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On some 3-dimensional almost 77-Ricci solitons with diagonal metrics

Adara M. Blaga?

*Department of Mathematics, Faculty of Mathematics and Computer Science, West University of Timisoara

Abstract. We study some properties of a 3-dimensional manifold with a diagonal Riemannian metric as
an almost n-Ricci soliton from the following points of view: under certain assumptions, we determine the
potential vector field if 1 is given; we get constraints on the metric when the potential vector field has a
particular expression; we compute the defining functions of the soliton when both the potential vector field

and the 1-form are prescribed. Moreover, we find conditions for the manifold to be flat. Based on the
theoretical results, we provide examples.

1. Introduction

The solitons’ theory has been lately intensively investigated. The stationary solutions of the Ricci flow,
namely, the Ricci solitons, still represent a very actual topic to be studied from various points of view.
Problems like linear stability of compact Ricci solitons, curvature estimates, rigidity results for gradient
Ricci solitons, etc. have been recently treated by Huai-Dong Cao et. al. in [7-9]. As a generalization of the
notion of Ricci soliton given by Hamilton in [12], an almost n-Ricci soliton [4, 5, 10] is a Riemannian manifold
(M, §) with a smooth vector field V which satisfies the following equation

%Eyg”+Ric +AG+un®n =0, (1)
where A and p are two smooth functions on M with u # 0, Ric is the Ricci curvature tensor field, £v4 is the
Lie derivative of the metric 4 in the direction of V, and 7 is a 1-form on M. If V is a Killing vector field, i.e.,
£y§ = 0, then the soliton is called trivial, and in this case, (M, §) is just a quasi-Einstein manifold. On the
other hand, if n = 0, then (M, 4, V, A) is called an almost Ricci soliton [13]. In this case, the soliton is said to
be shrinking, steady or expanding according as A is negative, zero or positive, respectively [11]. In the above
cases, if A and p are real numbers, then we drop “almost”.

The aim of the present paper is to describe a 3-dimensional manifold endowed with a diagonal Rie-
mannian metric as an almost 7-Ricci soliton. More precisely, under certain assumptions, we determine the
potential vector field V when 7 is given, we find the conditions that must be satisfied by the Riemannian
metric when the potential vector field has a particular expression, and we compute the defining functions
A and p when both the potential vector field and the 1-form are prescribed. Based on the theoretical results,
we construct examples, among which the 3-dimensional Sol;z and H? x R Lie groups. An analogous study
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for the canonical metric has been previously done by the present author in [6]. More recently, some partic-
ular Riemannian manifolds, namely, the 3-dimensional Sol; and H? x R Lie groups, have been described
as Ricci solitons by Belarbi, Atashpeykara and Haji-Badali in [1-3] from a similar point of view.

2. The flatness condition

We consider I =I; x I, X I3 CR3, where I; C R, i € {1,2,3}, are open intervals, endowed with a diagonal
Riemannian metric § given by

g= f%dx1 ®@dx' + %dxz ®dx® +dx’ @ dx®,
1 2

where f; and f, are two smooth functions nowhere zero on I, and x',x2,x3 are the standard coordinates in
R3. Let

0 0 0
{El = flﬁf Ey:= fZﬁ/ Es:= %}
be a local orthonormal frame, and, for the sake of simplicity, we will make the following notations:

é.%_. 1 9h —b fhodfh _ 1 %_
f1 8x2

.a, Eﬁ_ , f__z‘ﬁ_'(:, E.ax?) =
Computing the Lie brackets [X, Y] := X o Y — Y 0 X, we get
[E1, E2] = —aEy + cEy, [Ey, E3] = —bEy, [Ep, E3] = —dE.
The Levi-Civita connection V of §, deduced from the Koszul’s formula
2§(VxY, Z) = X(§(Y, 2)) + Y(§(Z, X)) - Z(§(X, Y)) — §(X, [V, Z]) + g(Y, [Z, X]) + §(Z, [X, Y]),
is given by
VE1E1 = aEz + bE3, VElEZ = —aEl, VE] E3 = —bEl, VEZEl = —CEz,
Ve,Ey = cEq +dE3, Vi,Ez =—dE;, Vg, E1 =0, VEEx =0, VgE; =0,

