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Weak* integration of functions with values in the set of Hilbert space
operators

Mihailo Krstié?

?Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia

Abstract. In this work, we consider weakly* measurable operator-valued functions Q 5 t — A; € B (H)
and Q >t EB;:O A;”) €eB (EB:: ?{n). Also, we will consider such functions as the elements of the
normed space L{(Q, u, B(H)) and we show that this space is not complete in general with respect to the
norm [|(As:eollc = sup, Fli=lgli=1 fQ [(Af, g)|du(t). Extensions of previous results are given and new problems
related to this topic are discussed. For the families (f,(t)As)icq and (f(£)A)ieq in B(H), we have proved

tim | [ 50adu - [ soadun) o,

under some additional conditions. Furthermore, necessary and sufficient conditions are discussed for
the mapping Q 3 t EB;: AY’) €B (@;: 7‘(y,) to belongs to the space L (Q, B (EB:: 7-{,,)) If these
conditions are satisfied we proved that the operator @:z fQ AE")d‘u(t) exists in B (EBT“; 7{”) and we have

f P Al aue) =P f AP dy(t).
Q 5 n=1 v

We also consider the vector measures v : M — B(H)and v: M — B (QB:: W,,) associated to the families

from the spaces L{.(CQ), u, B(H)) and L. (Q, u,B (@ZZ 7—[,1)) respectively. New results related to operator-
valued measures are obtained. We also give a formula that connects the weak* integral and the spectral
integral, when the family of operators (A;);cq arises from the same spectral measure. Throughout the
paper, specific examples of operator-valued functions are given to illustrate the general results, and in these
examples we can see how weak* integrals fQ Ay du(t) can be computed in concrete cases.

1. Introduction and the normed space LIG(Q, U, B(H))

Let (€, M, 1) be a measurable space. To avoid trivialities, we assume that there exists A € M such that
0 < p(A) < +co. When we use that the measure u is o-finite or finite, we emphasize this. The Lebesgue
measure on R is denoted by m. Let H be a Hilbert space and we denote the algebra of all linear and bounded
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operators on H with B(H). If K is another Hilbert space, then the space of all linear and bounded operators
from H to K is denoted by B(H, K). The ideal of operators generated by the symmetric norming function
(s.n.) @ is denoted with Co(H), for separable H. Specially, we have the ideal of nuclear operators C;(H)
and the ideal of compact operators Co,(H). Schatten-von Neumann ideals generated by s.n. functions ¢7,
where p € [1,+00), are denoted by €,(H). The norm on €,(H) is denoted by || - ||, or £,. If A € C,(H)
is a positive operator and p € [1, +0), we have ||AP|; = ||A||5. If A € B(H), then |A| = VA*A expresses
the absolute value of the operator A and we have the equality ||A|| = [[|A|ll. Furthermore, A € Co(H) iff
A" € Co(H)iff|A] € Co(H)iff |A*| € Cop(H) and in this case equalities ||Allo = [|A*lo = [I|Alllo = || 1A% |l hold.
If A,B € B(H),0< A<B,Be€ Cyp(H) then we have A € Cy(H) and ||Allo < ||Bllp. For more information on
the theory of ideals of compact operators, we refer the reader to [6] and [17].
If (H,)nen is a sequence of Hilbert spaces, then the set

éﬂn = {f= (fn)ne]N :IN — ﬁq_{n
n=1 n=1

with the inner product (-, -) : @' H, x P> H, — C defined by the expression

+00
fa€H, forall ne N, Y [IflP < +<><>}
n=1

<(fn)n€IN/ (gn)nEN> = Z(fm gn> for all (fn)nE]N/ (gn)nelN € @ 7-{11 (1)
n=1 n=1

is a Hilbert space. If we have H,, = H for all n € IN, then we get the Hilbert space @ZZ H, = C(H).

Let A, € B(H,) for all n € N. If we have sup, l44ll < +o, then the operator @:: A, EB:: H, —
P, Hy defined by (B, An) (fidnen) = (Aufunew for all (fu)uen € €D, Hy is linear and bounded and
we have the equality ”@ZZ An“ = sup, . lAull. If sup, o llA4ll = +00, then the operator A € B (@M H, )

n=1""1

such that Aly, = A, for all n € IN does not exist. Properties of direct sums of operators on a Hilbert space
were considered in [1], [3] and [9]. We will deal with, among other things, weakly* measurable mappings
from measurable space ) to the Hilbert space @:: ‘H,,. With I,, we denote the identity operator on H,,.

With tr : €1(H) — C we denote the trace functional. This is a linear and continuous functional on €;(H)
and we have the equality ||tr]| = 1. The mapping Q 5 t — A; € B(H) is weakly* measurable if the scalar
function Q 5 t - tr(A;Y) € C is M-measurable for all Y € €;(H). Dual space of C1(H) is B(H) (see [6,
Theorem 12.1]). If the function Q 5 ¢ > tr(A;Y) € C belongs to L(Q, M, ) for all Y € €;(H), by [2, Theorem

11.52], there exists a unique element in B(H) which we denote by fQ Ardu(t), such that

tr(fAtdy(t)Y)zftr(AtY)dy(t) forall Y € Cy(H). (2)
Q Q

In this case, we say that the family (A¢)ieq is weakly* integrable and the operator fQAt du(t) € B(H) is the
weak* integral or Gelfand integral of the family (A)ieq. We will also say that the function A : Q — B(H) is
weakly* integrable, where the letter A is assigned to the weakly* integrable family (A;)ieq. If we choose a
one-dimensional operator Y in (2), we obtain

<f Ardutf, g> = f(Atf, gydu(t) forall vectors f,g€ H. 3)
Q Q

The relation (3) is important because it gives the sesquilinear form of the operator fQ Apdu(t) € B(H) and
will be used frequently in the following text. If the function Q 3 t — (A;f,g) € C is M-measurable for all
f,g € H, then the function A : Q — B(H) is weakly* measurable. Also, if the function Q 3 t — (A;f,g) € C
belongs to the space L(Q, M, p) for all £, g € H then the function A : Q — B(H) is weakly* integrable and
we have (2) (see [13, Lemma 1.1]). For weakly* integrable family (A;)ieq and all M > E € Q) we have the
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equality

<fAtd/,t(t)f,g> = f(AJ,g)dy(t) forall f,geH. 4)
E E

Thus, norm of the operator fEA,; du(t) is given by ||fE Ay dy(t)” = SUPy f1-jgl1=1 (L(Atf,g) dy(t)|. Using Closed
Graph argument, from the proof of [13, Lemma 1.1], we have

l(Aneallc = sup fl(Atf,g>IdM(t)<+00- (5)
IflI=llgli=1 v Q

Note that sup, g |fQ<Atf, 7 dy(t)| = SUPy f1-jgli=1 fQ [{A¢f, 9>l du(t) does not have to hold in a general case.
A simple example is given by Q = {1, 2}, t1 # f and 0 # Ay, = —Ay, € B(H).

If I¢ is a Hilbert space, A : Q — B(H) is a weakly* integrable function and B € B(H, K), C € B(K, H),
then the families (A;)icq, (BAt)icq and (A;C)ieq are weakly* integrable and we have

( f Atdy(t)) = f Atdu(t), B f Ardu(t) = f BA du(t), f A du(t)C = f ACdu(t) (6)
E E E E E E

for all sets E € 9t and this can be easily verified by considering their quadratic forms and applying (4).

If a family of the operators (As)eq is weakly* integrable, then the function v4 : M — B(H) defined
by va(E) = fEAf du(t), E € M, is a weakly countable additive vector measure on the o-algebra M. In fact, the
function M > E fE<Af f,9)du(t) € Cis acomplex measure on the o-algebra M. So, if we have the sequence
(En)nen of mutually disjoint sets in 9, then

<UA[Q En] f, g> = fu . E"<At £, gy du(t) = ; fE n(At £, 9)du(t) = <(Z{ vA(En)] f, g> forall f,g€H.

