0, (18)

[G,EX1 ][G,EX1 ]†(R − A0) = R − A0. (19)

In this case, the solutions S are

S = G†
(
Θ̃ + FLS12FLGG†

)
EX1 +MS − G†GMSEX1 , (20)

where S12 ∈ Cn×n is skew-Hermitian, and MS ∈ C2n×n is arbitrary (If S12 = −S∗12, then S12 is skew-Hermitian),
and Θ̃ is given by Θ̃ = 1

2 (R−A0)(2In −GG†)+ 1
2 (Ψ−Ψ∗)GG† withΨ = 2L†X1X†1(R−A0)+

(
In − L†X1X†1

)
(R−

A0)L†L, L = X1X†1GG†.
Note that

I − [G,EX1 ][G,EX1 ]† = PN(G∗)∩R(X1) ≜ PT1 , (21)

combined with Lemma 2.4, we can find that

EG = PN(G∗) ≜ PT2 , X1X†1 = PR(X1) ≜ PT3 , (22)

thus we has the property that

PT2 PT1 = PT1 = PT1 PT2 , PT3 PT1 = PT1 = PT1 PT3 , (23)

at the same time, (18), (19) can be written as

PT2 RPT2 = PT2 A0PT2 ,
PT3 RPT3 = PT3 A0PT3 ,

(24)

PT1 R = PT1 A0. (25)

By Lemma 2.6, Eq. (25) has solutions R ∈ Cn×n
H ≥ 0 if and only if

PT1 A0PT1 ≥ 0, R
(
PT1 A0

)
= R

(
PT1 A0PT1

)
, (26)

in this case, we obtain the GS of (25) as

R = R0 + (In − PT1 )K(In − PT1 ), (27)

where

R0 = PT1 A0 + A0PT1 − PT1 A0PT1 + (In − PT1 )A0PT1 (PT1 A0PT1 )†PT1 A0(In − PT1 ), (28)

and K ∈ Cn×n
H ≥ 0 is arbitrary.
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Assume that the spectral decomposition (SD) of PT1 is

PT1 = Q
[

I1 0
0 0

]
Q∗ = Q1Q∗1, (29)

where 1 = rank(PT1 ) and Q = [Q1,Q2] ∈ Cn×n is a UM with Q1 ∈ Cn×1. By Lemma 2.6, (25) has solutions
R ∈ Cn×n

H > 0 if and only if

Q∗1PT1 A0PT1 Q1 > 0, (30)

in this case, the GS of (25) is

R = R0 + (In − PT1 )K(In − PT1 ), (31)

where R0 is given by (28), and K ∈ Cn×n
H > 0 is arbitrary.

Substituting (27) ((31)) into (24), then combined with (23), we have

(PTi − PT1 )K(PTi − PT1 ) = (PTi − PT1 )N(PTi − PT1 ), i = 2, 3, (32)

where

N = A0 − A0PT1 (PT1 A0PT1 )†PT1 A0. (33)

Notice that
PTi − PT1 = (PTi − PT1 )∗ = (PTi − PT1 )2, i = 2, 3,

which shows that PT2 − PT1 and PT3 − PT1 are OPs (see [1, p.81, Ex.68]). Hence, there exist UMs B,C ∈ Cn×n

such that

PT2 − PT1 = B
[

Ic 0
0 0

]
B∗ = B1B∗1,

PT3 − PT1 = C
[

Id 0
0 0

]
C∗ = C1C∗1,

(34)

where c = rank(PT2 − PT1 ), d = rank(PT3 − PT1 ), and B1 ∈ Cn×c,C1 ∈ Cn×d are column UMs. Substituting (34)
into (32), we can arrive at

B∗1KB1 = B∗1NB1, C∗1KC1 = C∗1NC1. (35)

According to [19] that the generalized singular value decomposition (GSVD) of [B1,C1] is of the following
form:

B1 = ΥΣ1E∗, C1 = ΥΣ2F∗, (36)

where Υ ∈ Cn×n is a nonsingular matrix and E ∈ Cc×c,F ∈ Cd×d are UMs, and

Σ1 =


I 0
0 Ξ
0 0
0 0


c − r

r
k − c
n − k

c − r r

,
Σ2 =


0 0
Γ 0
0 I
0 0


c − r

r
k − c
n − k

s d − s

,

k = rank ([B1,C1]) = c + d − r, and

Ξ = diag(ξ1, · · · , ξr), Γ = diag(γ1, · · · , γr)
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with
1 > ξ1 ≥ ξ2 ≥ · · · ≥ ξr > 0, 0 < γ1 ≤ γ2 ≤ · · · ≤ γr < 1,
ξ2

i + γ
2
i = 1, i = 1, · · · , r.