and the Riemann and Ricci curvature tensor fields

3
R(X,Y)Z := VxVyZ - VyVxZ - Vixv1Z, Ric(Y,Z):= Z G(R(Ex, Y)Z, Ex)
k=1

are the following
R(E1, E2)Ez = [Ex(c) + Eo(a) — a* = ¢* = bd]Ey + [Es(c) — cd]E;,
R(Ez, EE1 = [Eq(0) + Ex(a) = @ — ¢* = bd]E; + [E3(a) - ab]Es,
R(E1, E3)Es = [Es(b) — b*]Ey,
R(E3, E3)Es = [E3(d) — d°]Ey,
R(Es, E1)E1 = [Es(a) — ab]E; + [E3(b) — *]E;,
R(Es, E2)E; = [E3(c) — cd]Ey + [E3(d) — d°]Es,
R(E1, E2)Es = §(R(Ez, E1)E1, E3)E1 — §(R(E1, E2)Es, E3)Ep = [E3(a) — ablE; — [E3(c) — cd]Ea,
R(Ez, E3)E1 = §(R(E3, E2)Ea, E1)Ex — §(R(Ea, E3)E3, E1)Es = [Es(c) — cd]Ey,
R(Es, E1)Ea = —§(R(E3, E1)E1, E2)Eq + §(R(E1, E3)E3, E2)Es = —[Es(a) — ab]Ey,
Ric(E1, E1) = E1(c) + Ea(a) + Es(b) —a* — b* — ¢ - bd,
Ric(E,, Ey) = E1(c) + Ex(a) + E3(d) — a* — ® —d* — bd,
Ric(Es3, E3) = E3(b) + E3(d) — b* — d?,
Ric(E1, E;) =0, Ric(Ey, Es) = Es(c) —cd, Ric(E,, E3) = E3(a) — ab.
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We shall determine the conditions that the two functions f; and f, must satisfy for the manifold to be
flat, exploring the cases when each of the two functions depends on a single variable. In this paper, if
a function / on R® depends only on some of its variables, then we will write in its argument only that
variables in order to emphasize this fact, for example, h(x"), h(x', x/).

Proposition 2.1. If f; = fi(x') for i € {1,2}, then (I, §) is a flat Riemannian manifold.
Proof. In this case,a =b=c=d=0,and R(E;, Ej)Ex =0 forany i,j,k € {1,2,3}. O

Proposition 2.2. If f; = f;(x®) for i € {1, 2}, then the following assertions are equivalent:
(1) (I, §) is a flat Riemannian manifold;

(2) fi and f, are constant, or f; = k; € R\ {0} and fj(x3) =3 &l o where c; € R\ {0}, c; e R\ I3, and i # j.
)

Proof. In this case,a =0,b = %, c=0,d= %, and

R(Eq, E2)E; = —=bdE1, R(E, E1)E1 = —bdE,,
R(Eq,E3)Es = (' = b*)E1, R(Es E1)E1 = (V' —b*)Es,
R(Ey, E3)E3 = (d' — d*)Ey, R(E3, E2)Ep = (d — d?)Es.
Then, R = 0 if and only if

bd=0
V= b2 ,
d/ — dZ
that is,
fif;=0

(.

7]

bl
7

Therefore,
.fl, =0andf2’ :0,0I'
° fl' =(0and - f2’(1x3) =x3+¢ (i.e., f2(x3) = x3c—1 o wherec; € R\ {0}, co € R\ 13), or, similarly
f(x7)
o fi(x%) = x3C1 - ,wherec; € R\ {0},cc € R\[zand f, =0. O
)

Corollary 2.3. For [ =R3, if f; = f(x®) for i € {1,2}, then the following assertions are equivalent:
(1) (R?, §) is a flat Riemannian manifold;
(2) f1 and f, are constant.

Proof. It follows immediately from Proposition 2.2. [J

Proposition 2.4. If f; = fl(xl), = fz(x3), then the following assertions are equivalent:
(1) (I, §) is a flat Riemannian manifold;
(2) fo is constant, or fo(x%) = 3 ol = where c; € R\ {0}, c; € R\ I5.
—C
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Proof. Inthis case,a=b=c=0,d = {3 and

R(Ez, E3)E; = (d' — d*)Ey, R(Es, E2)Ez = (d' — d?)E3,

R(E1, E2)Ez = R(Es, E3)E3 = R(E2, E1)E1 = R(E3,E1)E1 =0
Then, R = 0 if and only if

d =d?,

that is,
r\’/ 7\ 2

(_2 _(£
f2) (fz) '
Therefore,
e f =0,0r
— f,(1x3) =x3+¢ (i.e., fz(x3) = x3c_1 & wherec; € R\ {0}, € R\ 13)‘ O
2
f(x)

Corollary 2.5. For [ =R3,if fi = fi(x!), foa = f2(x3), then the following assertions are equivalent:
(1) (R3, §) is a flat Riemannian manifold;
(2) f> is constant.