If we have the equality v4 (|_|;z°1 En) = Y% va(E,) in the norm of B(H) (or in the norm of an ideal Cq(H))
for all sequences (E,),en With mutually disjoint members in 9, then we say that the function v4 is a B(H)-
valued (or Co(H)-valued) measure. For related questions, see [13, Theorem 1.3]. In this paper we give a
generalization of the mentioned theorem.

To illustrate the introduced concepts, the simplest weakly* integrable family is (f(f)A):cq for a given
scalar function f € L1(Q, M, u) and A € B(H). It is easy to see that

f f(t)Ady(t)z( f f(t)dy(t))A forall EeM. %
E E

We will often use the equality (7) in the following text.
If the family (As)weq of operators is weakly* measurable, then the function Q 3 t — [|A:f]| € R is M-

measurable. This is a direct consequence of the Bessel equality ||A; f]l = +/Yoney (At f, e4)[2, which is satisfied
for all vectors f € H. Moreover, the function Q > t — ||A| € R is Mi-measurable because we have the

equality ||A¢| = sup,., feD Hﬁ%, where D C H is a countable and dense set in the separable Hilbert space H.

For weakly* integrable family (A;);ieq we have the inequality ” fE Ay dy(t)” < fE |A¢ll du(t) for all E € M.
Note that every unitary invariant norm on an ideal of compact operators is a symmetrical norm and vice
versa. If theideal Co(H) is separable and A; € Co(H) for p-almostall t € O, then themap Q 5 t = [|Aillo € R
is M-measurable by [7, Theorem A.4]. If we also have fQ [|A¢llo dp(t) < +oo, then fQ Apdu(t) € Cop(H) and

the inequality || [, A; du(®), < [, lAdlo du(t) follows by [7, Theorem A.5].
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The family (A¢)ieq is said to be square integrable if fQ A fII> du(t) < +oo for all vectors f € H. In this case,
the Gelfand integral fQ AjA; du(t) € B(H) exists and using (3) and fQ AjArdu(t) > 0 we have

sup fQ I44fIPdue) = | fQ At < +oo. o

For more details on the integration of weakly* measurable function with values in B(H) see [11], [13], [14].

Let X be a Banach space, where the dual space of X is denoted by X* and let P;(€2, M, u, X) denote
the set of functions (equivalence classes) f : 3 — X such that: the scalar function Q 3 ¢t — x*(f(t)) € C
belongs to L}(Q, M, u) for all x* € X* and for all E € M there is the vector xg = fE f(t)du(t) € X such that

x* ( fE f) dy(t)) = fE x'(f(t))du(t) for all x* € X*. The element x¢ € X is called Pettis integral of the function
f:Q — XonE € M. The introduced vector space P1(Q2, M, 1, X) of Pettis-integrable functions is normed by

Ifllp = sup f X(fE)du(t) forall f e Pi(Q, M, u,X). )
xreX JQ
llll=1
From the Closed Graph argument it follows that the expression (9) is finite for all f € P1(Q, M, y, X). If X is
reflexive and ||f|[p < 400 then there exists xg € X such that x*(xg) = fE x'(f(t) du(t) for all x* € X*.

The normed space P1(Q, M, 1, X) is not Banach in the general case (see the Theorem 1.2). For more
information on the theory of Pettis integration see [4], [15].

For the general definition of the Gelfand integral of an arbitrary weakly* measurable function f : Q +— X*,
see [2, Section 11.9] and [4, Chapter 2]. The monograph [4] is a fundamental literature for the general theory
of integration in Banach space. For a quick introduction to the theory of integration in Banach spaces, see [2,
Sections 11.8,11.9,11.10], where the relationship between Bochner, Pettis, Gelfand and Danford integration
types is explained in a concise form.

In the following we will introduce the normed space Llc(Q, M, 1, B(H)) which consists of (classes of)
weakly* integrable functions (families) A : Q — B(H).

Definition 1.1. Two weakly* measurable families (A)ieqy and (By)eq in B(H) are u-equivalent if for every f € H
the functions Q 3 t = (Aif, f) € Cand Q 5 t — (B:f, f) € C are equal for u-almost all t € Q. Vector space of all
weakly* integrable families (As)ieq in B(H) (or functions) is denoted by L1G(Q, M, 1, B(H)), where two such families
(functions) are identified if they are p-equivalent.

Closely related to the above definition is [13, Lemma 1.1]. For u-equivalent families (A¢)req and (Bi)eq
we have A; = B; for uy-almost all t € Q if H is separable. In this case, let X be the subspace in B(H).
With Llc(Q, 1, X) we will denote the vector subspace in Llc(Q, u, B(H)) consisting of elements A = (As)eq €
Llc(Q, t, B(H)) such that A; € X for y-almost all t € Q

The introduced vector space LE(Q, M, u, B(H)) is infinite-dimensional if dim(H) = +oo and this space
can be naturaly normed by || - ||c from (5). If it is understood what the o-algebra is, we use the notation
P1(Q, p, X) and Lé(Q, U, B(H)).

Theorem 1.2. ([10, Theorem 3]) Let X be a Banach space and dim(X) = +oo. P1([0, 1], Bjo,11, m, X) is not Banach.
Lemma 1.3. Let H be Hilbert space, dim(H) = +o0,a € H, |lal| = 1 and
X, ={A € B(H): Ax =0 for all x € {a}*}.

(@) The normed space X, is closed in B(H) and X, is isometrically-isomorphic to H.

(b) IfF € B(X,,C) then there is a unique xp € H such that F(A) = (Aa, xp) for all A € X, and we have the equality
IIF|l = llxell. Also, for every x € H the function F, : X, — C given by Fx(A) = (Aa, x) defines the bounded
linear functional on X, and we have ||Fx|| = ||x]|.

(c) The normed space LlG(Q, u, X,) is closed in Llc(Q, u, B(H)) if H is separable.
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Proof. (a) The set X, is a vector subspace of B(H). If the sequence (A,)nen in X, converges to some A € B(H)
then for all x € {a}* we have 0 = lim A,x = Ax. Thus, A = 0 on {a}*. Define the mapping ¢ : X, — H by
n—oo

@a(A) = Aa for all A € X,. The mapping ¢, is linear, isometric and bijective between X, and H. Indeed, we
have ||l = supy,_, IAx]| = supy_, |(x, a)| - lAall = llall - l|Aall = lAa]l = lpa(A)]| for all A € X,.

(b) Let F € B(X,,C) and define G : H — C with G(f) = F(p,'(f)) for all f € H. Then, G € B(H,C).
Thus, there exists xp € H such that G(f) = (f,xr) for all f € H. If we put f = Aa = @,(A) € H

then we get (Aa, xr) = F(@;'(9a(A))) = F(A) for all A € X,. If <Aa,x’F> = <Aa, x;’> ie. <Aa,x’F - x’F'> =0
for all A € X, then for the operator Ay v (y) = (y,a)(xp — x{), y € H, we have Ag—xy € X, and
0= <(a,a) (x} — x}), X} — x’F’> = [lall? - llx}. — x| i.e. x} = x}/. To prove the rest of the part (b), for x € H we
have |F,(A)| < ||Aal| - [|x|| = I|A]l - ||x]| for all A € X,. ThlS 1mphes IF|l < ||x]|. For the operator A,(y) = (y,a)x,

FY A.\'
y € H, we have A, € X,, [IA4]l = llall - lxl| = [lxl] and [[Fy]| > 5 = L = i) Thus, |F,l| = |11

(c) Let (A(”))ne be the sequencein L! c(Q, i, X;) such that converges to an element A = (At)eq € Ll c(Q, u, B(H))
and let 0 # b € {a}*. For n € N we have At”)b = 0 for py-almost all t € QO . Thus, we get

la® - ]|, = f| (A"x - A, y>’dy(t)/ M suprAtb ) du(t) forall neN.
[l H IIyII 1

The equality lim ||A(”) - A” ¢ = 0implies fQ |<Atb, y>| du(t) = 0 for all y € H. For fixed y € H there is the set
n—00

Ny, € M, w(Nyp,y) = 0such that ((Atb, y)| = Oforallt € Q\Ny,,. LetN;, = UyeB Ny, where D is some countable

and dense set in the closed unit ball in H. Thus, we have Nj, € 9t and p(N;) = 0. Now, for all t € Q \ N}, we

get [lAbll = sup,p, [(Aib, y)| = 0. Let N = Uyep N Again, N € M, u(N) = 0 and [|A]| = sup,,., 1Al = 0 for

allt € Q\ N.. Thismeans A; = 0on {a}* forallt e Q\ Nie. A= (Ap)waq € Llc(Q, U, Xz). O

In the next theorem we will prove that the normed space LL(Q, u, B(H)) does not have to be complete
in the general case.

