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Abstract. In this work, we consider weakly* measurable operator-valued functions Ω ∋ t 7→ At ∈ B (H)
and Ω ∋ t 7→

⊕+∞

n=1 A(n)
t ∈ B

(⊕+∞

n=1Hn

)
. Also, we will consider such functions as the elements of the

normed space L1
G(Ω, µ,B(H)) and we show that this space is not complete in general with respect to the

norm ∥(At)t∈Ω∥G = sup
∥ f ∥=∥1∥=1

∫
Ω
|
〈
A f , 1

〉
| dµ(t). Extensions of previous results are given and new problems

related to this topic are discussed. For the families ( fn(t)At)t∈Ω and ( f (t)At)t∈Ω in B(H), we have proved

lim
n→∞

∥∥∥∥∥∫
Ω

fn(t)At dµ(t) −
∫
Ω

f (t)At dµ(t)
∥∥∥∥∥ = 0,

under some additional conditions. Furthermore, necessary and sufficient conditions are discussed for
the mapping Ω ∋ t 7→

⊕+∞

n=1 A(n)
t ∈ B

(⊕+∞

n=1Hn

)
to belongs to the space L1

G

(
Ω, µ,B

(⊕+∞

n=1Hn

))
. If these

conditions are satisfied we proved that the operator
⊕+∞

n=1

∫
Ω

A(n)
t dµ(t) exists in B

(⊕+∞

n=1Hn

)
and we have∫

Ω

+∞⊕
n=1

A(n)
t dµ(t) =

+∞⊕
n=1

∫
Ω

A(n)
t dµ(t).

We also consider the vector measures v : M → B(H) and v : M → B
(⊕+∞

n=1Hn

)
associated to the families

from the spaces L1
G(Ω, µ,B(H)) and L1

G

(
Ω, µ,B

(⊕+∞

n=1Hn

))
respectively. New results related to operator-

valued measures are obtained. We also give a formula that connects the weak* integral and the spectral
integral, when the family of operators (At)t∈Ω arises from the same spectral measure. Throughout the
paper, specific examples of operator-valued functions are given to illustrate the general results, and in these
examples we can see how weak* integrals

∫
Ω

At dµ(t) can be computed in concrete cases.

1. Introduction and the normed space L1
G

(Ω, µ,B(H ))

Let (Ω,M, µ) be a measurable space. To avoid trivialities, we assume that there exists A ∈ M such that
0 < µ(A) < +∞. When we use that the measure µ is σ-finite or finite, we emphasize this. The Lebesgue
measure onR is denoted by m. LetH be a Hilbert space and we denote the algebra of all linear and bounded
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operators onH with B(H). If K is another Hilbert space, then the space of all linear and bounded operators
fromH to K is denoted by B(H ,K). The ideal of operators generated by the symmetric norming function
(s.n.) Φ is denoted with CΦ(H), for separable H . Specially, we have the ideal of nuclear operators C1(H)
and the ideal of compact operators C∞(H). Schatten-von Neumann ideals generated by s.n. functions ℓp,
where p ∈ [1,+∞), are denoted by Cp(H). The norm on Cp(H) is denoted by ∥ · ∥p or ℓp. If A ∈ Cp(H)
is a positive operator and p ∈ [1,+∞), we have ∥Ap

∥1 = ∥A∥
p
p. If A ∈ B(H), then |A| =

√
A∗A expresses

the absolute value of the operator A and we have the equality ∥A∥ = ∥ |A| ∥. Furthermore, A ∈ CΦ(H) iff
A∗ ∈ CΦ(H) iff |A| ∈ CΦ(H) iff |A∗| ∈ CΦ(H) and in this case equalities ∥A∥Φ = ∥A∗∥Φ = ∥ |A| ∥Φ = ∥ |A∗| ∥Φ hold.
If A,B ∈ B(H), 0 ⩽ A ⩽ B, B ∈ CΦ(H) then we have A ∈ CΦ(H) and ∥A∥Φ ⩽ ∥B∥Φ. For more information on
the theory of ideals of compact operators, we refer the reader to [6] and [17].

If (Hn)n∈N is a sequence of Hilbert spaces, then the set

+∞⊕
n=1

Hn =

 f = ( fn)n∈N :N→
+∞∏
n=1

Hn

∣∣∣∣∣∣ fn ∈ Hn for all n ∈N,
+∞∑
n=1

∥ fn∥2 < +∞


with the inner product ⟨·, ·⟩ :

⊕+∞

n=1Hn ×
⊕+∞

n=1Hn → C defined by the expression

⟨( fn)n∈N, (1n)n∈N⟩ =

+∞∑
n=1

⟨ fn, 1n⟩ for all ( fn)n∈N, (1n)n∈N ∈

+∞⊕
n=1

Hn (1)

is a Hilbert space. If we haveHn = H for all n ∈N, then we get the Hilbert space
⊕+∞

n=1Hn = ℓ2(H).
Let An ∈ B(Hn) for all n ∈ N. If we have supn∈N ∥An∥ < +∞, then the operator

⊕+∞

n=1 An :
⊕+∞

n=1Hn →⊕+∞

n=1Hn defined by
(⊕+∞

n=1 An

)
(( fn)n∈N) = (An fn)n∈N for all ( fn)n∈N ∈

⊕+∞

n=1Hn is linear and bounded and

we have the equality
∥∥∥⊕+∞

n=1 An

∥∥∥ = supn∈N ∥An∥. If supn∈N ∥An∥ = +∞, then the operator A ∈ B
(⊕+∞

n=1Hn

)
such that A|Hn = An for all n ∈ N does not exist. Properties of direct sums of operators on a Hilbert space
were considered in [1], [3] and [9]. We will deal with, among other things, weakly* measurable mappings
from measurable space Ω to the Hilbert space

⊕+∞

n=1Hn. With In we denote the identity operator onHn.
With tr : C1(H)→ Cwe denote the trace functional. This is a linear and continuous functional on C1(H)

and we have the equality ∥tr∥ = 1. The mapping Ω ∋ t 7→ At ∈ B(H) is weakly* measurable if the scalar
function Ω ∋ t 7→ tr(AtY) ∈ C is M-measurable for all Y ∈ C1(H). Dual space of C1(H) is B(H) (see [6,
Theorem 12.1]). If the functionΩ ∋ t 7→ tr(AtY) ∈ C belongs to L1(Ω,M, µ) for all Y ∈ C1(H), by [2, Theorem
11.52], there exists a unique element in B(H) which we denote by

∫
Ω

At dµ(t), such that

tr
(∫
Ω

At dµ(t)Y
)
=

∫
Ω

tr(AtY) dµ(t) for all Y ∈ C1(H). (2)

In this case, we say that the family (At)t∈Ω is weakly* integrable and the operator
∫
Ω

At dµ(t) ∈ B(H) is the
weak* integral or Gelfand integral of the family (At)t∈Ω. We will also say that the function A : Ω → B(H) is
weakly* integrable, where the letter A is assigned to the weakly* integrable family (At)t∈Ω. If we choose a
one-dimensional operator Y in (2), we obtain〈∫

Ω

At dµ(t) f , 1
〉
=

∫
Ω

⟨At f , 1⟩ dµ(t) for all vectors f , 1 ∈ H . (3)

The relation (3) is important because it gives the sesquilinear form of the operator
∫
Ω

At dµ(t) ∈ B(H) and
will be used frequently in the following text. If the function Ω ∋ t 7→ ⟨At f , 1⟩ ∈ C is M-measurable for all
f , 1 ∈ H , then the function A : Ω→ B(H) is weakly* measurable. Also, if the functionΩ ∋ t 7→ ⟨At f , 1⟩ ∈ C
belongs to the space L1(Ω,M, µ) for all f , 1 ∈ H then the function A : Ω→ B(H) is weakly* integrable and
we have (2) (see [13, Lemma 1.1]). For weakly* integrable family (At)t∈Ω and all M ∋ E ⊆ Ω we have the
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equality〈∫
E

At dµ(t) f , 1
〉
=

∫
E
⟨At f , 1⟩ dµ(t) for all f , 1 ∈ H . (4)

Thus, norm of the operator
∫

E At dµ(t) is given by
∥∥∥∫

E At dµ(t)
∥∥∥ = sup

∥ f ∥=∥1∥=1

∣∣∣∫
E⟨At f , 1⟩ dµ(t)

∣∣∣. Using Closed
Graph argument, from the proof of [13, Lemma 1.1], we have

∥(At)t∈Ω∥G = sup
∥ f ∥=∥1∥=1

∫
Ω

|⟨At f , 1⟩| dµ(t) < +∞. (5)

Note that sup
∥ f ∥=∥1∥=1

∣∣∣∫
Ω
⟨At f , 1⟩ dµ(t)

∣∣∣ = sup
∥ f ∥=∥1∥=1

∫
Ω
|⟨At f , 1⟩| dµ(t) does not have to hold in a general case.

A simple example is given by Ω = {t1, t2}, t1 , t2 and 0 , At1 = −At2 ∈ B(H).
If K is a Hilbert space, A : Ω→ B(H) is a weakly* integrable function and B ∈ B(H ,K), C ∈ B(K,H),

then the families (A∗t)t∈Ω, (BAt)t∈Ω and (AtC)t∈Ω are weakly* integrable and we have(∫
E

At dµ(t)
)∗
=

∫
E

A∗t dµ(t), B
∫

E
At dµ(t) =

∫
E

BAt dµ(t),
∫

E
At dµ(t)C =

∫
E

AtC dµ(t) (6)

for all sets E ∈M and this can be easily verified by considering their quadratic forms and applying (4).
If a family of the operators (At)t∈Ω is weakly* integrable, then the function vA : M → B(H) defined

by vA(E) =
∫

E At dµ(t), E ∈ M, is a weakly countable additive vector measure on the σ-algebra M. In fact, the
functionM ∋ E 7→

∫
E⟨At f , 1⟩ dµ(t) ∈ C is a complex measure on the σ-algebraM. So, if we have the sequence

(En)n∈N of mutually disjoint sets inM, then〈
vA

+∞⊔
n=1

En

 f , 1
〉
=

∫
⊔+∞

n=1 En

⟨At f , 1⟩ dµ(t) =
+∞∑
n=1

∫
En

⟨At f , 1⟩ dµ(t) =
〈 +∞∑

n=1

vA(En)

 f , 1
〉

for all f , 1 ∈ H .

If we have the equality vA

(⊔+∞
n=1 En

)
=

∑+∞
n=1 vA(En) in the norm of B(H) (or in the norm of an ideal CΦ(H))

for all sequences (En)n∈N with mutually disjoint members inM, then we say that the function vA is a B(H)-
valued (or CΦ(H)-valued) measure. For related questions, see [13, Theorem 1.3]. In this paper we give a
generalization of the mentioned theorem.

To illustrate the introduced concepts, the simplest weakly* integrable family is ( f (t)A)t∈Ω for a given
scalar function f ∈ L1(Ω,M, µ) and A ∈ B(H). It is easy to see that∫

E
f (t)A dµ(t) =

(∫
E

f (t) dµ(t)
)

A for all E ∈M. (7)

We will often use the equality (7) in the following text.
If the family (At)t∈Ω of operators is weakly* measurable, then the function Ω ∋ t 7→ ∥At f ∥ ∈ R is M-

measurable. This is a direct consequence of the Bessel equality ∥At f ∥ =
√∑+∞

n=1 |⟨At f , en⟩|
2, which is satisfied

for all vectors f ∈ H . Moreover, the function Ω ∋ t 7→ ∥At∥ ∈ R is M-measurable because we have the
equality ∥At∥ = sup0, f∈D

∥At f ∥
∥ f ∥ , whereD ⊆ H is a countable and dense set in the separable Hilbert spaceH .