Proof. It follows immediately from Proposition 2.4. [J

Proposition 2.6. If f; = f(x?) for i € {1,2}, then the following assertions are equivalent:
(1) (I, §) is a flat Riemannian manifold;
(2) f1 and f, satisfy the equation

fifi __4;ﬁ
f1 fz fi A’
2
(3) f1 is constant, or f] is nowhere zero and fo = co f—l,, where ¢y € R\ {0}.
1

Proof. In this case, a = f, ];1 b=c=d=0,and

R(E1, Ep)Es = [Ea(a) — a*]E1, R(Ea, E1)Eq = [Ea(a) — a*]Es,

R(E1, E3)Es = R(E3, E1)E1 = R(Ey, E3)Es = R(E3, E2)Ex = 0
Then, R = 0 if and only if
fza/ — {Ilz,
that is,
iy B mf_ﬁ()2
2h fi \A

which is equivalent to

Fedli)
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If f/ = 0, then f; is a constant function. If f| # 0 (hence, if it is nowhere zero), then the previous relation can

be written as )
2L} — L1
jiz' B (fl) f
fo fi '
fi

Let us notice that

which, by integration, gives
A

In|fol =In|fi| = In|—
fi

(kS
+k—ln(e |f{|)’

2

where k € IR; therefore, f, = ¢ jil,, wherecp € R\ {0}. O
1

Corollary 2.7. For I =R%, if fi = fo =: f(x?), then the following assertions are equivalent:
(1) (R3, §) is a flat Riemannian manifold;
(2) f(x?) = c1e2*, where ¢; € R\ {0}, c; € R

Proof. (1)isequivalentto ff” —( )2 =0, that s, (J%) = 0, with the solution f(x?) = 162 where c; € R\ {0},

2 € IR, hence we get the conclusion. [

Proposition 2.8. If f; = fi(x?), f» = fa(x"), then the following assertions are equivalent:
(1) (1, §) is a flat Riemannian manifold;
(2) f1 and f, satisfy the equation

CR-2RP AR
i f

= constant.

Proof. In this case, a = fz%, b=0,c= fl%, d=0,and

R(E1, E2)Es = [Ex(c) + Ex(a) — a* = *]E1, R(Ey, E1)E1 = [Eq(c) + Ex(a) — a® — ¢*]E,,
R(E1, E3)Ez = R(E3, E1)E1 = R(E, E3)E3 = R(E3, E2)E; = 0.
Then, R = 0 if and only if
dc da 9 >
f1ﬁ+f2ﬁ=a + ¢,

that is,

17 7\2 1" 7\2 7\ 2 7\2
12 2f2f22(f2) n 22 1f1f12(f1) :fzz(ﬁ) +f12(f_§) ,
which is equivalent to
TA-2A) __BA-2AR)
f £

Since f; depends only on x? and f, depends only on x!, we deduce that the above ratio mustbe a constant. [
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Remark 2.9. We shall now look on the condition (2) from Proposition 2.8 satisfied by the two functions, namely
f//f _ 2(f/)2 .
f
when f is a real function defined on a real interval. Let us notice that
f//f_z(f/)Z ~ 1 ’” 1

€R,

flF
Denoting by h := %, we have
h’h = —k.
Let r € R and let | C R be an open interval such that 0 ¢ | and —2kIn|y| +r > O for any y € J. Let F be an

antiderivative on | of the function
1

| A ——
Y V=2kIn|y| +r

Then, F'(y) > O for any y € |; therefore, F is strictly increasing on |, hence, it is invertible onto its image. Let ¢ € {£1}
and let I} := & (F(J) — co), where ¢y € R. Then,

h:I; = R, h(x):= Fl(ex + cp)
satisfies h" (x)h(x) = —k for any x € Ij, and we get