Theorem 1.4. Let H be a separable Hilbert space and dim(H) = +co. The normed space
L};([OI ]-]/ B[O,l]/ m, 3(7’{))
is not Banach.

Proof. Let e € H be the unit vector and let X, be the Banach space from the Lemma 1.3. If A; € X, for
t € [0,1], then weak* measurability and weak measurability of the family (A;):[o,1] coincide by part (b) of
Lemma 1.3. For x € H there is a unique a, € {e}* such that x = (x,¢e) e + a,. Thus, for weakly measurable
family (A¢)sejo1] in X, we have the next computation:

I(Aepollc =  sup f [(Awx, y)ldm(t) = sup f [(x,e) (Ase, y) + (Away, y) | dm(t)
Ii=lyli=1 Jio.1] Ii=llyll=1 J10,1]

(10)
= sup |{x,e)| - sup f | (Are, y)|dm(t) = sup f[ ]|F(At)|dm(t)=||(At)te[0,1]”P-
[0,1] 0,1

llxll=1 lyll=1 Fex;
[IFlI=1

The space X, is reflexive by part (a) of Lemma 1.3. Thus, ||(At)seqo,1]llp < +00 for weakly measurable family
(Ap)tefoy in X, implies (As)seo] € P1([0, 1], Bjoay, m, X,). Due to (10) we have the equality

Pl([o/ 1]/ B[O,l]/ m, XE) = Lg}([or 1]r B[O,l]/ m, Xc‘)

According to the part (a) of Lemma 1.3, the normed space X, is closed in B(H). Using dim(H) = +oo,
from the Theorem 1.2 we have that the normed space P:([0, 1], B, m, X,) is not Banach. Therefore,
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there is a Cauchy sequence (A("))nGJN in P1([0, 1], Bjo,17, m, X.) such that this sequence does not converge in
P1([0, 11, Byo,17, m, X,). From (10) it follows that the sequence (A("))nE]N is Cauchy in L([0, 1], Bjo13, m, X.). The
sequence (A(”))%N is therefore Cauchy in LL([0, 1], Byo,1j, 1, B(H)) and this sequence does not converge in
L};([O, 11, Byo,1), m, B(H)) by part (c) of Lemma 1.3. Thus, L1G([O, 11, Byo,1}, m, B(H)) is not a Banach space. [

2. Integration of weakly* measurable functions A : Q — B(H)

We start with a variant of Dominant Convergence Theorem for the separable ideals Co(H). The direct
generalization of [13, Lemma 1.2] (where positivity of the operators is assumed) and [17, Theorem 2.16.]
(where no positivity of the operators is assumed, but @ = ¢*, p € [1, +00)) follows.

Theorem 2.1. Let Co(H) be separable ideal generated by s.n. function ® and A,, A € B(H) for all n € N and let
the sequence (An)neN converges weakly to A. If there is an operator B € Co(H) such that |A,l, 1A}, |Al, |A*| < B for
alln € N then A,, A € Co(H) for all n € N and lim ||A, — Allo = 0.

The proof of this theorem is the same as the proof of [17, Theorem 2.16], with minor changes.

In the next theorem we consider measures on the o-algebra 9t with values in a separable ideal Cq(H)
generated by an s.n. function @. This theorem is a generalization of [13, Theorem 1.3], and we do not
assume positivity of the operators.

Theorem 2.2. Let (Ap)ieq be weakly* measurable family in B(H) such that (|A])icq, (A} € Lé(Q, u, B(H)).
Then, we have (Ap)icq € Llc(Q, t, B(H)). Furthermore, let X € Co(H) be an operator such that for all E € Mt we
fEAf dy(t)| < Xand UE A} dy(t)| < X, where Co(H) is the separable ideal. Then, we have:

have

(a) The function va : M — Co(H), given by

UA(E)=fAtdy(t) forall E €M,
E

is a well-defined Co(H)-valued measure on the o-algebra IN.
(b) Let p € [1,+c0) and [ |Ai|du(t) € C\(H). If

‘ fE Apdp(t)

then for all sequences (E,)nen with mutually disjoint members in I we have Y5 ||vA(En)||5 < +o00,

< f \Aldu(t) forall Ee9M, (11)
E

Proof. For all operators T € B(H) we have Mixed Cauchy-Schwarz inequality (see [5, Chapter 3])

KTf, I < NTIf, f)-AIT"lg,9) forall f,ge€H. (12)

Now, from assumed weak* measurability of the family (A;);eq and from (12) we get

. 1 1 .
LI(Atf,ﬁldy(thQ\/<IAt|f,f>-<|Atlf,f>du(t)<5fQ(IAtIf,f)dzu(tH§L<IAt|f,f)du(t)<+00

for all f € H. So, we have (A¢)ieq € L}S(Q, u, B(H)).

(@) From (A)eq € Llc(Q, t, B(H)) we have that the function v4 : M — B(H) is the weakly countable

aditive measure on 9. For all sets E € 9t we have U}; As dy(t)) <X, fEA’; dy(t)) < X and X € Co(H)
and from Dominant Convergence Theorem 2.1 we obtain part (a) of our theorem.
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(b) From0 < | [ Ardu(t)| < [ |Al du(t) € €y(H) wehave | [, A, du(t)| € @,(H) and this implies [ A, dp(t)
Cy(H) for all E € M. Let N € N be arbitrary. If we apply the inequality [8, Lemma 2.1, (c)] and the
inequality (11) for arbitrary s.n. function W (more precisely, for s.n. functions W for which the
expressions below are defined), we obtain

N p N p N p )
;fl;kAth(t) W< kzzl‘fEkAtdu(t) [;fEklAtldy(t)l W:H[Lg_lamgdy(g] .

In particular, for ¥ = ¢ 1 the above inequalities become

N N p N p N
Y loa = Y| [ Acduto| = Auo| | =Y f Acduto|
k=1 k=1 IV Ex p k=1 k 1 k=1 1 (13)
4 4 P
< [ | |At|du<t>] [, wiao) <| [ widuo| <
ukN:1Ek 1 ukN:IEk 4 Q P

The last inequality follows from (|A¢]):cq € Ll Q1 B(H)) and fQ |A¢| du(t) € €,(H). We now have the
inequality Z P ||ZJA(Ek)||£ < 400 if N = 400 in (13).

Theorem is proved. O

As we have already said, if A; > 0 for all t € (), we obtain [13, Theorem 1.3] from the proven theorem.

In the following, we will deal with families of integrable functions. The concept of uniform integrability
plays an important role here. The set S € L}(Q, M, y) is uniformly integrable if for ¢ > 0 there existsa 6 > 0
such that for all f € S the conditions E € M and p(E) < 6 imply | fE f dy) < ¢. For the definition of uniform
integrability and other related properties, see [16, Chapter 6, Exercise 10].

We are introducing a new definition.
Definition 2.3. Let o/™ = (Ain))tE € LL(Q, u, B(H)) for all n € N. The set {7 ™ : n € N} is weakly* uniformly
integrable if for ¢ > 0 exists 0 > 0 such that for alln € IN the conditions E € M and u(E) < 6 imply ||fE A(” dy(t)” <e.

For the family &/ € LL(CQ, u, B(H)) we define v,(E) = fEA(”) du(t) for all E € M. In accordance with
the introduced notation, we have the following theorem.