For weakly* integrable family (At)t∈Ω we have the inequality
∥∥∥∫

E At dµ(t)
∥∥∥ ⩽ ∫

E ∥At∥ dµ(t) for all E ∈ M.
Note that every unitary invariant norm on an ideal of compact operators is a symmetrical norm and vice
versa. If the idealCΦ(H) is separable and At ∈ CΦ(H) forµ-almost all t ∈ Ω, then the mapΩ ∋ t 7→ ∥At∥Φ ∈ R

is M-measurable by [7, Theorem A.4]. If we also have
∫
Ω
∥At∥Φ dµ(t) < +∞, then

∫
Ω

At dµ(t) ∈ CΦ(H) and
the inequality

∥∥∥∫
Ω

At dµ(t)
∥∥∥
Φ
⩽

∫
Ω
∥At∥Φ dµ(t) follows by [7, Theorem A.5].
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The family (At)t∈Ω is said to be square integrable if
∫
Ω
∥At f ∥2 dµ(t) < +∞ for all vectors f ∈ H . In this case,

the Gelfand integral
∫
Ω

A∗tAt dµ(t) ∈ B(H) exists and using (3) and
∫
Ω

A∗tAt dµ(t) ⩾ 0 we have

sup
∥ f ∥=1

∫
Ω

∥At f ∥2 dµ(t) =
∥∥∥∥∥∫
Ω

A∗tAt dµ(t)
∥∥∥∥∥ < +∞. (8)

For more details on the integration of weakly* measurable function with values in B(H) see [11], [13], [14].
Let X be a Banach space, where the dual space of X is denoted by X∗ and let P1(Ω,M, µ,X) denote

the set of functions (equivalence classes) f : Ω → X such that: the scalar function Ω ∋ t 7→ x∗( f (t)) ∈ C
belongs to L1(Ω,M, µ) for all x∗ ∈ X∗ and for all E ∈ M there is the vector xE =

∫
E f (t) dµ(t) ∈ X such that

x∗
(∫

E f (t) dµ(t)
)
=

∫
E x∗( f (t)) dµ(t) for all x∗ ∈ X∗. The element xE ∈ X is called Pettis integral of the function

f : Ω→ X on E ∈M. The introduced vector space P1(Ω,M, µ,X) of Pettis-integrable functions is normed by

∥ f ∥P = sup
x∗∈X∗
∥x∗∥=1

∫
Ω

|x∗( f (t))| dµ(t) for all f ∈ P1(Ω,M, µ,X). (9)

From the Closed Graph argument it follows that the expression (9) is finite for all f ∈ P1(Ω,M, µ,X). If X is
reflexive and ∥ f ∥P < +∞ then there exists xE ∈ X such that x∗(xE) =

∫
E x∗( f (t)) dµ(t) for all x∗ ∈ X∗.

The normed space P1(Ω,M, µ,X) is not Banach in the general case (see the Theorem 1.2). For more
information on the theory of Pettis integration see [4], [15].

For the general definition of the Gelfand integral of an arbitrary weakly* measurable function f : Ω 7→ X∗,
see [2, Section 11.9] and [4, Chapter 2]. The monograph [4] is a fundamental literature for the general theory
of integration in Banach space. For a quick introduction to the theory of integration in Banach spaces, see [2,
Sections 11.8, 11.9, 11.10], where the relationship between Bochner, Pettis, Gelfand and Danford integration
types is explained in a concise form.

In the following we will introduce the normed space L1
G(Ω,M, µ,B(H)) which consists of (classes of)

weakly* integrable functions (families) A : Ω→ B(H).

Definition 1.1. Two weakly∗ measurable families (At)t∈Ω and (Bt)t∈Ω in B(H) are µ-equivalent if for every f ∈ H
the functions Ω ∋ t 7→ ⟨At f , f ⟩ ∈ C and Ω ∋ t 7→ ⟨Bt f , f ⟩ ∈ C are equal for µ-almost all t ∈ Ω. Vector space of all
weakly* integrable families (At)t∈Ω in B(H) (or functions) is denoted by L1

G(Ω,M, µ,B(H)), where two such families
(functions) are identified if they are µ-equivalent.

Closely related to the above definition is [13, Lemma 1.1]. For µ-equivalent families (At)t∈Ω and (Bt)t∈Ω
we have At = Bt for µ-almost all t ∈ Ω if H is separable. In this case, let X be the subspace in B(H).
With L1

G(Ω, µ,X) we will denote the vector subspace in L1
G(Ω, µ,B(H)) consisting of elements A = (At)t∈Ω ∈

L1
G(Ω, µ,B(H)) such that At ∈ X for µ-almost all t ∈ Ω

The introduced vector space L1
G(Ω,M, µ,B(H)) is infinite-dimensional if dim(H) = +∞ and this space

can be naturaly normed by ∥ · ∥G from (5). If it is understood what the σ-algebra is, we use the notation
P1(Ω, µ,X) and L1

G(Ω, µ,B(H)).

Theorem 1.2. ([10, Theorem 3]) Let X be a Banach space and dim(X) = +∞. P1([0, 1],B[0,1],m,X) is not Banach.

Lemma 1.3. LetH be Hilbert space, dim(H) = +∞, a ∈ H , ∥a∥ = 1 and

Xa =
{
A ∈ B(H) : Ax = 0 for all x ∈ {a}⊥

}
.

(a) The normed space Xa is closed in B(H) and Xa is isometrically-isomorphic toH .
(b) If F ∈ B(Xa,C) then there is a unique xF ∈ H such that F(A) = ⟨Aa, xF⟩ for all A ∈ Xa and we have the equality
∥F∥ = ∥xF∥. Also, for every x ∈ H the function Fx : Xa → C given by Fx(A) = ⟨Aa, x⟩ defines the bounded
linear functional on Xa and we have ∥Fx∥ = ∥x∥.

(c) The normed space L1
G(Ω, µ,Xa) is closed in L1

G(Ω, µ,B(H)) ifH is separable.
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Proof. (a) The set Xa is a vector subspace ofB(H). If the sequence (An)n∈N in Xa converges to some A ∈ B(H)
then for all x ∈ {a}⊥ we have 0 = lim

n→∞
Anx = Ax. Thus, A = 0 on {a}⊥. Define the mapping φ : Xa → H by

φa(A) = Aa for all A ∈ Xa. The mapping φa is linear, isometric and bijective between Xa andH . Indeed, we
have ∥A∥ = sup

∥x∥=1 ∥Ax∥ = sup
∥x∥=1 | ⟨x, a⟩ | · ∥Aa∥ = ∥a∥ · ∥Aa∥ = ∥Aa∥ = ∥φa(A)∥ for all A ∈ Xa.

(b) Let F ∈ B(Xa,C) and define G : H → C with G( f ) = F(φ−1
a ( f )) for all f ∈ H . Then, G ∈ B(H ,C).

Thus, there exists xF ∈ H such that G( f ) =
〈

f , xF
〉

for all f ∈ H . If we put f = Aa = φa(A) ∈ H
then we get ⟨Aa, xF⟩ = F(φ−1

a (φa(A))) = F(A) for all A ∈ Xa. If
〈
Aa, x′F

〉
=

〈
Aa, x′′F

〉
i.e.

〈
Aa, x′F − x′′F

〉
= 0

for all A ∈ Xa then for the operator Ax′F−x′′F (y) =
〈
y, a

〉
(x′F − x′′F ), y ∈ H , we have Ax′F−x′′F ∈ Xa and

0 =
〈
⟨a, a⟩ (x′F − x′′F ), x′F − x′′F

〉
= ∥a∥2 · ∥x′F − x′′F ∥

2 i.e. x′F = x′′F . To prove the rest of the part (b), for x ∈ H we
have |Fx(A)| ⩽ ∥Aa∥ · ∥x∥ = ∥A∥ · ∥x∥ for all A ∈ Xa. This implies ∥Fx∥ ⩽ ∥x∥. For the operator Ax(y) =

〈
y, a

〉
x,

y ∈ H , we have Ax ∈ Xa, ∥Ax∥ = ∥a∥ · ∥x∥ = ∥x∥ and ∥Fx∥ ⩾
|Fx(Ax)|
∥Ax∥

= ∥x∥
2

∥x∥ = ∥x∥. Thus, ∥Fx∥ = ∥x∥.

(c) Let
(
A(n)

)
n∈N

be the sequence in L1
G(Ω, µ,Xa) such that converges to an element A = (At)t∈Ω ∈ L1

G(Ω, µ,B(H))

and let 0 , b ∈ {a}⊥. For n ∈Nwe have A(n)
t b = 0 for µ-almost all t ∈ Ω . Thus, we get∥∥∥A(n)

− A
∥∥∥

G = sup
∥x∥=∥y∥=1

∫
Ω

∣∣∣∣〈A(n)
t x − Atx, y

〉∣∣∣∣ dµ(t) ⩾
1
∥b∥

sup
∥y∥=1

∫
Ω

∣∣∣〈Atb, y
〉∣∣∣ dµ(t) for all n ∈N.

The equality lim
n→∞

∥∥∥A(n)
− A

∥∥∥
G = 0 implies

∫
Ω

∣∣∣〈Atb, y
〉∣∣∣ dµ(t) = 0 for all y ∈ H . For fixed y ∈ H there is the set

Nb,y ∈M, µ(Nb,y) = 0 such that
∣∣∣〈Atb, y

〉∣∣∣ = 0 for all t ∈ Ω\Nb,y. Let Nb =
⋃

y∈B Nb,y, whereD is some countable
and dense set in the closed unit ball inH . Thus, we have Nb ∈M and µ(Nb) = 0. Now, for all t ∈ Ω \Nb we
get ∥Atb∥ = supy∈D

∣∣∣〈Atb, y
〉∣∣∣ = 0. Let N =

⋃
b∈D Nb. Again, N ∈M, µ(N) = 0 and ∥At∥ = supb∈D ∥Atb∥ = 0 for

all t ∈ Ω \N.. This means At = 0 on {a}⊥ for all t ∈ Ω \N i.e. A = (At)t∈Ω ∈ L1
G(Ω, µ,Xa).

In the next theorem we will prove that the normed space L1
G(Ω, µ,B(H)) does not have to be complete

in the general case.

Theorem 1.4. LetH be a separable Hilbert space and dim(H) = +∞. The normed space

L1
G([0, 1],B[0,1],m,B(H))

is not Banach.

Proof. Let e ∈ H be the unit vector and let Xe be the Banach space from the Lemma 1.3. If At ∈ Xe for
t ∈ [0, 1], then weak* measurability and weak measurability of the family (At)t∈[0,1] coincide by part (b) of
Lemma 1.3. For x ∈ H there is a unique ax ∈ {e}⊥ such that x = ⟨x, e⟩ e + ax. Thus, for weakly measurable
family (At)t∈[0,1] in Xe we have the next computation:

∥(At)t∈[0,1]∥G = sup
∥x∥=∥y∥=1

∫
[0,1]
|
〈
Atx, y

〉
| dm(t) = sup

∥x∥=∥y∥=1

∫
[0,1]
| ⟨x, e⟩

〈
Ate, y

〉
+

〈
Atax, y

〉
| dm(t)

= sup
∥x∥=1
| ⟨x, e⟩ | · sup

∥y∥=1

∫
[0,1]
|
〈
Ate, y

〉
| dm(t) = sup

F∈X∗e
∥F∥=1

∫
[0,1]
|F(At)| dm(t) = ∥(At)t∈[0,1]∥P.