1
1 R, = —.
filj = f& F-1(ex + ¢g)
Proposition 2.10. If f; = fi(x?), fo = f2(x%), then the following assertions are equivalent:
(1) (1, §) is a flat Riemannian manifold;
(2) fi and f, are constant, or fi = ki € R\ {0} and fo(x®) = x3C1 = where ¢; € R\ {0}, c; € R\ I3, or
—C2

fo=ky € R\ {0} and fi(x?) = xzcl —, where i € R\ {0}, ¢; € R\ L.
— (2

Proof. In this case, a = fz%, b=c=0,d= %, and

R(E1, E2)Ey = [Ea(a) — a*]E1, R(Ea, E1)E; = [Ex(a) — a*]E; + E3(a)Es,

R(Ey, E3)E3 = [E3(d) — d*]E;, R(Es, E2)E; = [Es(d) — d*]Es,
R(Es, E1)E1 = E3(@)E;, R(E1, E2)Es = E3(@)E1, R(Es, E1)Ex = —E3(a)Es,
R(E1, E3)Es = R(Ez, E3)E1 = 0.
Then, R = 0 if and only if

fhi=0
[7) =(7).
7) - (%)

Therefore,
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e ff=0and f; =0, or

e fi=0and - f2'(1x3) =23 + ¢ (i.e., f2(x3) = x3c—1 o wherec; € R\ {0}, co € R\ 13), or, similarly
f(x%)
° fix?) = xzc_l o wherec; € R\ {0}, ; e R\ Land f; =0. O

Corollary 2.11. For I = R®, if fi = f1(x?), f» = fo(x®), then the following assertions are equivalent:
(1) (R3, §) is a flat Riemannian manifold;
(2) f1 and f, are constant.

Proof. It follows immediately from Proposition 2.10. [

3. I as an almost 7-Ricci soliton

LetV = 22:1 V¥E, and n= Z,‘Z’:l nkek, where ¢ is the dual 1-form of E; for k € {1,2,3}. From (1) we get
the equations that define an almost n-Ricci soliton (I, §, V, A, u):

3
1 . , ) y .
E{15,-(1/]) +E{(V)+ Y VHIG(VEEx, Ej) + G(Ei, Vi, EOI} + Ric(E;, Ej) + A7 + i) = 0
k=1

forany (7, j) € {(1,1),(2,2),(3,3),(1,2),(1,3), (2,3)}, which is equivalent to the following system

Ey(VY) —aV? = bV? + Ric(Ey, E1) + A + u(n')* =0

Ex(V?) —cV! —dV? + Ric(Ep, E2) + A + u(n?)* =0

E3(V?) + Ric(E3, E3) + A + u(n’)* = 0

%[El(VZ) + Ex(VY +aV?! + V2] + un'n® = 0 . (2)

%[El(V3) + E3(V') + bV'] + Ric(Ey, E3) + un'n® = 0

%[EZ(V3) + E3(V?) + dV?] + Ric(Ez, E3) + uPn® = 0

We shall further consider the cases when the potential vector field of the almost 7-Ricci soliton (I, §, A, 1)

isV = %, or when 1 = dx>.

3.1. Almost n-Ricci solitons with V = 8%3

If V1 = V2 = 0 and V3 = 1, then the system (2) becomes
—b+Ric(Ey, E) + A+ u(n')? =0

—d + Ric(Ey, Ep) + A + u(?)* = 0

Ric(Es, E3) + A+ u(n®)?* =0

pn'n® =0

Ric(E;, Es) + '’ = 0

Ric(Ey, E3) + un’° = 0

)

Proposition 3.1. Let (I, 4, V, A, u) be an almost n-Ricci soliton with V = % If f = fi(x") for i € {1,2} and p is

nowhere zero on I, then n = 0 and V is a Killing vector field.
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Proof. In this case, we havea = b = ¢ = d = 0, and Ric(E;, E;) = 0 for any i, j € {1,2,3}, and (3) becomes

A+u@')y =0
A+ [J(I]z)z =0
A+u@? =0 4)

un'n® = pn'n® = p'n’ = 0
Since p is nowhere zero, we get (11)? = (n%)? = (°)?, hence, ' = 0 for i € {1,2,3}, and A = 0 from (4);
therefore, £y§ = 0 by means of (1). O
Proposition 3.2. Let (I, 4, V, A, ) be an almost n-Ricci soliton with V = % If fi = fi(x®) fori € {1,2}, f =: f for

i €{1,2,3}, and u is nowhere zero on I, then n = 0. Moreover,
(i) if one of the functions f1 and f, is constant, then the other one is constant, too; in this case, (I,§) is a flat
Riemannian manifold, A = 0, and V is a Killing vector field;

(ii) zf% is constant, then fi(x*) = czrecf)fx3 forie{1,2}, wherecp € R, c1,c2 € R\ {0}.