Theorem 2.4. Let &/ = (Ai”)) e € LE(Q, u, B(H)) be a family of positive operators such that 11m mf lo, ()] <
+00 and let the sequence (A(”)) o Converges weakly to Ay € B(H) forall t € Q.
(@) We have (Ay)ieq € L} (€, u, B(H)) and the next inequality holds:

As dy(t)” < liminf
Q n—oo

A§”>dy(t)H .
Q

(b) Let u(Q) < +oo and let the set {/™ : n € N} be weakly* uniformly integrable. Then, the function
va 1 Q — B(H) defined by va(E) = fE Adu(t), E € M, is a well-defined B(H)-valued measure on IMN.

Proof. We have A; > 0 due to (Af, f) = lim <A§”) . f > > 0, which is satisfied for all t € Q and all f € H.

(a) From A;”) 0 for all t € Q follows v,(Q) > O for all n € IN. The family (A¢)ieq is weakly* measurable,
because we have (A;f, g) = hm <A(”) f, g> forallt € Qand f,g € H. The condition hm 1nf [[0,(Q)]] < +c0

implies (A)req € L} c(Q, H,B('H )), which follows from Fatou lemma. Indeed, we have

f (Aif, f)du(t) < lim inf f (A"f, fYdu(t) = liminf (0,(Q)f, ) < [IfI im inf ||, (Q)]| < +oo.
Q n—o00 Q n—oo n—oo
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for all vectors f € H. From the above calculation we have (v4(Q)f, f) < liminf v, (Q)I| (f, f) for all
f € H and due to v4(Q) > 0 we get [[va(Q)|| < lim inf[[v,,(Q)|I.

(b) From the part (a), we have that the function v, is a well-defined, weakly countable additive measure
on M. Let N € IN be arbitrary and let (E,)uen be the sequence of mutually disjoint members in 9.
Again, from Fatou lemma and the elementary properties of supremum and infimum, we obtain the
following chain of equalities and inequalities

+00 N
VA [I_I En] —UA [|_| Ek] = Lm . At d[.l(t)
n=1 k=1 k=N+1 Tk

_ sup f Af, Frdu)
IAI=1 J LS Ex

= supf 11m< (n)f f>dy(t)
IA1=1 LR B ™

< sup hmme <A(")f f>dy(t)

n—oo
Ifl=1 =1 Ex

= sup sup _inf f A(")ff dy(t)
Uk =N+1 Ex

lIfll=1 meN N3n>m

=sup sup _inf A(”>ff dy(t)

>
meN |fll= 1N5" M IR Ee

|-
<sup inf sup f (AP f, £)du(t)

ek Nt Ifll= f je Ek
<sup inf sup <f Adu(nf, f>
meN Nan>m =1 U)?S\Hl E
=sup inf f A(n)dy(t) = liminf f Ain)dy(t) .
meN INanzm ulj:D;\H-l Ex e ul‘fg\lﬂ Ex

From p(€2) < +oo follows limy_,c0 (I_I,Z’\, +1 Ek) = 0 and due to the assumed weakly* uniform integra-
bility of the set {<7™ : n € N}, the last limit inferior can be enough small as N — oo. Thus, we obtain
n (l_l:;z En) = Y 7% va(E,), where the last series converge in the norm of the space B(H).

The theorem is proved. O

In the next theorem we give sufficient conditions for the weakly* uniform integrability of the set
(7™ : n € N}. We will use the same notation as in the Theorem 2.4.
Theorem 2.5. Let u(Q) < +o0 and o/™ = (Ain))tGQ € LL(Q, u, B(H)) consisting of positive operators and let
(AE’O)%]N converges weakly to A; € Coo(H) for all t € Q. If we have v4(Q) € Co(H), At") < Ag”H)for alln € N

and all t € Q and sup ||v,(Q)|| < +oo then the set { /"™ : n € N} is weakly* uniformly integrable.
nelN

Proof. We have (Ap)eq € Lt (€, u, B(H)) due to the part (a) of the Theorem 2.4. For all E € I we have

lim (0,(E), f) = lim f (AP, ) dut = f lim (A, ) du(t) = f (Adf, ) du(t) = aB)f, )

due to the Monotone Convergence Theorem. The sequence (v,(E))qen therefore converges weakly to v4(E).
From 0 < v,(E) < va(E) < v4(Q) € Cu(H) it follows that v,(E) € Coo(H) for all n € IN and all E € M.
Moreover, by [13, Lemma 1.2] or by the Theorem 2.1 we have lim,,_, ||v,(E) — vA(E)|| = 0 for all E € 9.
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From p(Q) < +00, v4(Q) € Coo(H) and A; € Coo(H) for all t € Q, due to [13, Theorem 2.3, (b)] we have
that for ¢ > 0 there exists 6 > 0 such that E € M and p(E) < 6 imply [[va(E)ll < €. Let € > 0 and choose
0 > 0 from mentioned theorem and E € M such that u(E) < 0. There is the number nyp = ny(¢) € N such that
[0,(Q) —v4(Q)|| < € forall N 3 1 > ny. Now, for all N 3 n > ny we have ||v,,(E)|| < |[v,(E) —va(E)|| + |[va(E)|| <
102(€2) = va() + |[oa(E)l| < € + € = 2.

Moreover, according to [13, Theorem 2.3, (b)], the finite set {</ M :nefl,... N}}is weakly* uniformly
integrable, because we have Agn) € Cu(H) and v,(Q) € Co(H) for all t € Q and n € IN. Thus, the set
{e/™ : n € N} is weakly* uniformly integrable. [J

We deal with further applications of [13, Theorem 2.3], which connects the compactness of the operator
A; for p-almost all t € Q) and the compactness of the operator fQAt du(t). The following example shows
that we cannot obtain the result from [13, Theorem 2.3, (a)] if the measure is not finite.

Example 2.6. Let QO = IN, Mt = P(IN) and u be a counting measure on IN. Let (e,)nen be the orthonormal basis
of the Hilbert space H and we define the mapping A : N — B(H) with A,(f) = (f,en) e, for all n € IN and all
f e H. Wehave A, € Coo(H) for all n € N. Furthermore, for all € > 0 there exists 6 > 0 such that E € M, u(E) < 6

implies ||fE A, dy(n)” < ¢. Indeed, for 6 we can take 6 = % A, dy(n)” =0 < e. We have (Ap)nen €

LLON, 1, BOH)) and ([ Audp(n)f, £) = fidAuf, £ dp(n) = TiS(A, £ = Tis3 Kf e = IFIR = (IF, f) for
all f € H. This implies fN Andu(n) = I. From dim(H) = +oco we have f]N Apdun) =1 ¢ Coo(H). A

Definition 2.7. The family (A)ieq € L c(Q, p, B(H)) satisfies the condition AC,, if for all € > 0 there exists 6 > 0
such that E € M and p(E) < 6 imply || fE Ardu(t)|| < e.

The next example shows that we can omit the condition AC, in [13, Theorem 3.1, (a)]. Also, in the
following example, we constructed Gelfand integrable function A : QO — B(H) that is not Pettis integrable.

Example 2.8. Let (e,)n»1 be some orthonormal basis of Hilbert space ‘H and function @, : (=1,1) — C is defined by
Pn =10 X (1) T X(-1 O)for all n € N and for all t € (=1, 1) we define the function A : (=1,1) —» B(H) by

Alf) = i @u(t) - (f,enye, forall vectors fe€H. (14)
n=1

For fixed t € (-1, 1), we have the most finite members of nonzero operators in (14), thus A; € Coo(H) forall t € (-1,1).
Using the equalities f(—l,O) Qn(t)dm(t) = =1 and 01) @n(t)dm(t) = 1 we get

f A, fydm(®) = f (Adf, fydm(®) + f A, fydm(®)
(-1,1) (-1,0)
(/[ 3 qon(t)dm(t))Kf en>|2+Z( [ o Odn(0) e = -I1F + P =0
n=1 -

forall f € H and n € N. Thus, (At)e-11) € Lé((—l, 1), m, B(H)) and fH " Apdm(t) =0 € Coo(H). Choose € =1
and 6 > 0 arbitrary, N € (%, +oo) N IN and define the set Exy = (0, 1%1) From En C (0, +00) we have

<£N Atdm(t)f,f> = i(f (Pn(f)dm(t))Kf,en)Iz
:Zm( f1 X(0,1) (t) dm( t)]|<f€n>|2 Zoonmln{l }|(f€n>|2 forall feH.

n=1

(15)
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Thus, we have m(Ey) = % < 0 and from (15) we get

“+00 1 1
A d = A d f) > -min{=, — Jend =1. 16
fEN cdm(t) f}‘ﬁﬁgﬁw ; rn(t)ff>>;n mm{n N}|<eNe>| (16)

Note that n - min{%, %} = min{l, ﬁ} < 1 forall n € N. Thus, (15) and Bessel equality implies ”fEN Ay dm(t)H <1
and together with the inequality (16) we obtain ” LN Ay dm(t)” = 1. The condition AC, fails for the function
A:(-1,1) = B(H) and consequently A ¢ P1((—1,1), m, B(H)) (see [4, Theorem 5, Chapter 2]). A

The examples 2.6, 2.8 and [13, Example 2.2] motivate us to the following theorem, in which we establish
a connection between the Gelfand integral and the Spectral integral, in the case that all operators A; come
from the same spectral measure.