(10)

The space Xe is reflexive by part (a) of Lemma 1.3. Thus, ∥(At)t∈[0,1]∥P < +∞ for weakly measurable family
(At)t∈[0,1] in Xe implies (At)t∈[0,1] ∈ P1([0, 1],B[0,1],m,Xe). Due to (10) we have the equality

P1([0, 1],B[0,1],m,Xe) = L1
G([0, 1],B[0,1],m,Xe).

According to the part (a) of Lemma 1.3, the normed space Xe is closed in B(H). Using dim(H) = +∞,
from the Theorem 1.2 we have that the normed space P1([0, 1],B[0,1],m,Xe) is not Banach. Therefore,
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there is a Cauchy sequence
(
A(n)

)
n∈N

in P1([0, 1],B[0,1],m,Xe) such that this sequence does not converge in

P1([0, 1],B[0,1],m,Xe). From (10) it follows that the sequence
(
A(n)

)
n∈N

is Cauchy in L1
G([0, 1],B[0,1],m,Xe). The

sequence
(
A(n)

)
n∈N

is therefore Cauchy in L1
G([0, 1],B[0,1],m,B(H)) and this sequence does not converge in

L1
G([0, 1],B[0,1],m,B(H)) by part (c) of Lemma 1.3. Thus, L1

G([0, 1],B[0,1],m,B(H)) is not a Banach space.

2. Integration of weakly* measurable functions A : Ω → B(H )

We start with a variant of Dominant Convergence Theorem for the separable ideals CΦ(H). The direct
generalization of [13, Lemma 1.2] (where positivity of the operators is assumed) and [17, Theorem 2.16.]
(where no positivity of the operators is assumed, but Φ = ℓp, p ∈ [1,+∞)) follows.

Theorem 2.1. Let CΦ(H) be separable ideal generated by s.n. function Φ and An, A ∈ B(H) for all n ∈ N and let
the sequence (An)n∈N converges weakly to A. If there is an operator B ∈ CΦ(H) such that |An|, |A∗n|, |A|, |A∗| ⩽ B for
all n ∈N then An, A ∈ CΦ(H) for all n ∈N and lim

n→∞
∥An − A∥Φ = 0.

The proof of this theorem is the same as the proof of [17, Theorem 2.16], with minor changes.
In the next theorem we consider measures on the σ-algebra M with values in a separable ideal CΦ(H)

generated by an s.n. function Φ. This theorem is a generalization of [13, Theorem 1.3], and we do not
assume positivity of the operators.

Theorem 2.2. Let (At)t∈Ω be weakly* measurable family in B(H) such that (|At|)t∈Ω, (|A∗t |)t∈Ω ∈ L1
G(Ω, µ,B(H)).

Then, we have (At)t∈Ω ∈ L1
G(Ω, µ,B(H)). Furthermore, let X ∈ CΦ(H) be an operator such that for all E ∈ M we

have
∣∣∣∫

E At dµ(t)
∣∣∣ ⩽ X and

∣∣∣∫
E A∗t dµ(t)

∣∣∣ ⩽ X, where CΦ(H) is the separable ideal. Then, we have:

(a) The function vA :M→ CΦ(H), given by

vA(E) =
∫

E
At dµ(t) for all E ∈M,

is a well-defined CΦ(H)-valued measure on the σ-algebraM.
(b) Let p ∈ [1,+∞) and

∫
Ω
|At| dµ(t) ∈ Cp(H). If∣∣∣∣∣∫

E
At dµ(t)

∣∣∣∣∣ ⩽ ∫
E
|At| dµ(t) for all E ∈M, (11)

then for all sequences (En)n∈N with mutually disjoint members inM we have
∑+∞

n=1 ∥vA(En)∥pp < +∞.

Proof. For all operators T ∈ B(H) we have Mixed Cauchy-Schwarz inequality (see [5, Chapter 3])

|⟨T f , 1⟩| ⩽
√
⟨|T| f , f ⟩ · ⟨|T∗|1, 1⟩ for all f , 1 ∈ H . (12)

Now, from assumed weak* measurability of the family (At)t∈Ω and from (12) we get∫
Ω

|⟨At f , f ⟩| dµ(t) ⩽
∫
Ω

√
⟨|At| f , f ⟩ · ⟨|A∗t | f , f ⟩ dµ(t) ⩽

1
2

∫
Ω

⟨|At| f , f ⟩ dµ(t) +
1
2

∫
Ω

⟨|A∗t | f , f ⟩ dµ(t) < +∞

for all f ∈ H . So, we have (At)t∈Ω ∈ L1
G(Ω, µ,B(H)).

(a) From (At)t∈Ω ∈ L1
G(Ω, µ,B(H)) we have that the function vA : M → B(H) is the weakly countable

aditive measure on M. For all sets E ∈ M we have
∣∣∣∫

E At dµ(t)
∣∣∣ ⩽ X,

∣∣∣∫
E A∗t dµ(t)

∣∣∣ ⩽ X and X ∈ CΦ(H)
and from Dominant Convergence Theorem 2.1 we obtain part (a) of our theorem.
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(b) From 0 ⩽
∣∣∣∫

E At dµ(t)
∣∣∣ ⩽ ∫

Ω
|At| dµ(t) ∈ Cp(H) we have

∣∣∣∫
E At dµ(t)

∣∣∣ ∈ Cp(H) and this implies
∫

E At dµ(t) ∈
Cp(H) for all E ∈ M. Let N ∈ N be arbitrary. If we apply the inequality [8, Lemma 2.1, (c)] and the
inequality (11) for arbitrary s.n. function Ψ (more precisely, for s.n. functions Ψ for which the
expressions below are defined), we obtain∥∥∥∥∥∥∥

N∑
k=1

∣∣∣∣∣∣
∫

Ek

At dµ(t)

∣∣∣∣∣∣p
∥∥∥∥∥∥∥
Ψ

⩽

∥∥∥∥∥∥∥
 N∑

k=1

∣∣∣∣∣∣
∫

Ek

At dµ(t)

∣∣∣∣∣∣


p ∥∥∥∥∥∥∥
Ψ

⩽

∥∥∥∥∥∥∥
 N∑

k=1

∫
Ek

|At| dµ(t)


p ∥∥∥∥∥∥∥
Ψ

=

∥∥∥∥∥∥
[∫

⊔N
k=1 Ek

|At| dµ(t)
]p ∥∥∥∥∥∥

Ψ

.

In particular, forΨ = ℓ1, the above inequalities become

N∑
k=1

∥vA(Ek)∥pp =
N∑

k=1

∥∥∥∥∥∥
∫

Ek

At dµ(t)

∥∥∥∥∥∥p

p

=

N∑
k=1

∥∥∥∥∥∥
∣∣∣∣∣∣
∫

Ek

At dµ(t)

∣∣∣∣∣∣p
∥∥∥∥∥∥

1

=

∥∥∥∥∥∥∥
N∑

k=1

∣∣∣∣∣∣
∫

Ek

At dµ(t)

∣∣∣∣∣∣p
∥∥∥∥∥∥∥

1

⩽

∥∥∥∥∥∥
[∫

⊔N
k=1 Ek

|At| dµ(t)
]p ∥∥∥∥∥∥

1

=

∥∥∥∥∥∥
∫

⊔N
k=1 Ek

|At| dµ(t)

∥∥∥∥∥∥p

p

⩽

∥∥∥∥∥∫
Ω

|At| dµ(t)
∥∥∥∥∥p

p
< +∞.

(13)

The last inequality follows from (|At|)t∈Ω ∈ L1
G(Ω, µ,B(H)) and

∫
Ω
|At| dµ(t) ∈ Cp(H). We now have the

inequality
∑+∞

k=1 ∥vA(Ek)∥pp < +∞ if N→ +∞ in (13).

Theorem is proved.

As we have already said, if At ⩾ 0 for all t ∈ Ω, we obtain [13, Theorem 1.3] from the proven theorem.
In the following, we will deal with families of integrable functions. The concept of uniform integrability

plays an important role here. The set S ⊆ L1(Ω,M, µ) is uniformly integrable if for ε > 0 there exists a δ > 0
such that for all f ∈ S the conditions E ∈ M and µ(E) < δ imply

∣∣∣∫
E f dµ

∣∣∣ < ε. For the definition of uniform
integrability and other related properties, see [16, Chapter 6, Exercise 10].

We are introducing a new definition.

Definition 2.3. Let A (n) =
(
A(n)

t

)
t∈Ω
∈ L1

G(Ω, µ,B(H)) for all n ∈N. The set {A (n) : n ∈N} is weakly* uniformly

integrable if for ε > 0 exists δ > 0 such that for all n ∈N the conditions E ∈M andµ(E) < δ imply
∥∥∥∫

E A(n)
t dµ(t)

∥∥∥ < ε.
For the family A (n)

∈ L1
G(Ω, µ,B(H)) we define vn(E) =

∫
E A(n)

t dµ(t) for all E ∈ M. In accordance with
the introduced notation, we have the following theorem.

Theorem 2.4. Let A (n) =
(
A(n)

t

)
t∈Ω
∈ L1

G(Ω, µ,B(H)) be a family of positive operators such that lim inf
n→∞

∥vn(Ω)∥ <

+∞ and let the sequence
(
A(n)

t

)
n∈N

converges weakly to At ∈ B(H) for all t ∈ Ω.

(a) We have (At)t∈Ω ∈ L1
G(Ω, µ,B(H)) and the next inequality holds:∥∥∥∥∥∫

Ω

At dµ(t)
∥∥∥∥∥ ⩽ lim inf

n→∞

∥∥∥∥∥∫
Ω

A(n)
t dµ(t)

∥∥∥∥∥ .
(b) Let µ(Ω) < +∞ and let the set {A (n) : n ∈ N} be weakly* uniformly integrable. Then, the function

vA : Ω→ B(H) defined by vA(E) =
∫

E At dµ(t), E ∈M, is a well-defined B(H)-valued measure onM.

Proof. We have At ⩾ 0 due to ⟨At f , f ⟩ = lim
n→∞

〈
A(n)

t f , f
〉
⩾ 0, which is satisfied for all t ∈ Ω and all f ∈ H .

(a) From A(n)
t ⩾ 0 for all t ∈ Ω follows vn(Ω) ⩾ 0 for all n ∈ N. The family (At)t∈Ω is weakly* measurable,

because we have ⟨At f , 1⟩ = lim
n→∞

〈
A(n)

t f , 1
〉

for all t ∈ Ω and f , 1 ∈ H . The condition lim inf
n→∞

∥vn(Ω)∥ < +∞

implies (At)t∈Ω ∈ L1
G(Ω, µ,B(H)), which follows from Fatou lemma. Indeed, we have∫

Ω

⟨At f , f ⟩ dµ(t) ⩽ lim inf
n→∞

∫
Ω

〈
A(n)

t f , f
〉

dµ(t) = lim inf
n→∞

⟨vn(Ω) f , f ⟩ ⩽ ∥ f ∥2 lim inf
n→∞

∥vn(Ω)∥ < +∞.
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for all vectors f ∈ H . From the above calculation we have ⟨vA(Ω) f , f ⟩ ⩽ lim inf
n→∞

∥vn(Ω)∥
〈

f , f
〉

for all

f ∈ H and due to vA(Ω) ⩾ 0 we get ∥vA(Ω)∥ ⩽ lim inf
n→∞

∥vn(Ω)∥.