Plugging (36) into (35) gives

Σ∗1Υ
∗KΥΣ1 = Σ

∗

1Υ
∗NΥΣ1, Σ

∗

2Υ
∗KΥΣ2 = Σ

∗

2Υ
∗NΥΣ2, (37)

partition Υ∗KΥ,Υ∗NΥ into the following forms:

Υ∗KΥ =


K11 K12 K13 K14
K∗12 K22 K23 K24
K∗13 K∗23 K33 K34
K∗14 K∗24 K∗34 K44


c − r

r
k − c
n − k

c − r r k − c n − k

,

Υ∗NΥ =


N11 N12 N13 N14
N∗12 N22 N23 N24
N∗13 N∗23 N33 N34
N∗14 N∗24 N∗34 N44


c − r

r
k − c
n − k

c − r r k − c n − k

, (38)

inserting (38) into (37), then combined with an obtained result in [24] leads to
(a). Eq. (35) has a common K ∈ Cn×n

H ≥ 0 if and only if[
N11 N12
N∗12 N22

]
≥ 0,

[
N22 N23
N∗23 N33

]
≥ 0. (39)

In this case, the GS of (35) is

K = (Υ∗)−1

[
M(K13) M(K13)H1

H∗1M(K13) H2 +H∗1M(K13)H1

]
Υ−1, (40)

where

M(K13) ≜

 N11 N12 K13
N∗12 N22 N23
K∗13 N∗23 N33

 (41)

with

K13 = N12N†22N23 +
(
N11 −N12N†22N∗12

) 1
2
J

(
N33 −N∗23N†22N23

) 1
2 , (42)

and H1 ∈ Ck×(n−k) is arbitrary, H2 ∈ C
(n−k)×(n−k)
H ≥ 0 is arbitrary and J ∈ C(c−r)×(k−c) is an arbitrary CM.

(b). Eq. (35) has a common K ∈ Cn×n
H > 0 if and only if[
N11 N12
N∗12 N22

]
> 0,

[
N22 N23
N∗23 N33

]
> 0.

In this case, the GS of (35) is

K = (Υ∗)−1

[
M(K13) H3

H∗3 H4 +H∗3 (M(K13))−1 H3

]
Υ−1, (43)

whereM(K13) is defined by (41) with

K13 = N12N−1
22 N23 +

(
N11 −N12N−1

22 N∗12

) 1
2
J

(
N33 −N∗23N−1

22 N23

) 1
2 , (44)
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and H3 ∈ Ck×(n−k) is arbitrary, H4 ∈ C
(n−k)×(n−k)
H > 0 is arbitrary and J ∈ C(c−r)×(k−c) is an arbitrary SCM.

Once we achieve the K ∈ Cn×n
H ≥ 0 (K ∈ Cn×n

H > 0) of Eq. (35), then R in (27) ((31)) is completely specified.
Substituting (27) and (31) into (20), (10), we can obtain the solutions to Problem P. On the basis of the
preceding discussion, we can derive the following result.

Theorem 3.1. For given matrices X1,Z,W ∈ Cn×k, Y2 ∈ Cn×m, X2 ∈ Cn×p and D ∈ Cm×p, let Y21 = Y∗2EX1 ,X12 =

EX1 X2, E21 = FY21 EX1 ,E12 = EX1 EX12 , G =
[

E21 E12

]
,S∗ =

[
S∗1 S2

]
, and PT1 ,PT2 and PT3 be given by

(21), (22), respectively, and suppose that SDs of PT1 ,PT2 −PT1 and PT3 −PT1 are respectively given by (29) and (34),
N is given by (33). Furthermore, assume that the GSVD of [B1,C1] is given by (36), and the partition ofΥ∗KΥ,Υ∗NΥ
is given by (38). Thus:
(a). Problem P has a Re-nnd solution A on the linear manifold if and only if

PT1 A0PT1 ≥ 0, R
(
PT1 A0

)
= R

(
PT1 A0PT1

)
, (45)[

N11 N12
N∗12 N22

]
≥ 0,

[
N22 N23
N∗23 N33

]
≥ 0. (46)

In this case, the Re-nnd solutions of Problem P are

A = A1 + EX1 Y†21(D − Y∗2A1X2)X†12EX1 + EX1 FY21 S1EX1 + EX1 S2EX12 EX1 ,

by choosing the suitable parameter matrices S1,S2 in (20), where R,K are respectively given by (27), (40), A1 is given
by (5).
(b). Problem P has a Re-pd solution A on the linear manifold if and only if

Q∗1PT1 A0PT1 Q1 > 0, (47)[
N11 N12
N∗12 N22

]
> 0,

[
N22 N23
N∗23 N33

]
> 0. (48)

In this case, the Re-pd solutions of Problem P are

A = A1 + EX1 Y†21(D − Y∗2A1X2)X†12EX1 + EX1 FY21 S1EX1 + EX1 S2EX12 EX1 ,

by choosing the suitable parameter matrices S1,S2 in (20), where R,K are respectively given by (31), (43), A1 is given
by (5).

4. Conclusions

In 2015, Yuan and Zuo [25] discussed the Re-nnd and Re-pd solutions of AXB = D. However, the Re-
nnd and Re-pd solutions to the matrix IP AXB = D on a linear manifold have not been given. In Theorem
3.1, we provide the solutions to the Problem P. Actually, in special cases, Problem P can degenerate to a IEP of
Re-nnd and Re-pd matrices on a linear manifold. It is worth noting that the IEPs, especially considered on
linear manifolds, have wide applications in solid mechanics, structural vibration design, automatic control,
and system identification of physical parameters and etc. In this paper, the solvability conditions and the
GS of Problem P are discussed. Based on Lemma 2.1, an improved result (6) is provided, which shows a
compact form of A. Subsequently, by introducing a variable R, an inequality problem is transformed into
an equality problem. In this way, Problem P is solved in terms of some matrix decompositions, MPIs and
OPs. The solvability conditions and the explicit expression of the GS for Problem P are given.
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