Let (X, 91) be (another) measurable space and let E : %t — B(H) be spectral measure. Then, for f € H
we define a measure 75 : 9 — [0, +o0] with the expression 17¢(6) = (E(0)f, f), 6 € N. The measure )¢ is finite
for all f € H, because we have 1¢(X) = (E(X)f, f) = (E(X)f, ) = l[EX)fI* = ILfI* = lIf1*.

For ¢ € L*(X, N, E) we have that the spectral integral fx @(x) dE(x) exists in B(H) and

<f (p(x)dE(x)f,f>:f(p(x)dnf(x) forall feH. 17)
X X

Integration with respect to the spectral measure E is isometric*-isomorphism of the Banach algebra
L (X, N, E) with some closed and normal subalgebra in B(H). Thus, we have the property

forall ¢ e€L®(X, 0N, E). (18)

sup ess |@(x)| = fo(p(x) dE(x)

xeX

Theorem 2.9. Let H be a Hilbert space, (QQ, M, u) a o-finite measurable space and (X, N) another measurable space
with the spectral measure E : t — B(H). Also, let ¢ : Q X X — C be the function with the following properties:

(a) The function X 3 x — @(t,x) € C belongs to L*(X, N, E) for all t € Q.
b 9 e LNQXX,MON, u@ny) forall f € H.
(c) The function X 3 x fQ @(t, x)du(t) € C belongs to L*(X, N, E).

Then, the operator A; = fx @(t, x)dE(x) exists for all t € Q, (Ap)req € LE(Q, M, 1, B(H)) and we have

LAtdy(t):LL@(t,x)dy(t)dE(x). (19)

Furthermore, the operator fQ A du(t) is normal and

Proof. From the assumption (a) we have that the Spectral integral A; = fx @(t, x) dE(x) exists in B(H) for all
t € Q. Let f € H be arbitrary. From (b), by applying Fubini theorem and (17), we have that the function

fAtdy(t)H:supess f(p(t,x)dy(t)‘. (20)
Q Q

xeX

Qst= (A, = <L(p(t,x)dE(x)f,f> = L(p(t,x)dnf(x) eC

belongs to LY(Q,Mm, w). This implies (A¢)ieq € Llc(Q, t, B(H)). Again, from Fubini theorem we have

fQ XX(P(t/x)d(M‘X’Wf): fQ ( fx @(t,x)dnf(x))du(t)= fg (Aef, frduft). (21)
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From the assumption (b) we get that the function X 3 x fQ o(t,x)du(t) € C exists for almost all x € X
with respect to the measure 77. Using the assumption (c) we can apply (17) and from (21) we obtain

< fx ( fQ @(t,x)du(t))dE(x)frf>: L ( L qo(t,x)dy(t))dnf(x): fQ (Atf, f)d,u(t):< fQ Atdu(t)f,f>-

As f € H was arbitrary, we have the formula (19).

The operator fg A; du(t) isnormal in B(H) and this follows directly from the proven formula (19) and the
mentioned property that the integration with respect to the spectral measure E is isometric*-isomorphism
of the Banach algebra L*(X, %, E) and some closed, normal subalgebra of B(H).

By the condition (c) we can apply (18) and obtain (20). O

In the following, we will look at other possible formulas for representations of the Gelfand integral
fQ f(HA;du(t) if the members of the family (A;)cqo have special properties. To be more precise, we can

derive the formula for the representation of the Gelfand integral fQ f(BAdu(t) as a weak sum of series of
operators in B(H) if the set Q is partitioned as a countable Mi-measurable partition and if the operator-
valued function A : QO — B(H) has a constant value on each member of this partition.

Furthermore, in the next theorem we give a sufficient condition for the mentioned formula to be a sum
in the norm of the separable ideal Co(H). We do not assume (A)eq € Lé(Q, w, B(H))

Theorem 2.10. Let (A¢)ieqy be the family in B(H) such that sup, o |l < +co and f € LYQ, M, w). If (En)nen
is a sequence in I, LIt E, = Qand if {Bx : k € IN} is the subset of B(H) such that Ay = By for all t € Ey, then
(f(DADeq € LL(Q, u, B(H)) and we have

fQ fOAdu(t) = ; [ fE : f® d#(t)] By, (22)

where the series in (22) converges weakly. Moreover, if we have f(t)A; > 0forall t € Qand if fQ f(OAdu(t) € Co(H)
then the series in (22) converges in the norm || - |lo of the separable ideal Co(H).

Proof. The family (f(t)A¢)ieq belongs to Llc(Q, u, B(H)) because for all x, y € H we have

Ax, y) d = Aix, . d = Bix, d
fQ CFO A, ) du(®) ; fE KA 1) k;x ) fE Lfoldu)

< sup Al 10l Y [ 1F@1die) = sup A ] Tl - 1l < oo,
k=1

teQ) — Ey teQ)

The function M > E — fE FO(Ax, y) du(t) € C is complex measure on 9 for fixed x, y € H. Thus, we have

([ soaapons)= [ soxax v = 3 ], e pauc = im <[; [ f(t)du(t))Bka,y>,

which confirms the formula (22). Moreover, if f(f)A; > 0 for all t € Q and if fQ f(HArdu(t) € Co(H) then
[13, Theorem 1.3, (a)] implies that the function 9t 5 E fE f(OArdu(t) is a Co(H)-valued measure. By (7)

we get [, F(NA du(t) = LS 1 fOAdu(t) = L5 [ fOBcdu() = Ti5 ([, £ du(t)) By in the norm || - [lo
of the separable ideal Co(H). O

Let A; € Co(H) for p-almost all t € Q. If we have (Ai)eq € Lé(Q, u, B(H)) and if the function va
associated to the family (A)eq is B(H)-valued measure on 9, then we have the same conclusion as in [13,
Theorem 2.3, (a)], if measure u is o-finite.
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Theorem 2.11. Let u be a o-finite measure on M and let (Ai)eq € LE(Q, t, B(H)) such that A; € Co(H) for
p-almost all t € Q. If the function va : M — B(H) defined by va(E) = fEAt du(t), E € M, is a B(H)-valued
measure and if the family (A)ieq satisfies AC,, condition then fQ Apdu(t) € Coo(H).

Proof. There is a sequence (E;),en With mutually disjoint members from 9t with the properties u(E,) < +o0
foralln € N and | |,en En = Q. Applying [13, Theorem 2.3, (a)] to each E, gives us va(E,) = fE” Ardu(t) €
Co(H) for all n € IN. The function vy is a B(H)-valued measure on I, i.e. fQAt du(t) = va(Q) =
Y va(Ey) = Y05 e Ay du(t), where the last convergence is in the norm of the space B(H). The theorem
follows due to the fact that the ideal Coo(H) in B(H) is closed with respect to the operator norm. [J

Note that in the Example 2.6 the function v4(E) = f A, du(n), E € M, is not a B(H)-valued measure

on M = P(IN), although it is finitely additive. Indeed, if v, is a B(W )-valued measure on the o-algebra
M = P(IN), then it follows from Theorem 2.11 that I € C(H). This is a contradiction with dim(H) =
Let (Ap)ieq be the family of operators from B(H). The following theorem gives a sufficient condition for

the convergence of the sequence of Gelfand integrals ( fQ fa(HA: dy(t))ne]N in the norm of the space B(H) to
fQ f(HA; du(t), where (fy)nen and f are functions from L2(Q, M, ), with some additional properties.