(b) From the part (a), we have that the function vA is a well-defined, weakly countable additive measure
on M. Let N ∈ N be arbitrary and let (En)n∈N be the sequence of mutually disjoint members in M.
Again, from Fatou lemma and the elementary properties of supremum and infimum, we obtain the
following chain of equalities and inequalities∥∥∥∥∥∥∥vA

+∞⊔
n=1

En

 − vA

 N⊔
k=1

Ek


∥∥∥∥∥∥∥ =

∥∥∥∥∥∥
∫

⊔+∞
k=N+1 Ek

At dµ(t)

∥∥∥∥∥∥
= sup
∥ f ∥=1

∫
⊔+∞

k=N+1 Ek

⟨At f , f ⟩ dµ(t)

= sup
∥ f ∥=1

∫
⊔+∞

k=N+1 Ek

lim
n→∞

〈
A(n)

t f , f
〉

dµ(t)

⩽ sup
∥ f ∥=1

lim inf
n→∞

∫
⊔+∞

k=N+1 Ek

〈
A(n)

t f , f
〉

dµ(t)

= sup
∥ f ∥=1

sup
m∈N

inf
N∋n⩾m

∫
⊔+∞

k=N+1 Ek

〈
A(n)

t f , f
〉

dµ(t)

= sup
m∈N

sup
∥ f ∥=1

inf
N∋n⩾m

∫
⊔+∞

k=N+1 Ek

〈
A(n)

t f , f
〉

dµ(t)

⩽ sup
m∈N

inf
N∋n⩾m

sup
∥ f ∥=1

∫
⊔+∞

k=N+1 Ek

〈
A(n)

t f , f
〉

dµ(t)

⩽ sup
m∈N

inf
N∋n⩾m

sup
∥ f ∥=1

〈∫
⊔+∞

k=N+1 Ek

A(n)
t dµ(t) f , f

〉
= sup

m∈N
inf
N∋n⩾m

∥∥∥∥∥∥
∫

⊔+∞
k=N+1 Ek

A(n)
t dµ(t)

∥∥∥∥∥∥ = lim inf
n→∞

∥∥∥∥∥∥
∫

⊔+∞
k=N+1 Ek

A(n)
t dµ(t)

∥∥∥∥∥∥ .
From µ(Ω) < +∞ follows limN→∞ µ

(⊔+∞
k=N+1 Ek

)
= 0 and due to the assumed weakly* uniform integra-

bility of the set {A (n) : n ∈ N}, the last limit inferior can be enough small as N → ∞. Thus, we obtain
vA

(⊔+∞
n=1 En

)
=

∑+∞
n=1 vA(En), where the last series converge in the norm of the space B(H).

The theorem is proved.

In the next theorem we give sufficient conditions for the weakly* uniform integrability of the set
{A (n) : n ∈N}. We will use the same notation as in the Theorem 2.4.

Theorem 2.5. Let µ(Ω) < +∞ and A (n) =
(
A(n)

t

)
t∈Ω
∈ L1

G(Ω, µ,B(H)) consisting of positive operators and let(
A(n)

t

)
n∈N

converges weakly to At ∈ C∞(H) for all t ∈ Ω. If we have vA(Ω) ∈ C∞(H), A(n)
t ⩽ A(n+1)

t for all n ∈ N
and all t ∈ Ω and sup

n∈N
∥vn(Ω)∥ < +∞ then the set {A (n) : n ∈N} is weakly* uniformly integrable.

Proof. We have (At)t∈Ω ∈ L1
G(Ω, µ,B(H)) due to the part (a) of the Theorem 2.4. For all E ∈Mwe have

lim
n→∞
⟨vn(E) f , f ⟩ = lim

n→∞

∫
E

〈
A(n)

t f , f
〉

dµ(t) =
∫

E
lim
n→∞

〈
A(n)

t f , f
〉

dµ(t) =
∫

E

〈
At f , f

〉
dµ(t) = ⟨vA(E) f , f ⟩

due to the Monotone Convergence Theorem. The sequence (vn(E))n∈N therefore converges weakly to vA(E).
From 0 ⩽ vn(E) ⩽ vA(E) ⩽ vA(Ω) ∈ C∞(H) it follows that vn(E) ∈ C∞(H) for all n ∈ N and all E ∈ M.
Moreover, by [13, Lemma 1.2] or by the Theorem 2.1 we have limn→∞ ∥vn(E) − vA(E)∥ = 0 for all E ∈M.
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From µ(Ω) < +∞, vA(Ω) ∈ C∞(H) and At ∈ C∞(H) for all t ∈ Ω, due to [13, Theorem 2.3, (b)] we have
that for ε > 0 there exists δ > 0 such that E ∈ M and µ(E) < δ imply ∥vA(E)∥ < ε. Let ε > 0 and choose
δ > 0 from mentioned theorem and E ∈M such that µ(E) < δ. There is the number n0 = n0(ε) ∈N such that
∥vn(Ω)−vA(Ω)∥ < ε for allN ∋ n ⩾ n0. Now, for allN ∋ n ⩾ n0 we have ∥vn(E)∥ ⩽ ∥vn(E)−vA(E)∥+ ∥vA(E)∥ ⩽
∥vn(Ω) − vA(Ω)∥ + ∥vA(E)∥ ⩽ ε + ε = 2ε.

Moreover, according to [13, Theorem 2.3, (b)], the finite set {A (n) : n ∈ {1, . . . ,N}} is weakly* uniformly
integrable, because we have A(n)

t ∈ C∞(H) and vn(Ω) ∈ C∞(H) for all t ∈ Ω and n ∈ N. Thus, the set
{A (n) : n ∈N} is weakly* uniformly integrable.

We deal with further applications of [13, Theorem 2.3], which connects the compactness of the operator
At for µ-almost all t ∈ Ω and the compactness of the operator

∫
Ω

At dµ(t). The following example shows
that we cannot obtain the result from [13, Theorem 2.3, (a)] if the measure is not finite.

Example 2.6. Let Ω = N, M = P(N) and µ be a counting measure on N. Let (en)n∈N be the orthonormal basis
of the Hilbert space H and we define the mapping A : N → B(H) with An( f ) = ⟨ f , en⟩ en for all n ∈ N and all
f ∈ H . We have An ∈ C∞(H) for all n ∈N. Furthermore, for all ε > 0 there exists δ > 0 such that E ∈M, µ(E) < δ
implies

∥∥∥∫
E An dµ(n)

∥∥∥ < ε. Indeed, for δ we can take δ = 1
2 . Thus,

∥∥∥∫
E An dµ(n)

∥∥∥ = 0 < ε. We have (An)n∈N ∈

L1
G(N, µ,B(H)) and

〈∫
N

An dµ(n) f , f
〉
=

∫
N
⟨An f , f ⟩ dµ(n) =

∑+∞
n=1⟨An f , f ⟩ =

∑+∞
n=1 |⟨ f , en⟩|

2 = ∥ f ∥2 = ⟨I f , f ⟩ for
all f ∈ H . This implies

∫
N

An dµ(n) = I. From dim(H) = +∞ we have
∫
N

An dµ(n) = I < C∞(H). △

Definition 2.7. The family (At)t∈Ω ∈ L1
G(Ω, µ,B(H)) satisfies the conditionACµ if for all ε > 0 there exists δ > 0

such that E ∈M and µ(E) < δ imply
∥∥∥∫

E At dµ(t)
∥∥∥ < ε.

The next example shows that we can omit the condition ACµ in [13, Theorem 3.1, (a)]. Also, in the
following example, we constructed Gelfand integrable function A : Ω→ B(H) that is not Pettis integrable.

Example 2.8. Let (en)n⩾1 be some orthonormal basis of Hilbert spaceH and function φn : (−1, 1)→ C is defined by
φn = n · χ(0, 1n ) − n · χ(− 1

n ,0) for all n ∈N and for all t ∈ (−1, 1) we define the function A : (−1, 1)→ B(H) by

At( f ) =
+∞∑
n=1

φn(t) · ⟨ f , en⟩ en for all vectors f ∈ H . (14)

For fixed t ∈ (−1, 1), we have the most finite members of nonzero operators in (14), thus At ∈ C∞(H) for all t ∈ (−1, 1).
Using the equalities

∫
(−1,0) φn(t) dm(t) = −1 and

∫
(0,1) φn(t) dm(t) = 1 we get∫

(−1,1)
⟨At f , f ⟩ dm(t) =

∫
(−1,0)
⟨At f , f ⟩ dm(t) +

∫
(0,1)
⟨At f , f ⟩ dm(t)

=

+∞∑
n=1

(∫
(−1,0)

φn(t) dm(t)
)
|⟨ f , en⟩|

2 +

+∞∑
n=1

(∫
(0,1)
φn(t) dm(t)

)
|⟨ f , en⟩|

2 = −∥ f ∥2 + ∥ f ∥2 = 0

for all f ∈ H and n ∈N. Thus, (At)t∈(−1,1) ∈ L1
G((−1, 1),m,B(H)) and

∫
(−1,1) At dm(t) = 0 ∈ C∞(H). Choose ε = 1

and δ > 0 arbitrary, N ∈
(

1
δ ,+∞

)
∩N and define the set EN =

(
0, 1

N

)
. From EN ⊂ (0,+∞) we have〈∫

EN

At dm(t) f , f
〉
=

+∞∑
n=1

(∫
EN

φn(t) dm(t)
)
|⟨ f , en⟩|

2

=

+∞∑
n=1

n
∫

(0, 1
N )
χ(0, 1n )(t) dm(t)

 |⟨ f , en⟩|
2 =

+∞∑
n=1

n min
{1

n
,

1
N

}
|⟨ f , en⟩|

2 for all f ∈ H .

(15)
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Thus, we have m(EN) = 1
N < δ and from (15) we get∥∥∥∥∥∥

∫
EN

At dm(t)

∥∥∥∥∥∥ = sup
∥ f ∥=1

〈∫
EN

At dm(t) f , f
〉
⩾
+∞∑
n=1

n ·min
{1

n
,

1
N

}
|⟨eN, en⟩|

2 = 1. (16)

Note that n ·min
{

1
n ,

1
N

}
= min

{
1, n

N

}
⩽ 1 for all n ∈ N. Thus, (15) and Bessel equality implies

∥∥∥∥∫EN
At dm(t)

∥∥∥∥ ⩽ 1

and together with the inequality (16) we obtain
∥∥∥∥∫EN

At dm(t)
∥∥∥∥ = 1. The condition ACµ fails for the function

A : (−1, 1)→ B(H) and consequently A < P1((−1, 1),m,B(H)) (see [4, Theorem 5, Chapter 2]). △

The examples 2.6, 2.8 and [13, Example 2.2] motivate us to the following theorem, in which we establish
a connection between the Gelfand integral and the Spectral integral, in the case that all operators At come
from the same spectral measure.

Let (X,N) be (another) measurable space and let E : N → B(H) be spectral measure. Then, for f ∈ H
we define a measure η f : N→ [0,+∞] with the expression η f (δ) = ⟨E(δ) f , f ⟩, δ ∈ N. The measure η f is finite
for all f ∈ H , because we have η f (X) = ⟨E(X) f , f ⟩ = ⟨E(X)2 f , f ⟩ = ∥E(X) f ∥2 = ∥I f ∥2 = ∥ f ∥2.

For φ ∈ L∞(X,N,E) we have that the spectral integral
∫

X φ(x) dE(x) exists in B(H) and〈∫
X
φ(x) dE(x) f , f

〉
=

∫
X
φ(x) dη f (x) for all f ∈ H . (17)

Integration with respect to the spectral measure E is isometric*-isomorphism of the Banach algebra
L∞(X,N,E) with some closed and normal subalgebra in B(H). Thus, we have the property

sup ess
x∈X

|φ(x)| =
∥∥∥∥∥∫

X
φ(x) dE(x)

∥∥∥∥∥ for all φ ∈ L∞(X,N,E). (18)

Theorem 2.9. LetH be a Hilbert space, (Ω,M, µ) a σ-finite measurable space and (X,N) another measurable space
with the spectral measure E : N→ B(H). Also, let φ : Ω × X→ C be the function with the following properties:

(a) The function X ∋ x 7→ φ(t, x) ∈ C belongs to L∞(X,N,E) for all t ∈ Ω.
(b) φ ∈ L1(Ω × X,M ⊗N, µ ⊗ η f ) for all f ∈ H .
(c) The function X ∋ x 7→

∫
Ω
φ(t, x) dµ(t) ∈ C belongs to L∞(X,N,E).

Then, the operator At =
∫

X φ(t, x) dE(x) exists for all t ∈ Ω, (At)t∈Ω ∈ L1
G(Ω,M, µ,B(H)) and we have∫

Ω

At dµ(t) =
∫

X

∫
Ω

φ(t, x) dµ(t) dE(x). (19)

Furthermore, the operator
∫
Ω

At dµ(t) is normal and∥∥∥∥∥∫
Ω

At dµ(t)
∥∥∥∥∥ = sup ess

x∈X

∣∣∣∣∣∫
Ω

φ(t, x) dµ(t)
∣∣∣∣∣ . (20)

Proof. From the assumption (a) we have that the Spectral integral At =
∫

X φ(t, x) dE(x) exists in B(H) for all
t ∈ Ω. Let f ∈ H be arbitrary. From (b), by applying Fubini theorem and (17), we have that the function

Ω ∋ t 7→ ⟨At f , f ⟩ =
〈∫

X
φ(t, x) dE(x) f , f

〉
=

∫
X
φ(t, x) dη f (x) ∈ C

belongs to L1(Ω,M, µ). This implies (At)t∈Ω ∈ L1
G(Ω, µ,B(H)). Again, from Fubini theorem we have∫

Ω×X
φ(t, x) d(µ ⊗ η f ) =

∫
Ω

(∫
X
φ(t, x) dη f (x)

)
dµ(t) =

∫
Ω

⟨At f , f ⟩ dµ(t). (21)
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From the assumption (b) we get that the function X ∋ x 7→
∫
Ω
φ(t, x) dµ(t) ∈ C exists for almost all x ∈ X

with respect to the measure η f . Using the assumption (c) we can apply (17) and from (21) we obtain〈∫
X

(∫
Ω

φ(t, x) dµ(t)
)

dE(x) f , f
〉
=

∫
X

(∫
Ω

φ(t, x) dµ(t)
)

dη f (x) =
∫
Ω

⟨At f , f ⟩ dµ(t) =
〈∫
Ω

At dµ(t) f , f
〉
.

As f ∈ H was arbitrary, we have the formula (19).
The operator

∫
Ω

At dµ(t) is normal inB(H) and this follows directly from the proven formula (19) and the
mentioned property that the integration with respect to the spectral measure E is isometric*-isomorphism
of the Banach algebra L∞(X,N,E) and some closed, normal subalgebra of B(H).

By the condition (c) we can apply (18) and obtain (20).

In the following, we will look at other possible formulas for representations of the Gelfand integral∫
Ω

f (t)At dµ(t) if the members of the family (At)t∈Ω have special properties. To be more precise, we can
derive the formula for the representation of the Gelfand integral

∫
Ω

f (t)At dµ(t) as a weak sum of series of
operators in B(H) if the set Ω is partitioned as a countable M-measurable partition and if the operator-
valued function A : Ω→ B(H) has a constant value on each member of this partition.

Furthermore, in the next theorem we give a sufficient condition for the mentioned formula to be a sum
in the norm of the separable ideal CΦ(H). We do not assume (At)t∈Ω ∈ L1

G(Ω, µ,B(H))

Theorem 2.10. Let (At)t∈Ω be the family in B(H) such that supt∈Ω ∥At∥ < +∞ and f ∈ L1(Ω,M, µ). If (En)n∈N
is a sequence in M,

⊔+∞
n=1 En = Ω and if {Bk : k ∈ N} is the subset of B(H) such that At = Bk for all t ∈ Ek, then

( f (t)At)t∈Ω ∈ L1
G(Ω, µ,B(H)) and we have∫

Ω

f (t)At dµ(t) =
+∞∑
k=1

[∫
Ek

f (t) dµ(t)
]

Bk, (22)

where the series in (22) converges weakly. Moreover, if we have f (t)At ⩾ 0 for all t ∈ Ω and if
∫
Ω

f (t)At dµ(t) ∈ CΦ(H)
then the series in (22) converges in the norm ∥ · ∥Φ of the separable ideal CΦ(H).

Proof. The family ( f (t)At)t∈Ω belongs to L1
G(Ω, µ,B(H)) because for all x, y ∈ H we have∫

Ω

|⟨ f (t)Atx, y⟩| dµ(t) =
+∞∑
k=1

∫
Ek

|⟨Atx, y⟩| · | f (t)| dµ(t) =
+∞∑
k=1

|⟨Bkx, y⟩|
∫

Ek

| f (t)| dµ(t)

⩽ sup
t∈Ω
∥At∥ · ∥x∥ · ∥y∥

+∞∑
k=1

∫
Ek

| f (t)| dµ(t) = sup
t∈Ω
∥At∥ · ∥x∥ · ∥y∥ · ∥ f ∥1 < +∞.

The functionM ∋ E 7→
∫

E f (t)⟨Atx, y⟩ dµ(t) ∈ C is complex measure onM for fixed x, y ∈ H . Thus, we have〈∫
Ω

f (t)At dµ(t)x, y
〉
=

∫
Ω

f (t)⟨Atx, y⟩ dµ(t) =
+∞∑
k=1

∫
Ek

f (t)⟨Atx, y⟩ dµ(t) = lim
n→∞

〈 n∑
k=1

(∫
Ek

f (t) dµ(t)
)

Bk

 x, y
〉
,

which confirms the formula (22). Moreover, if f (t)At ⩾ 0 for all t ∈ Ω and if
∫
Ω

f (t)At dµ(t) ∈ CΦ(H) then
[13, Theorem 1.3, (a)] implies that the functionM ∋ E 7→

∫
E f (t)At dµ(t) is a CΦ(H)-valued measure. By (7)

we get
∫
Ω

f (t)At dµ(t) =
∑+∞

k=1

∫
Ek

f (t)At dµ(t) =
∑+∞

k=1

∫
Ek

f (t)Bk dµ(t) =
∑+∞

k=1

(∫
Ek

f (t) dµ(t)
)

Bk in the norm ∥ · ∥Φ
of the separable ideal CΦ(H).

Let At ∈ C∞(H) for µ-almost all t ∈ Ω. If we have (At)t∈Ω ∈ L1
G(Ω, µ,B(H)) and if the function vA

associated to the family (At)t∈Ω is B(H)-valued measure onM, then we have the same conclusion as in [13,
Theorem 2.3, (a)], if measure µ is σ-finite.
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Theorem 2.11. Let µ be a σ-finite measure on M and let (At)t∈Ω ∈ L1
G(Ω, µ,B(H)) such that At ∈ C∞(H) for

µ-almost all t ∈ Ω. If the function vA : M → B(H) defined by vA(E) =
∫

E At dµ(t), E ∈ M, is a B(H)-valued
measure and if the family (At)t∈Ω satisfiesACµ condition then

∫
Ω

At dµ(t) ∈ C∞(H).

Proof. There is a sequence (En)n∈N with mutually disjoint members fromMwith the properties µ(En) < +∞
for all n ∈ N and

⊔
n∈N En = Ω. Applying [13, Theorem 2.3, (a)] to each En gives us vA(En) =

∫
En

At dµ(t) ∈

C∞(H) for all n ∈ N. The function vA is a B(H)-valued measure on M, i.e.
∫
Ω

At dµ(t) = vA(Ω) =∑+∞
n=1 vA(En) =

∑+∞
n=1

∫
En

At dµ(t), where the last convergence is in the norm of the space B(H). The theorem
follows due to the fact that the ideal C∞(H) in B(H) is closed with respect to the operator norm.

Note that in the Example 2.6 the function vA(E) =
∫

E An dµ(n), E ∈ M, is not a B(H)-valued measure
on M = P(N), although it is finitely additive. Indeed, if vA is a B(H)-valued measure on the σ-algebra
M = P(N), then it follows from Theorem 2.11 that I ∈ C∞(H). This is a contradiction with dim(H) = +∞.

Let (At)t∈Ω be the family of operators from B(H). The following theorem gives a sufficient condition for
the convergence of the sequence of Gelfand integrals

(∫
Ω

fn(t)At dµ(t)
)

n∈N
in the norm of the space B(H) to∫

Ω
f (t)At dµ(t), where ( fn)n∈N and f are functions from L2(Ω,M, µ), with some additional properties.

Theorem 2.12. Let µ(Ω) < +∞ and fn ∈ L2(Ω,M, µ) for all n ∈ N such that lim
n→∞

fn(t) = f (t) for µ-almost all

t ∈ Ω. If sup
n∈N
∥ fn∥2 < +∞ and if the set of functions Ω ∋ t 7→ ∥Atx∥2 ∈ R, ∥x∥ ⩽ 1, is uniformly integrable, then

both families of operators ( fn(t)At)t∈Ω and ( f (t)At)t∈Ω belongs to L1
G(Ω, µ,B(H)) and we have

lim
n→∞

∥∥∥∥∥∫
Ω

fn(t)At dµ(t) −
∫
Ω

f (t)At dµ(t)
∥∥∥∥∥ = 0. (23)

Proof. For n ∈N and all x, y ∈ H , Cauchy-Schwarz inequality implies

∫
Ω

|⟨ fn(t)Atx, y⟩| dµ(t) ⩽

√∫
Ω

| fn(t)|2 dµ(t) ·

√∫
Ω

|⟨Atx, y⟩|2 dµ(t) ⩽ ∥ fn∥2

√∫
Ω

∥Atx∥2 dµ(t) · ∥y∥ < +∞,

Thus, we get ( fn(t)At)t∈Ω ∈ L1
G(Ω, µ,B(H)) for all n ∈ N. Let L := supn∈N ∥ fn∥2 < +∞. Fatou lemma implies

f ∈ L2(Ω,M, µ). Indeed, we have

∥ f ∥22 =
∫
Ω

| f (t)|2 dµ(t) =
∫
Ω

lim
n→∞
| fn(t)|2 dµ(t) ⩽ lim inf

n→∞

∫
Ω

| fn(t)|2 dµ(t) = lim inf
n→∞

∥ fn∥22 ⩽ L2.

Thus, we have
∫
Ω
|⟨ f (t)Atx, y⟩| dµ(t) < +∞, x, y ∈ H . This implies ( f (t)At)t∈Ω ∈ L1

G(Ω, µ,B(H)) and we get∥∥∥∥∥∫
Ω

fn(t)At dµ(t) −
∫
Ω

f (t)At dµ(t)
∥∥∥∥∥ ⩽ sup

∥x∥=∥y∥=1

∫
Ω

| fn(t) − f (t)| · |⟨Atx, y⟩| dµ(t) for all n ∈N. (24)

Let ε > 0 be arbitrary and choose δ = δ(ε) > 0 from the definition of the uniform integrability of the set of
functions Ω ∋ t 7→ ∥Atx∥2 ∈ R, ∥x∥ ⩽ 1. Using Egoroff theorem we can find a setM ∋ Eδ ⊆ Ω such that

lim
n→∞

sup
t∈Eδ
| fn(t) − f (t)| = 0 and µ(Ω \ Eδ) < δ.