Theorem 2.12. Let p(Q) < +co and f, € L*(Q, M, u) for all n € N such that lim f,(t) = f(t) for p-almost all
t € Q. Ifsup|lfulls < +o0 and if the set of functions Q > t — ||Awx||* € R, ||x|| < 1, is uniformly integrable, then
nelN

both families of operators (f,(£)At)teq and (f(t)At)eq belongs to Llc(Q, w, B(H)) and we have

tim | [ foaduo - [ s duc| <o 23)

Proof. For n € N and all x, y € H, Cauchy-Schwarz inequality implies

f DA I dut) < \/ f o OR du(t) - \/ f KA, YR du®) < Ifil f AP du) - Iyl < +oo,
Q Q Q Q

Thus, we get (f,()Ar)ieq € Ll o(Q, 1, B(H)) for all n € IN. Let L := sup, |l full2 < +oo. Fatou lemma implies
f € LXH(Q,M, p). Indeed, we have

I = [ 170Fdu = [ fim 15.0R du < timint [ 1,0 du) = liminf 15 <
(2 () n—o0o n—oo Q n—o0o
Thus, we have fQ [(f (DA, ) du(t) < +oo, x,y € H. This implies (f(t)Ar)weq € L (€, u, B(H)) and we get

H fQ FoOAdu(t) - fQ A,

Let € > 0 be arbitrary and choose 6 = 6(¢) > 0 from the definition of the uniform integrability of the set of
functions Q3 t - |JAX|? € R, ||x|| < 1. Using Egoroff theorem we can find a set M > Es € Q such that

sup | Ifult) = fFOI- KA, p)ldu(t) forall neN. (24)
lIxll=llylI=1 JQ

lim sup |f,(t) = f()l =0 and p(Q\Es) <6.
= e,
For all x € H we have fQ lAx|? du(t) < +oo. Thus, (A;An)eq € LE(Q, i, B(H)). From (8) we have

= sup (A Agx, x)ydu(t) = sup lA:x]? du(t) < +oo.
llxl=1 =1 JQ
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By applying the Cauchy-Schwarz inequality we have

sup Ifu®) = fFOI - KA, ) du(t) < sup|fu(t) — f(HI sup [KAx, y)ldu(t)

lIxlI=llyll=1 Y Es teEs IIxl=lyll=1 JEs
<suplfu(t) = f(Blsup | Al dp(t)
teEs llxll=1 JEs

(25)

< sup | fu(f) — f(1)] \/sup lAsx|[? du(t) - +/u(Es)

teEs lixli=1 JEs

< VM- u(Q)sup |f.(t) — f(H)] forall neIN.
teE,

The triangle inequality in L2(Q, 9, u) implies |If, — fll2 < lIfull. + lIfl < 2L for all n € N. Using the
Cauchy-Schwarz inequality and the uniform integrability of the set of functions Q 3 t — [|[Ax|? € R,
|lx|]] < 1, combined with the inequality p(Q \ Es) < 6, we obtain

sup f O = FO1- KA I du®) < sup \/ f Ifn(t)—f(f)lzdu(t)'\/ f KA, )P due)
QO\E; O\E; O\Es

llxll=llyli=1 [lxlI=llyll=1

<fu = fllo sup \/ fQ . [(Awx, y)I? du(t) (26)

[lxlI=llyll=1

< 2L sup \/f lAx|Pdu(t) < 2L+Ve forall neN.
Q\E

[IxlI=1
Now, from (24), (25) and (26), we get
HL fa®Ardu(t) — Lf(t)At dy(t)l' < VM - u(Q)sup |fu(t) — f(H)] +2L Ve forall nelN.
teEs

Using the equality lim sup |f,(t) — f(f)| = 0 and u(Q) < +co we have
n—o0 t€E5

<2L+e forall &> 0.

limsupHLfn(t)Atdy(t)—Lf(t)Atdy(t)

This implies the equality (23). O

Note that (A;)ieq € Lé(Q, U, B(H)) was not assumed in the previous theorem.

The condition of uniform integrability of the set of functions Q 3 t — ||[Ax|* € R, ||x|| < 1, is trivially
satisfied if (Q) < +oco and sup, q, [1A| < +co.

We can easy see that the set {f, : n € N} from the Theorem 2.12 is uniformly integrable. Indeed, from
1(Q) < +coand f, € LAH(Q, M, u) we have f, € LY(Q, M, u) for all n € IN. If we assume that the set {f, : n € IN}
is not uniformly integrable, then we can find €y > 0 and a sequence (E,,)qen in 90, such that lim,, . y(E;) = 0

and for all n € IN there is m(n) € IN such that | fE Fnm(£) dy(t)' > &9. Then, we have

& <

fE Futn (8 du ()| < \/ fE o OF dys@) - VRE) < suplfll+ V(B forall n €.

Now, we obtain the contradiction from sup, . Il full2 < o0 and lim,, 0 u(E,) = 0.
In the next example, we will show that the condition p(€2) < +oc0 in the Theorem 2.12 cannot be omitted.
For the sequence (f,;)nen We will choose the one that is uniformly integrable.
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Example 2.13. Let QO = [1,+00). We define A : [1,+00) — B(H) by Ai(f) = (f,eypey forall f € Handt €
[1, +00), where (en)nen is an orthonormal basis in a Hilbert space H. For n € IN we have Xy n+1)(0)Ai(f) = (f, enden,
ift €[n,n+1)and xpu)()A(f) = 0if t & [n,n + 1). Consequently,
f Xy (DAL(f), ) dm(t) = f Kf, eyl dm(t) = [(f,en)* forall feH. (27)
[1,+00) [n,n+1)

Now, we have (X[nn+1)(F)At)te[1,+00) € Lé([l, +00), m, B(H)). By Bessel equality we obtain
+00 +oo
[ naieane =Y [ jaiEane =Y ke <IfF forat f e 28)
[1,+00) n=1 Y Inn+l) =1
Furthermore, for all Lebesgue-measurable sets E C [1, +00), m(E) < +oo and all f € H, ||f|| < 1 we have
+00 +00
f AP dm(t) = Y KF,enPm(ENrn+1) <P Y mENrn+1) = IfIF - m(E) < mE).
E n=1 n=1
This means that the set of functions [1,+c0) 3 t — |A:fI%, |IfIl < 1, is uniformly integrable. Using (27) we get

for all n € IN. This shows that (23) does not hold. Using (27) we have (A)ie[1,+c0) € Llc([l, +00), m, B(H)) and
fu vooy Ardm(t) = L. From (28) also follows (A;A)ept,voo) € LE([1, +00), 1, B(H)) and f[l oy AiArdm) =1 A

= sup X sy (DAL, frdm(t) = sup [(f,en)* = lleal* = 1
=1 V[1,+00) lIfll=1

f Xinns1) (DA dm(t)
[1,+00)

The following theorem is a consequence of the previous statement for the convergence of the sequence
of Gelfand integrals ( fE Ay dy(t))nE]N in the norm of the space B(H) to the operator fEAf du(t), where the
sequence of sets (E;)yen in M converges to a set E € M.

Corollary 2.14. Let (Q) < +co and let the set of functions Q > t v ||Awx|?, |IxI| < 1, is uniformly integrable.
If (Ep)nen is the sequence in I such that there exists the set limit E = lim E,, then the operators fE Ardu(t) and
n—00 n

fE Apdu(t) exist in B(H) and we have the equality

lim Hf Atdy(t)—fAtdy(t)
n—oo E, E

Proof. From E = lim E,, we have E € M. Denote f, = xg, for alln € N and f = xg. For all n € N we have
Ifull2 = w(Ey) < p(QQ) < 400, i.e. sup, o Il full2 < +00 and gl_I)l;lofn(t) = 31_1)?0 XE,(t) = xe(t) = f(t) for y-almost all

t € Q. Also, we have f € L2(Q, I, w). All assumptions of the Theorem 2.12 are satisfied and this implies
(xe, (DA, XE(DAeq € LE(Q, t, B(H)) and from (23) we directly get (29). O

=0. (29)

Similar problems were discussed in [12, Lemma 2.1].