For all x ∈ H we have
∫
Ω
∥Atx∥2 dµ(t) < +∞. Thus, (A∗tAt)t∈Ω ∈ L1

G(Ω, µ,B(H)). From (8) we have

M := sup
∥x∥=1

∫
Ω

⟨A∗tAtx, x⟩ dµ(t) = sup
∥x∥=1

∫
Ω

∥Atx∥2 dµ(t) < +∞.
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By applying the Cauchy-Schwarz inequality we have

sup
∥x∥=∥y∥=1

∫
Eδ
| fn(t) − f (t)| · |⟨Atx, y⟩| dµ(t) ⩽ sup

t∈Eδ
| fn(t) − f (t)| sup

∥x∥=∥y∥=1

∫
Eδ
|⟨Atx, y⟩| dµ(t)

⩽ sup
t∈Eδ
| fn(t) − f (t)| sup

∥x∥=1

∫
Eδ
∥Atx∥ dµ(t)

⩽ sup
t∈Eδ
| fn(t) − f (t)|

√
sup
∥x∥=1

∫
Eδ
∥Atx∥2 dµ(t) ·

√
µ(Eδ)

⩽
√

M · µ(Ω) sup
t∈Eδ
| fn(t) − f (t)| for all n ∈N.

(25)

The triangle inequality in L2(Ω,M, µ) implies ∥ fn − f ∥2 ⩽ ∥ fn∥2 + ∥ f ∥2 ⩽ 2L for all n ∈ N. Using the
Cauchy–Schwarz inequality and the uniform integrability of the set of functions Ω ∋ t 7→ ∥Atx∥2 ∈ R,
∥x∥ ⩽ 1, combined with the inequality µ(Ω \ Eδ) < δ, we obtain

sup
∥x∥=∥y∥=1

∫
Ω\Eδ
| fn(t) − f (t)| · |⟨Atx, y⟩| dµ(t) ⩽ sup

∥x∥=∥y∥=1

√∫
Ω\Eδ
| fn(t) − f (t)|2 dµ(t) ·

√∫
Ω\Eδ
|⟨Atx, y⟩|2 dµ(t)

⩽ ∥ fn − f ∥2 sup
∥x∥=∥y∥=1

√∫
Ω\Eδ
|⟨Atx, y⟩|2 dµ(t)

⩽ 2L sup
∥x∥=1

√∫
Ω\Eδ
∥Atx∥2 dµ(t) ⩽ 2L

√
ε for all n ∈N.

(26)

Now, from (24), (25) and (26), we get∥∥∥∥∥∫
Ω

fn(t)At dµ(t) −
∫
Ω

f (t)At dµ(t)
∥∥∥∥∥ ⩽ √

M · µ(Ω) sup
t∈Eδ
| fn(t) − f (t)| + 2L

√
ε for all n ∈N.

Using the equality lim
n→∞

sup
t∈Eδ
| fn(t) − f (t)| = 0 and µ(Ω) < +∞we have

lim sup
n→∞

∥∥∥∥∥∫
Ω

fn(t)At dµ(t) −
∫
Ω

f (t)At dµ(t)
∥∥∥∥∥ ⩽ 2L

√
ε for all ε > 0.

This implies the equality (23).

Note that (At)t∈Ω ∈ L1
G(Ω, µ,B(H)) was not assumed in the previous theorem.

The condition of uniform integrability of the set of functions Ω ∋ t 7→ ∥Atx∥2 ∈ R, ∥x∥ ⩽ 1, is trivially
satisfied if µ(Ω) < +∞ and supt∈Ω ∥At∥ < +∞.

We can easy see that the set { fn : n ∈ N} from the Theorem 2.12 is uniformly integrable. Indeed, from
µ(Ω) < +∞ and fn ∈ L2(Ω,M, µ) we have fn ∈ L1(Ω,M, µ) for all n ∈N. If we assume that the set { fn : n ∈N}
is not uniformly integrable, then we can find ε0 > 0 and a sequence (En)n∈N inM, such that limn→∞ µ(En) = 0

and for all n ∈N there is m(n) ∈N such that
∣∣∣∣∫En

fm(n)(t) dµ(t)
∣∣∣∣ ⩾ ε0. Then, we have

ε0 ⩽

∣∣∣∣∣∣
∫

En

fm(n)(t) dµ(t)

∣∣∣∣∣∣ ⩽
√∫

En

| fm(n)(t)|2 dµ(t) ·
√
µ(En) ⩽ sup

n∈N
∥ fn∥2 ·

√
µ(En) for all n ∈N.

Now, we obtain the contradiction from supn∈N ∥ fn∥2 < ∞ and limn→∞ µ(En) = 0.
In the next example, we will show that the condition µ(Ω) < +∞ in the Theorem 2.12 cannot be omitted.

For the sequence ( fn)n∈N we will choose the one that is uniformly integrable.
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Example 2.13. Let Ω = [1,+∞). We define A : [1,+∞) → B(H) by At( f ) = ⟨ f , e⌊t⌋⟩e⌊t⌋ for all f ∈ H and t ∈
[1,+∞), where (en)n∈N is an orthonormal basis in a Hilbert spaceH . For n ∈N we have χ[n,n+1)(t)At( f ) = ⟨ f , en⟩en,
if t ∈ [n,n + 1) and χ[n,n+1)(t)At( f ) = 0 if t < [n,n + 1). Consequently,∫

[1,+∞)
⟨χ[n,n+1)(t)At( f ), f ⟩ dm(t) =

∫
[n,n+1)

|⟨ f , en⟩|
2 dm(t) = |⟨ f , en⟩|

2 for all f ∈ H . (27)

Now, we have (χ[n,n+1)(t)At)t∈[1,+∞) ∈ L1
G([1,+∞),m,B(H)). By Bessel equality we obtain∫

[1,+∞)
∥At f ∥2 dm(t) =

+∞∑
n=1

∫
[n,n+1)

∥At f ∥2 dm(t) =
+∞∑
n=1

|⟨ f , en⟩|
2 = ∥ f ∥2 for all f ∈ H . (28)

Furthermore, for all Lebesgue-measurable sets E ⊆ [1,+∞), m(E) < +∞ and all f ∈ H , ∥ f ∥ ⩽ 1 we have∫
E
∥At f ∥2 dm(t) =

+∞∑
n=1

|⟨ f , en⟩|
2m(E ∩ [n,n + 1)) ⩽ ∥ f ∥2

+∞∑
n=1

m(E ∩ [n,n + 1)) = ∥ f ∥2 ·m(E) ⩽ m(E).

This means that the set of functions [1,+∞) ∋ t 7→ ∥At f ∥2, ∥ f ∥ ⩽ 1, is uniformly integrable. Using (27) we get∥∥∥∥∥∥
∫

[1,+∞)
χ[n,n+1)(t)At dm(t)

∥∥∥∥∥∥ = sup
∥ f ∥=1

∫
[1,+∞)

⟨χ[n,n+1)(t)At( f ), f ⟩ dm(t) = sup
∥ f ∥=1
|⟨ f , en⟩|

2 = ∥en∥
2 = 1

for all n ∈ N. This shows that (23) does not hold. Using (27) we have (At)t∈[1,+∞) ∈ L1
G([1,+∞),m,B(H)) and∫

[1,+∞) At dm(t) = I. From (28) also follows (A∗tAt)t∈[1,+∞) ∈ L1
G([1,+∞),m,B(H)) and

∫
[1,+∞) A∗tAt dm(t) = I. △

The following theorem is a consequence of the previous statement for the convergence of the sequence
of Gelfand integrals

(∫
En

At dµ(t)
)

n∈N
in the norm of the space B(H) to the operator

∫
E At dµ(t), where the

sequence of sets (En)n∈N inM converges to a set E ∈M.

Corollary 2.14. Let µ(Ω) < +∞ and let the set of functions Ω ∋ t 7→ ∥Atx∥2, ∥x∥ ⩽ 1, is uniformly integrable.
If (En)n∈N is the sequence in M such that there exists the set limit E = lim

n→∞
En, then the operators

∫
En

At dµ(t) and∫
E At dµ(t) exist in B(H) and we have the equality

lim
n→∞

∥∥∥∥∥∥
∫

En

At dµ(t) −
∫

E
At dµ(t)

∥∥∥∥∥∥ = 0. (29)

Proof. From E = lim
n→∞

En we have E ∈ M. Denote fn = χEn for all n ∈ N and f = χE. For all n ∈ N we have

∥ fn∥2 = µ(En) ⩽ µ(Ω) < +∞, i.e. supn∈N ∥ fn∥2 < +∞ and lim
n→∞

fn(t) = lim
n→∞
χEn (t) = χE(t) = f (t) for µ-almost all

t ∈ Ω. Also, we have f ∈ L2(Ω,M, µ). All assumptions of the Theorem 2.12 are satisfied and this implies
(χEn (t)At)t∈Ω, (χE(t)At)t∈Ω ∈ L1

G(Ω, µ,B(H)) and from (23) we directly get (29).

Similar problems were discussed in [12, Lemma 2.1].

3. Integration of weakly* measurable functions A : Ω → B
(⊕+∞

n=1Hn

)
The function Ω ∋ t 7→

⊕+∞

n=1 A(n)
t ∈ B

(⊕+∞

n=1Hn

)
is weakly* measurable if and only if the function

Ω ∋ t 7→ A(n)
t ∈ B(Hn) is weakly* measurable for all n ∈ N and this follows directly from the definition (1)

of the inner product in the Hilbert space
⊕+∞

n=1Hn.
The following theorem is a reformulation of the necessary and sufficient conditions for the function

Ω ∋ t 7→
⊕+∞

n=1 A(n)
t ∈ B

(⊕+∞

n=1Hn

)
to belongs to the space L1

G

(
Ω, µ,B

(⊕+∞

n=1Hn

))
. In this theorem, we

also consider the relationship between the operators
∫

E

⊕+∞

n=1 A(n)
t dµ(t) and

⊕+∞

n=1

∫
E A(n)

t dµ(t) for E ∈ M, if∫
E

⊕+∞

n=1 A(n)
t dµ(t) exists in B

(⊕+∞

n=1Hn

)
.
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Theorem 3.1. Let (Hn)n∈N be the sequence of Hilbert spaces and
(
A(n)

t

)
t∈Ω

be the family in B(Hn) for all n ∈ N.

The operator
∫
Ω

⊕+∞

n=1 A(n)
t dµ(t) exists in B

(⊕+∞

n=1Hn

)
if and only if we have both of the following conditions:

(a) sup
n∈N

∥∥∥A(n)
t

∥∥∥ < +∞ for µ-almost all t ∈ Ω.

(b) The function Ω ∋ t 7→
∑+∞

n=1

〈
A(n)

t fn, fn
〉
∈ C belongs to the space L1(Ω,M, µ) for all ( fn)n∈N ∈

⊕+∞

n=1Hn.

Furthermore, under the conditions (a) and (b) we have

sup
n∈N

∥∥∥∥∥∫
E

A(n)
t dµ(t)

∥∥∥∥∥ < +∞ for all E ∈M, (30)

the operator
⊕+∞

n=1

∫
E A(n)

t dµ(t) exists in B
(⊕+∞

n=1Hn

)
and we have the equality∫

E

+∞⊕
n=1

A(n)
t dµ(t) =

+∞⊕
n=1

∫
E

A(n)
t dµ(t). (31)

Proof. Condition (a) is equivalent to the existence of the operator
⊕+∞

n=1 A(n)
t in B

(⊕+∞

n=1Hn

)
for µ-almost all

t ∈ Ω. By the definition (1) of the inner product in the Hilbert space
⊕+∞

n=1Hn the condition (b) is equivalent
with the fact that the function Ω ∋ t 7→

〈(⊕+∞

n=1 A(n)
t

)
( fn)n∈N, ( fn)n∈N

〉
=

∑+∞
n=1

〈
A(n)

t fn, fn
〉
∈ C belongs to the

space L1(Ω,M, µ) for all vectors ( fn)n∈N ∈
⊕+∞

n=1Hn. Thus, the conditions (a) and (b) are equivalent with(⊕+∞

n=1 A(n)
t

)
t∈Ω
∈ L1

G

(
Ω, µ,B

(⊕+∞

n=1Hn

))
.

From the condition (b) it follows that the operator
∫
Ω

A(n)
t dµ(t) exists in B(Hn) for all n ∈ N, because

we can take fn ∈ Hn arbitrary and fk = 0 for all k ∈ N \ {n} in (b), and obtain that the scalar function
Ω ∋ t 7→

〈
A(n)

t fn, fn
〉
∈ C belongs to L1(Ω,M, µ) for all fn ∈ Hn.

Now we will prove (30) under the conditions (a) and (b). Let E ∈ M and k ∈ N arbitrary. Using the
equalities (4) and (1) we have∥∥∥∥∥∥∥
∫

E

+∞⊕
n=1

A(n)
t dµ(t)

∥∥∥∥∥∥∥ = sup
∥( fn)n∈N∥=∥(1n)n∈N∥=1

∣∣∣∣∣∣∣
〈∫

E

+∞⊕
n=1

A(n)
t dµ(t)

 ( fn)n∈N, (1n)n∈N

〉∣∣∣∣∣∣∣
= sup
∥( fn)n∈N∥=∥(1n)n∈N∥=1

∣∣∣∣∣∣∣
∫

E

〈 +∞⊕
n=1

A(n)
t dµ(t)

 ( fn)n∈N, (1n)n∈N

〉∣∣∣∣∣∣∣
= sup
∥( fn)n∈N∥=∥(1n)n∈N∥=1

∣∣∣∣∣∣∣
∫

E

+∞∑
n=1

〈
A(n)

t fn, 1n

〉
dµ(t)

∣∣∣∣∣∣∣ ⩾
∣∣∣∣∣∫

E

〈
A(k)

t xk, yk

〉
dµ(t)

∣∣∣∣∣ =
∣∣∣∣∣∣
〈∫

E
A(k)

t dµ(t)xk, yk

〉∣∣∣∣∣∣
for all unit vectors xk, yk ∈ Hk. Thus, we have∥∥∥∥∥∥∥

∫
E

+∞⊕
n=1

A(n)
t dµ(t)

∥∥∥∥∥∥∥ ⩾ sup
∥xk∥=∥yk∥=1

∣∣∣∣∣∣
〈∫

E
A(k)

t dµ(t)xk, yk

〉∣∣∣∣∣∣ =
∥∥∥∥∥∫

E
A(k)

t dµ(t)
∥∥∥∥∥ .

This implies

sup
k∈N

∥∥∥∥∥∫
E

A(k)
t dµ(t)

∥∥∥∥∥ ⩽
∥∥∥∥∥∥∥
∫

E

+∞⊕
n=1

A(n)
t dµ(t)

∥∥∥∥∥∥∥ < +∞ for all E ∈M.

We proved the inequality (30). Therefore, the operator
⊕+∞

n=1

∫
E A(n)

t dµ(t) exists in B
(⊕+∞

n=1Hn

)
.

Now, we will show the equality (31). Again, let k ∈ N be a fixed number. We define the projection
map Tk :

⊕+∞

n=1Hn → Hk with Tk((xn)n∈N) = xk for all (xn)n∈N ∈
⊕+∞

n=1Hn. From ∥Tk((xn)n∈N)∥2 = ∥xk∥
2 ⩽
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n=1 ∥xn∥

2 = ∥(xn)n∈N∥
2 for all (xn)n∈N ∈

⊕+∞

n=1Hn follows Tk ∈ B
(⊕+∞

n=1Hn,Hk

)
. Based on the second and

third property in (6), we have equalities

Tk

∫
E

+∞⊕
n=1

A(n)
t dµ(t) =

∫
E

Tk

+∞⊕
n=1

A(n)
t dµ(t) =

∫
E

A(k)
t Tk dµ(t) =

∫
E

A(k)
t dµ(t)Tk = Tk

+∞⊕
n=1

∫
E

A(n)
t dµ(t).

From the above equalities we have that the vector on the k-th position in
(∫

E

⊕+∞

n=1 A(n)
t dµ(t)

)
( fm)m∈N is equal

to the vector on the k-th position in the sequence
(⊕+∞

n=1

∫
E A(n)

t dµ(t)
)

( fm)m∈N for all ( fm)m∈N ∈
⊕+∞

n=1Hn.
Since k ∈Nwas arbitrary, we obtain the equality (31).

Under the conditions (a) and (b) of the Theorem 3.1, the equality (31) implies∥∥∥∥∥∥∥
∫

E

+∞⊕
n=1

A(n)
t dµ(t)

∥∥∥∥∥∥∥ =
∥∥∥∥∥∥∥
+∞⊕
n=1

∫
E

A(n)
t dµ(t)

∥∥∥∥∥∥∥ = sup
n∈N

∥∥∥∥∥∫
E

A(n)
t dµ(t)

∥∥∥∥∥ for all E ∈M. (32)

It is possible that the operator
⊕+∞

n=1

∫
Ω

A(n)
t dµ(t) exists in B

(⊕+∞

n=1Hn

)
but

∫
Ω

⊕+∞

n=1 A(n)
t dµ(t) does not

exist. This is shown in the next example.

Example 3.2. Let (Hn)n∈N be a sequence of Hilbert spaces,Ω = (−1, 1) and φn = −nχ(−1,0) + nχ(0,1) for n ∈N. We
define A(n)

t = φn(t)In for all t ∈ (−1, 1) and n ∈ N. Due to (7) we have
∫

(−1,1) A(n)
t dm(t) =

∫
(−1,1) φn(t) dm(t)In =

0 ∈ B(Hn) for all n ∈ N. Thus, we get
⊕+∞

n=1

∫
(−1,1) A(n)

t dm(t) = 0 ∈ B
(⊕+∞

n=1Hn

)
. On the other hand, for

t ∈ (−1, 0) we have supn∈N

∥∥∥A(n)
t

∥∥∥ = supn∈N ∥φn(t)In∥ = +∞ i.e. the operator
⊕+∞

n=1 A(n)
t does not exist. Thus,∫

(−1,1)

⊕+∞

n=1 A(n)
t dm(t) does not exist. △

Let k ∈ N be fixed. The next example motivates us to analyse the relation between measures on the
σ-algebraM taking values in B(Hk) and B

(⊕+∞

n=1Hn

)
.

Example 3.3. Let Ω = (0, 1] and let M be Lebesgue σ-algebra on (0, 1] and fn = nχ(0, 1n ] for all n ∈ N. Then∫
(0,1] fn(t) dm(t) = 1 and due to (7) we have

∫
E fn(t)In dm(t) =

(∫
E fn(t) dm(t)

)
In for all n ∈ N and E ∈ M. For

n ∈ N we define vn : M → B(Hn) with vn(E) =
∫

E fn(t)In dm(t) =
(∫

E fn(t) dm(t)
)

In = n · m
(
E ∩

(
0, 1

n

])
In for

all E ∈ M. The function M ∋ E 7→ n · m
(
E ∩

(
0, 1

n

])
∈ [0, 1] is positive, finite measure on M, thus the function

vn is a B(Hn)-valued measure on M for all n ∈ N. We have
(⊕+∞

n=1 fn(t)In

)
t∈(0,1]

∈ L1
G

(
(0, 1],m,B

(⊕+∞

n=1Hn

))
.

Indeed, sup
n∈N
∥ fn(t)In∥ = sup

n∈N
nχ(0, 1n ](t) < +∞ for all t ∈ (0, 1]. This implies that the operator

⊕+∞

n=1 fn(t)In exists in

B
(⊕+∞

n=1Hn

)
for all t ∈ (0, 1]. Also, for (xn)n∈N ∈

⊕+∞

n=1Hn we have

∫
(0,1]

∣∣∣∣∣∣∣
〈 +∞⊕

n=1

fn(t)In

 (xn)n∈N, (xn)n∈N

〉∣∣∣∣∣∣∣ dm(t) ⩽
+∞∑
n=1

∥xn∥
2
∫

(0,1]
| fn(t)| dm(t) =

+∞∑
n=1

∥xn∥
2 < +∞.

Thus, we can apply the Theorem 3.1 and define the function v :M→ B
(⊕+∞

n=1Hn

)
by

v(E) =
∫

E

+∞⊕
n=1

fn(t)In dm(t) =
+∞⊕
n=1

(∫
E

fn(t) dm(t)
)

In =

+∞⊕
n=1

vn(E) for all E ∈M.

The function v : M → B
(⊕+∞

n=1Hn

)
is weakly countable additive vector measure on M, but this function is not

B
(⊕+∞

n=1Hn

)
-valued measure. To see that, denote Ek =

(
1

k+1 ,
1
k

]
∈ M, k ∈ N. Then we have

⊔+∞
k=1 Ek = (0, 1] and
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v((0, 1]) =
⊕+∞

n=1 In. For fixed number N ∈N we have the following calculations:∥∥∥∥∥∥∥v((0, 1]) − v

 N⊔
k=1

Ek


∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
+∞⊕
n=1

In −

+∞⊕
n=1

(∫
⊔N

k=1 Ek

fn(t) dm(t)
)

In

∥∥∥∥∥∥∥ =
∥∥∥∥∥∥∥
+∞⊕
n=1

(
1 −

(∫
⊔N

k=1 Ek

fn(t) dm(t)
))

In

∥∥∥∥∥∥∥
= sup

n∈N

∣∣∣∣∣∣1 −
∫

( 1
N+1 ,1]

fn(t) dm(t)

∣∣∣∣∣∣ ⩾
∣∣∣∣∣∣1 −

∫
( 1

N+1 ,1]
fN(t) dm(t)

∣∣∣∣∣∣ = N
N + 1

.

It follows that the series
∑+∞

n=1 v(En) does not converge to v
(⊔+∞

n=1 Ek

)
in the norm of the space B

(⊕+∞

n=1Hn

)
. △

Note that in the Example 3.3 the sequence ( fn)n∈N was not uniformly integrable.
In the next theorem, we assume Hn = H for all n ∈ N. For a given sequence ( fn)n∈N ofM-measurable

functions and a family (At)t∈Ω in B(H) such that
(⊕+∞

n=1 fn(t)At

)
t∈Ω
∈ L1

G(Ω, µ,B(ℓ2(H))) we define the

functions vn : M → B(H) and v : M → B(ℓ2(H)) with the expressions vn(E) =
∫

E fn(t)At dµ(t) and
v(E) =

∫
E

⊕+∞

n=1 fn(t)At dµ(t), respectively. We will investigate sufficient conditions for the function v to be
B(ℓ2(H))-valued measure on M. If the function v is B(ℓ2(H))-valued measure on M, then the function
vn is well-defined B(H)-valued measure on M for all n ∈ N. Indeed, the family ( fn(t)At)t∈Ω belongs to
L1

G(Ω, µ,B(H)). According to the Theorem 3.1 we have the equalities

v(E) =
∫

E

+∞⊕
n=1

fn(t)At dµ(t) =
+∞⊕
n=1

∫
E

fn(t)At dµ(t) =
+∞⊕
n=1

vn(E) for all E ∈M. (33)

Due to (33), for the sequence (En)n∈N, En ∩ Em = ∅, n , m inMwe have

lim
N→∞

∥∥∥∥∥∥∥vn

+∞⊔
k=1

Ek

 − vn

 N⊔
k=1

Ek


∥∥∥∥∥∥∥ = lim

N→∞

∥∥∥∥∥∥∥vn

 +∞⊔
k=N+1

Ek


∥∥∥∥∥∥∥ ⩽ lim

N→∞
sup
n∈N

∥∥∥∥∥∥∥vn

 +∞⊔
k=N+1

Ek


∥∥∥∥∥∥∥ = lim

N→∞

∥∥∥∥∥∥∥
+∞⊕
n=1

vn

 +∞⊔
k=N+1

Ek


∥∥∥∥∥∥∥

= lim
N→∞

∥∥∥∥∥∥∥v

 +∞⊔
k=N+1

Ek


∥∥∥∥∥∥∥ = lim

N→∞

∥∥∥∥∥∥∥v

+∞⊔
k=1

En

 − v

 N⊔
k=1

Ek


∥∥∥∥∥∥∥ = 0.