3. Integration of weakly* measurable functions A : Q —» B (@+°° ?l,,)

n=1

The function Q 5 t @:ﬁ A;”) €B (@:z ‘Hn) is weakly* measurable if and only if the function

Q>5t Ag”) € B(H,) is weakly* measurable for all n € IN and this follows directly from the definition (1)

of the inner product in the Hilbert space EBZZ H,.
The following theorem is a reformulation of the necessary and sufficient conditions for the function

Qst-> P A" eB (EB:: 7{”) to belongs to the space L} (Q, 1B (@ZZ Wn)) In this theorem, we
also consider the relationship between the operators fE @;: Agn)d u(t) and EB;: A AE”)dy(t) for E € M, if
| By AP dp(t) exists in B (@;: 7'{n).
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Theorem 3.1. Let (7'{ IneN be the sequence of Hilbert spaces and (Ag”))tEQ be the family in B(H,,) for all n € IN.
The operator f A(") du(t) exists in B (EB n) if and only if we have both of the following conditions:

(a) sup ”A§ )” < +oof0r y-almost all t € Q).

(b) Thefunctzon Qote Y9 <A(”)f,,,fn> € C belongs to the space L'(Q, M, ) for all (fy)uew € €D, 3 Ho.

Furthermore, under the conditions (a) and (b) we have

f AP dut)
E

the operator @n 1 fE A(")dy(t) exists in B (EB 7—(,1) and we have the equality

f P A dut) = P f AP du(r). (31)
E n=1 n=1 E

Proof. Condition (a) is equivalent to the existence of the operator EB A(") inB (@ H, ) for p-almost all
t € Q. By the definition (1) of the inner product in the Hilbert space @ H,, the condition (b) is equivalent
with the fact that the function Q > t — <(ED A ")) (fu)nen, (fn) ,,E]N> Z « < ")fn,fn> € C belongs to the
space L1(Q, M, u) for all vectors (f,)nen € @ H,. Thus, the conditions (a) and (b) are equivalent with
(D5 4") 0 € L (2 1 B(D,5 7))

From the condition (b) it follows that the operator fQAE") du(t) exists in B(H,,) for all n € N, because
we can take f, € H, arbitrary and f, = 0 for all k € IN'\ {1} in (b), and obtain that the scalar function

Qs5t <A§”)fn,fn> € C belongs to L'(Q, M, p) for all £, € H,,.
Now we will prove (30) under the conditions (a) and (b). Let E € Mt and k € N arbitrary. Using the
equalities (4) and (1) we have

‘féAgn)d(u(t) = sup <[IéA§n)d#(t)] (fn)ne]N/(gn)ne]N>
E o E =1

ICf)nenli=ll(gn)nenll=1

= sup L<[@ Ain)d#(t)] (fn)ne]N/ (gn)nE]N>

[1(f)nenlI=N1(gn ) nenll=1 n=1
(k)
'f xk,yk dy(t)‘ KfA du( t)xk,yk>

+00
= sup fZ A( )fn,gn dy(t
n=1
= 'UEA?” dy(t)H.

sup
nelN

' <+co forall EeWM, (30)

||(fn)nEN”:”(gn)n6N” 1

for all unit vectors xi, yx € Hy. Thus, we have

H f B AV auw)|| > < f A§k>du<t>xk,yk>
E .31 E

This implies

f AY dy(t)” <
E

We proved the inequality (30). Therefore, the operator @ =1 fE A(”)dy(t) exists in B (@ w1 Ha )
Now, we will show the equality (31). Again, let k € IN be a fixed number. We define the projection
map Ty : B Hy — Hi with Te(xn)nen) = x¢ for all (xp)uen € -3 Hy. From [[Te((xu)uen)I? = Ilxel® <

sup
[l 1=llyell=1

sup <+oo forall EeM.

keIN

+00
APd(t)
1
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T all? = ll@)nenl? for all (xu)uen € €D, H, follows Ty € B (€D, Hy, Hi). Based on the second and
th1rd property in (6), we have equalities

+00 +00
Ty fE P AY duw = fE T P AP dutr) = fE AOT, du(p) = fE AD du)T, Tk@ f A du(t).
n=1 n=1

From the above equalities we have that the vector on the k-th position in ( fE EB A(” du( t)) (fn)men is equal

to the vector on the k-th position in the sequence ( el fE AM dy(t)) (fin)men for all (fn)men € EB+°° H,.
Since k € IN was arbitrary, we obtain the equality (31). O

Under the conditions (a) and (b) of the Theorem 3.1, the equality (31) implies

+o00
Hf DA dutr| -
E =1

It is possible that the operator €, [ Al A" du() exists in B (@n L H, ) but [[ P2 A" du(t) does not
exist. This is shown in the next example.

A du(t)|| =
E

A" dy(t)“ forall EeM. (32)
nelN

Example 3.2. Let (H,)uen be a sequence of Hilbert spaces, Q = (—1,1) and ¢, = —nx-1,0) + nx ) for n € IN. We
define A(") = @u(t)], forall t € (-1,1) and n € IN. Due to (7) we have f 11) A(”) dm(t) = f(_l " @n(t)dm(t)l, =

0 € B(H,) for all n € N. Thus, we get f A A" dm(t) = 0 € 3(@+m 7—() On the other hand, for

€ (=1,0) we have sup, || (Ol = +oo ie. the operator @ A(") does not exist. Thus,
f n D% AY dm(t) does not exist. A

Let k € IN be fixed. The next example motivates us to analyse the relation between measures on the
o-algebra M taking values in B(H) and B (@m H, )

Example 3.3. Let Q = (0,1] and let 9t be Lebesgue o-algebra on (0,1] and f, = nX(0,1] forall n € N. Then
f(m fu®)dm(t) = 1 and due to (7) we have [ f,(t)], dm(t) = ( i fu(®) dm(t))ln forall n € N and E € M. For
n € N we define v, : M — B(H,) with v,(E) = [, fu(OL,dm(t) = ([, fu)) dm(®)) L, = n-m(En(o, %])In for
all E € M. The function M 3> E +— n-m (E N (O, %]) € [0,1] is positive, finite measure on M, thus the function
vy is a B(H,)-valued measure on M for all n € N. We have (EB:“; fa(®) )te(O . eL! ((0 1],m, B (@m H, ))

Indeed, sup ||f,(H) L, = sup nxo,1)(t) < +oo forall t € (0,1]. This implies that the operator @n 1 [n(OI, exists in
nelN

(@nzl ‘Hn)for allt e (0, 1]. Also, for (x;)uen € @n:l H.,, we have

n I n)neN, \An)ne d n 2 " d — = n 2 oo,
Ll] <[@f () ]x) N, (%) ]N> m(t) < lex I fo ]If(t)l m(t) ;le 2 <+

Thus, we can apply the Theorem 3.1 and define the function v : M — B (@;: 7'{n) by

o(E) = fE @ Fu(OL, dm(t) = @( fE 20 dm(t)) I, = g?v,,(li) forall EeM.