Thus, the function vn is B(H)-valued measure for all n ∈N.

Theorem 3.4. Let µ(Ω) < +∞ and let ( fn)n∈N be a sequence ofM-measurable functions and let (At)t∈Ω be a family
in B(H). If the set of functions Ω ∋ t 7→ ∥At∥ fn(t) ∈ C, n ∈ N, is uniformly integrable and

(⊕+∞

n=1 fn(t)At

)
t∈Ω
∈

L1
G(Ω, µ,B(ℓ2(H))), then the function v :M→ B(ℓ2(H)) in (33) is well-defined B(ℓ2(H))-valued measure onM.

Proof. From
(⊕+∞

n=1 fn(t)At

)
t∈Ω
∈ L1

G(Ω, µ,B(ℓ2(H))) it follows that the integral
∫

E fn(t)At dµ(t) exists in B(H)
for every n ∈ N and E ∈ M. Let E ∈ M be arbitrary and let (En)n∈N be a sequence in M with mutually
disjoint members and E =

⊔+∞
n=1 En. We can apply the equality (32) and obtain∥∥∥∥∥∥∥v

+∞⊔
k=1

Ek

 − v

 N⊔
k=1

Ek


∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
∫

E

+∞⊕
n=1

fn(t)At dµ(t) −
∫

⊔N
k=1 Ek

+∞⊕
n=1

fn(t)At dµ(t)

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥
∫

⊔+∞
k=N+1 Ek

+∞⊕
n=1

fn(t)At dµ(t)

∥∥∥∥∥∥∥ =
∥∥∥∥∥∥∥
+∞⊕
n=1

∫
⊔+∞

k=N+1 Ek

fn(t)At dµ(t)

∥∥∥∥∥∥∥
= sup

n∈N

∥∥∥∥∥∥
∫

⊔+∞
k=N+1 Ek

fn(t)At dµ(t)

∥∥∥∥∥∥ ⩽ sup
n∈N

∫
⊔+∞

k=N+1 Ek

| fn(t)| · ∥At∥ dµ(t)

(34)

for all N ∈N. From µ(Ω) < +∞we have the equality limN→∞ µ
(⊔+∞

k=N+1 Ek

)
= 0. The assumption of uniform

integrability of the set of functions Ω ∋ t 7→ ∥At∥ · fn(t) ∈ C, n ∈ N implies the uniform integrability of the
set of functions Ω ∋ t 7→ ∥At∥ · | fn(t)| ∈ R, n ∈ N. Thus, the last supremum in (34) can be small enough if
N→∞. This implies that the function v is a B(ℓ2(H))-valued measure.
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In the next theorem we consider sufficient conditions for the compactness of the Gelfand integrals of a
weakly* integrable functionΩ ∋ t 7→

⊕+∞

n=1 fn(t)At ∈ B(ℓ2(H)), where ( fn)n∈N is a sequence ofM-measurable
functions with some additional properties.

First we need [3, Theorem 2.2], which is given without proof in this paper. For the comfort of reading,
we give our proof, which is based on the fact that an operator on the Hilbert space is compact if and only if
it maps weakly convergent sequences into strongly convergent sequences.

Lemma 3.5. Let (Hn)n∈N be the sequence of Hilbert spaces, An ∈ B(Hn) for all n ∈ N and supn∈N ∥An∥ < +∞.
Then, we have

⊕+∞

n=1 An ∈ C∞
(⊕+∞

n=1Hn

)
if and only if An ∈ C∞(Hn) for all n ∈N and lim

n→∞
∥An∥ = 0.

Proof. (⇒:) Fix k ∈ N. The sequence
(
x(k)

n

)
n∈N

inHk converges weakly to 0 iff the sequence
(
y(k)

n

)
n∈N

, where

y(k)
n =

(
0, 0, . . . , 0, x(k)

n , 0, . . .
)

(at the k-th position is x(k)
n ), converges weakly to (0, 0, . . . , 0, . . .) ∈

⊕+∞

n=1Hn. From⊕+∞

n=1 An ∈ C∞
(⊕+∞

n=1Hn

)
we get limn→∞

∥∥∥Akx(k)
n

∥∥∥ = limn→∞

∥∥∥∥(⊕+∞

m=1 Am

)
y(k)

n

∥∥∥∥ = 0. Therefore, Ak ∈ C∞(Hk).
Now, we will prove limn→∞ ∥An∥ = 0. Assume that there exists ε > 0 and a subsequence (nk)k∈N such

that ∥Ank∥ ⩾ 2ε for all k ∈ N. There exists xnk ∈ Hnk , ∥xnk∥ = 1, such that ∥Ank xnk∥ ⩾ ε for all k ∈ N. If
we form the vectors v(k) =

(
0, 0, . . . , 0, xnk , 0, . . .

)
∈

⊕+∞

n=1Hn (at the nk-th position is xnk ) we obtain that the
sequence

(
v(k)

)
k∈N

in
⊕+∞

n=1Hn converges weakly to 0 ∈
⊕+∞

n=1Hn. Indeed, if y = (yn)n∈N ∈
⊕+∞

n=1Hn, then

limn→∞ ∥yn∥ = 0 due to the
∑+∞

n=1 ∥yn∥
2 < +∞. Thus, we have

∣∣∣∣〈v(k), y
〉∣∣∣∣ = |⟨xnk , ynk⟩| ⩽ ∥xnk∥ · ∥ynk∥ = ∥ynk∥ → 0

as k → ∞. By the assumption
⊕+∞

n=1 An ∈ C∞
(⊕+∞

n=1Hn

)
we have that limk→∞

∥∥∥∥(⊕+∞

n=1 An

)
v(k)

∥∥∥∥ = 0 i.e.
lim
k→∞
∥Ank xnk∥ = 0. Contradiction with ∥Ank xnk∥ ⩾ ε > 0 for all k ∈N.

(⇐:) Let
(
a(n)

)
n∈N

be the sequence in
⊕+∞

m=1Hm, where a(n) =
(
a(n)

k

)
k∈N

, such that converges weakly to

0 and let N ∈ N be fixed. There exists M > 0 such that
∥∥∥a(n)

∥∥∥ ⩽ M for all n ∈ N. Then, we have∥∥∥∥(⊕+∞

k=1 Ak

)
a(n)

∥∥∥∥2
=

∑N
k=1

∥∥∥Aka(n)
k

∥∥∥2
+

∑+∞
k=N+1

∥∥∥Aka(n)
k

∥∥∥2
⩽

∑N
k=1

∥∥∥Aka(n)
k

∥∥∥2
+M2 supN∋k⩾N+1 ∥Ak∥

2. The sequence(
a(n)

k

)
n∈N

in Hk converges weakly to 0 for all k ∈ N. From Ak ∈ C∞(Hk) for k ∈ {1, . . . ,N} we get

limn→∞
∑N

k=1

∥∥∥Aka(n)
k

∥∥∥2
= 0. Thus, lim supn→∞

∥∥∥∥(⊕+∞

k=1 Ak

)
a(n)

∥∥∥∥2
⩽ M2 supN∋k⩾N+1 ∥Ak∥

2 for all N ∈ N.

If N → ∞ we get lim supn→∞

∥∥∥∥(⊕+∞

k=1 Ak

)
a(n)

∥∥∥∥2
⩽ M2 limN→∞ supN∋k⩾N+1 ∥Ak∥

2 = M2 lim supk→∞ ∥Ak∥
2 =

M2 limk→∞ ∥Ak∥
2 = 0. So, we proved

⊕+∞

n=1 An ∈ C∞
(⊕+∞

n=1Hn

)
.

Theorem 3.6. Let µ(Ω) < +∞ and ( fn)n∈N be a sequence ofM-measurable functions and lim
n→∞

fn(t) = 0 for µ-almost
all t ∈ Ω. Let 1 : Ω→ C beM-measurable function such that | fn(t)| ⩽ 1(t) for all n ∈N and µ-almost all t ∈ Ω. If the
family (At)t∈Ω is weakly* measurable and the functionΩ ∋ t 7→ ∥At∥·1(t) ∈ C belongs to L1(Ω,M, µ) and At ∈ C∞(H)
for µ-almost all t ∈ Ω, then

(⊕+∞

n=1 fn(t)At

)
t∈Ω
∈ L1

G(Ω, µ,B(ℓ2(H))) and
∫
Ω

⊕+∞

n=1 fn(t)At dµ(t) ∈ C∞(ℓ2(H)).

Proof. From the assumption of the theorem, for all E ∈Mwe have∥∥∥∥∥∥∥
∫

E

+∞⊕
n=1

fn(t)At dµ(t)

∥∥∥∥∥∥∥ = sup
∥(xn)n∈N∥=∥(yn)n∈N∥=1

∣∣∣∣∣∣∣
∫

E

+∞∑
n=1

fn(t)⟨Atxn, yn⟩ dµ(t)

∣∣∣∣∣∣∣
⩽ sup
∥(xn)n∈N∥=∥(yn)n∈N∥=1

∫
E

+∞∑
n=1

1(t) · ∥Atxn∥ · ∥yn∥ dµ(t)

⩽ sup
∥(xn)n∈N∥=∥(yn)n∈N∥=1

∫
E
1(t) ·

√√
+∞∑
n=1

∥Atxn∥
2 ·

√√
+∞∑
n=1

∥yn∥
2 dµ(t) ⩽

∫
E
1(t) · ∥At∥ dµ(t).
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The above calculations implies
(⊕+∞

n=1 fn(t)At

)
t∈Ω
∈ L1

G(Ω, µ,B(ℓ2(H))). Furthermore, we have fn(t)At ∈

C∞(H) for all n ∈ N and lim
n→∞
∥ fn(t)At∥ = lim

n→∞
| fn(t)| · ∥At∥ = 0 for µ-almost all t ∈ Ω. By Lemma 3.5 we get⊕+∞

n=1 fn(t)At ∈ C∞(ℓ2(H)) for µ-almost all t ∈ Ω. The mapping M ∋ E 7→
∫

E 1(t) · ∥At∥ dµ(t) ∈ [0,+∞) is a
positive measure onM, absolutely continuous with respect to the measure µ. Thus, the conditions of [13,
Theorem 2.3, (a)] are satisfied and we obtain

∫
Ω

⊕+∞

n=1 fn(t)At dµ(t) ∈ C∞(ℓ2(H)).
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[12] Danko R. Jocić, Djordje Krtinić, Milan Lazarević, Cauchy-Schwarz inequalities for inner product type transformers in Q∗ norm ideals of

compact operators, Positivity, 24 (2020), 933-956.
[13] Mihailo Krstić, Matija Milović, Stefan Milošević, Belonging of Gel’fand integral of positive operator valued functions to separable ideals

of compact operators on Hilbert space, Positivity (2023) 27:4.
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