The functionv : M — B (@Z: Hn) is weakly countable additive vector measure on I, but this function is not
B (@Z: ﬂn)—valued measure. To see that, denote E = (ﬁ, %] € M, k € N. Then we have | ;] Ex = (0,1] and
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v((0,1]) = @Z: I,,. For fixed number N € IN we have the following calculations:

N +00 +00 400
v((o,ll)—v[|];|£k] = @1—@( fu g_lgkf”(”dm(t))l” = G?(l—( fu kN_lEkfna)dm(t)))zn

>

N+1°

=sup
nelN

1- f RACLLC

N+17

1- f( ACLEC

N+17
It follows that the series Y2, v(E,) does not converge to v (I_I,J;f1 Ek) in the norm of the space B (@ZZ 7—(,,). A

Note that in the Example 3.3 the sequence (f,;)nen Was not uniformly integrable.
In the next theorem, we assume H,, = H for all n € IN. For a given sequence (f,),en Of M-measurable

functions and a family (A;)ieq in B(H) such that (EB:: fn(t)At)tEQ € LL(Q, u, B(£*(H))) we define the
functions v, : M — B(H) and v : M — B(*(H)) with the expressions v,(E) = fE fa®Ardu(t) and
v(E) = fE EB;: fa(HAs du(t), respectively. We will investigate sufficient conditions for the function v to be

B(t?(H))-valued measure on M. If the function v is B(£?(H))-valued measure on M, then the function
v, is well-defined B(H)-valued measure on M for all n € IN. Indeed, the family (f,(t)As)ieq belongs to
Llc(Q, u, B(H)). According to the Theorem 3.1 we have the equalities

o(E) = fE EE Fu(DA du(t) = EE fE Fu(DA du(t) = g’Evn(E) forall EeM. (33)

Due to (33), for the sequence (E;)ueN, Ex N Eyy = 0, n # m in 9t we have

+00 N +00 +00 +00 +00
lim ||v, U_I Ek]—vn [I_I Ek] = lim vn[ I_I Ek] < lim sup vn[ I_I Ek] = lim @vn( I_I EkJ
N=eo k=1 k=1 N=eo k=N+1 % neN k=N+1 N=o D
+00 +00 N
S T A A
k=N+1 k=1 k=1

Thus, the function v,, is B(H)-valued measure for all n € IN.

Theorem 3.4. Let u(Q) < +oo and let (f,)nen be a sequence of M-measurable functions and let (A)ieq be a family

in B(H). If the set of functions Q 3 t = ||Alf,(t) € C, n € N, is uniformly integrable and (@:: fn(t)At)teQ €

LE(Q, u, B(t*(H))), then the function v : M — B(E*(H)) in (33) is well-defined B(t*(H))-valued measure on IN.
Proof. From (€D, ] fn(t)At)tEQ € LL(Q, i, B(E?(H))) it follows that the integral [\ f,(t)A; du(t) exists in B(H)

for every n € N and E € M. Let E € I be arbitrary and let (E,).en be a sequence in 9t with mutually

disjoint members and E = | |;] E,. We can apply the equality (32) and obtain

" N AN +o00
v (II;| Ek] - v[l;l Ek] = ‘ Lﬂ? fa@®Ardu(t) - LI‘E’_] . g:? fa®Asdu(t)

(34)

fm éfn(t)At du(t)

i=N+1 Ex n=1

f FuOAdut)
UZ:ONH Ex

forall N € IN. From pu(Q) < +co0 we have the equality limy—,c 1 (U;ﬁ?\, 1 Ek) = 0. The assumption of uniform
integrability of the set of functions Q 5 t — ||A]| - f,(f) € C, n € N implies the uniform integrability of the
set of functions Q 3 t — ||A]| - |[fx(t)] € R, n € IN. Thus, the last supremum in (34) can be small enough if
N — oo. This implies that the function v is a B(£*(H))-valued measure. []

B[ roadu
n=1 I—II:S\IH Ex

< sup f O] 1A duct)
uljﬁ\lﬂ Ex

nelN

=sup
nelN
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In the next theorem we consider sufficient conditions for the compactness of the Gelfand integrals of a
weakly* integrable function Q) 5 ¢ - EBn 1 fa(DA; € B(*(H)), where (f,)nen is a sequence of M-measurable
functions with some additional properties.

First we need [3, Theorem 2.2], which is given without proof in this paper. For the comfort of reading,
we give our proof, which is based on the fact that an operator on the Hilbert space is compact if and only if
it maps weakly convergent sequences into strongly convergent sequences.

Lemma 3.5. Let (H,)qen be the sequence of Hilbert spaces, A, € B(H,) for all n € N and sup, . |A4ll < +oo.
Then, we have @, ", A, € Cu (@+m H, ) if and only if Ay € Coo(Hy) for all n € N and lim [|A,]| = 0

Proof. (=:) Fix k € IN. The sequence (x ( « ))neN in Hy converges weakly to 0 iff the sequence (yﬁ,k))neN, where
yﬁ,k) (O 0,...,0,x%,0,. )(at the k-th position is x;; ©y, converges weakly to (0 0,...,0,...) € @:Z ‘H,,. From

@ A, € Co (@n L Ho )we get lim, e HAkx(k)” = lim, e H @m 1Am) Y, || = 0. Therefore, Ay € Coo(Hy).

Now, we will prove lim,« [|Ax|| = 0. Assume that there exists ¢ > 0 and a subsequence (1y)ren such
that [|A,, || > 2¢ for all k € IN. There exists x,, € H,,, |lxn |l = 1, such that ||[A, x|l > € for all k € N. If
we form the vectors v® = (0,0,...,0, Xn,,0,...) € @+m H, (at the ni-th position is x,,,) we obtain that the

sequence (v(k)) o D B, = H, converges weakly to 0 € €5~ H,. Indeed, if y = (yn)new € D, -5 Hy, then

lim o llyl] = 0 dute to the X, lyalP < +oo. Thus, we have |(v<’< 9| = K 7)) < ol Tl = Tl | = 0
as k — co. By the assumption €, A, € Cu (@m H, ) we have that limy_, “ D An) y(k)” =0ie.
hm [[Ay, Xn |l = 0. Contradiction with ||Ankxnk|| e>0forall ke N.

(<) Let (a(”)) . De the sequence in D
0 and let N € N be fixed. There exists M > 0 such that ”a(”)” < M for all n € IN. Then, we have

“( ;:; Ak) a(”)“ ):k 1 ||Aka(")“ + Y ||Aka]((")||2 ST ||Aka]((")||2 + M? supy st 1Al The sequence
(a(")) in Hj converges weakly to 0 for all k € N. From Ay € Cu(Hy) for k € {1,...,N} we get
k JneN g g

n — (,m
H.,., where a'" = (ak )kE]N, such that converges weakly to

2 o 2

limy e Ty [|Aka” || = 0. Thus, limsupn_m”(@;;l Ak)a(”)” < M?suppns IAP for all N € IN.
- 2

If N > oo we get limsup, ., [(D15 4d)a®|| < M limy .o supy ey 4P = MPlimsup,_ IAKP =

M? limye [JAKI? = 0. So, we proved @ A, € Cy (@WJ H, ) O

Theorem 3.6. Let u(Q) < +oo and (fu)nen be a sequence of M-measurable functions and lim f,(t) = 0 for y-almost

allt € Q. Let g : QO — C be M-measurable function such that | f,,(t)| < g(t) for alln € IN and p-almost all t € Q. If the
family (Ap)ieq is weakly* measurable and the function Q > t — ||Al|-g(t) € C belongs to LY(Q, M, p) and A; € Coo(H)
for w-almost all t € Q, then (P, fu(DAL),_, € LE(Q, p, BEH)) and [, D)% fu(HA du(t) € Coo(P(H)).

Proof. From the assumption of the theorem, for all E € It we have
sup

f Z £ i) du)
Xn)nE]N” ”(yn)nE]NH 1

< f Zg(t Al Iyl duct)

[[EHFEN ” “(yn Jnenll=1

+00 o
< f GE J A, 2 JZnynnz Au(t) < f g - AN du(b)
”(xn)nE]N” ”(yn)nE]NH 1 n=1 n=1

P fioaaum|| =
E n=1
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The above calculations implies (€% fu(HA:),_, € LL(Q, i, B(A(H))). Furthermore, we have f,(A; €
Co(H) for all n € N and lim || f,,()) Al = Lim |£,(#)] - [JAill = O for y-almost all ¢ € Q. By Lemma 3.5 we get
n—o00 n— o0

@:: Fu(HA; € Coo(3(H)) for p-almost all t € Q. The mapping M > E Lg(t) |IAdl du(t) € [0, +00) is a
positive measure on I, absolutely continuous with respect to the measure y. Thus, the conditions of [13,
Theorem 2.3, (a)] are satisfied and we obtain fQ EB;: Fu(HArdu(t) € Coo(C3(H)). O
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