Proof. In this case, we havea =0, b = fi c=0,d= b

jT’ ]72, and
Ric(Eq, E1) =V —b? —bd, Ric(Ey, E) =d’ —d* —bd, Ric(Es, E3)=b +d —b* —d?,
Ric(E1, E») = Ric(E1, E3) = Ric(E,, E3) = 0,
and (3) becomes
—b+b -V -bd+A+un)*=0
—d+d - -bd+A+um?)?=0

V+d -0 —d+A+u(@)?=0 ©)
un'n® = un'n’ = pn’n’ =0
Since p is nowhere zero, (5) is equivalent to
bd+1)=d*-d
db+1)=b* -1
(6)

A= -V +d*-d"
=0

which implies = 0.
(i) f1 is constant if and only if b = 0, and from (6), we deduce that b = 0 if and only if d = 0, i.e., if and
only if f, is constant. In this case, R =0, A =0, and £y§ = 0.

(ii) If % is constant, then b = d, and from (6), we get

Y =-b ,
{A:Z(bZ—b’)' @

If b =d =0, then f; and f, are constant and A = 0. If b = d # 0 (hence, if they are nowhere zero), then

b/
7ot ) )
A=20%-1)
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from where we get
£ (%)
fix®)

which, by integration, gives fi(x®) = c,-e‘c‘)e_x3 forie (1,2}, whereci,c; e R\ {0}. O

=b(x) = coe™, co e R\ {0},i€ (1,2},

Corollary 3.3. Under the hypotheses of Proposition 3.2,if fi = f» =: f(x°), then f(x%) = cle”"*xs, where c; € R\ {0},
¢ eR.

Proof. It follows from Proposition 3.2 (ii). O
Proposition 3.4. Let (I, 4, V, A, u) be an almost n-Ricci soliton with V = % Iffi = i(xY), o = (%), ' =: f for
i €{1,2,3}, and u is nowhere zero on I, then 1 = 0 and A = 0. Moreover, f, is constant and V is a Killing vector field.
A

2

Proof. In this case, wehavea=b=c=0,d = 24, and

Ric(Ey, E;) = Ric(Es, E3) = d’ — d?,
Ric(E1, E1) = Ric(Ey, E») = Ric(Ey, E3) = Ric(Ey, E3) = 0,
and (3) becomes
A+u@n'y =0
—d+d -+ A+u?)? =0
d—-d+A+um’)?=0
un'n? = pn'’ = un’n’ =0

Since p is nowhere zero, (9) is equivalent to

©)

d=d —d =0
A=—pf?
£=0

It follows that n=0,A =0,and £, =0. O

Proposition 3.5. Let (I, 4, V, A, u) be an almost n-Ricci soliton with V = % If fi= f,-(xz)fori € 1,2}, T]i =: f for
i € {1,2,3}, and u is nowhere zero on 1, then n = 0 and A = 0. Moreover, f; is constant, or fl’ is nowhere zero and
2
fo= coLl,, where cg € R\ {0}.
f
Proof. In this case, we havea = fzj%, b=c=d=0,and
Ric(Eq, Eq) = Ric(Ey, E,) = Ea(a) — a2,

RiC(El,Ez) = RiC(El,Eg) = RiC(Ez, E3) = RiC(E3, E3) = 0,

and (3) becomes

fi b

fzfz'fl + ]le[f{'fl =2()1+A+pun') =0
/f_l, f_22 "o 7\2 2\2 _
fzfzf1 t e A" A =20A) T+ A +ur)”=0. (10)
1
A+u(r)? =0
un'i = pn'n’ = pr'n’ =0
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Since p is nowhere zero, (10) is equivalent to

ffzj;l ; = 214 A uf? =
A=—uf?
=0

It follows that n = 0, A = 0, and, from the first equation of the previous system, we get
i 7" 7\ 2
ﬁé + /1 =2 (_1)
fif A f
2
From Proposition 2.6, we deduce that f is constant, or f] isnowhere zeroand f, = ¢o ZL wherecy € R\{0}). [
1
Corollary 3.6. Under the hypotheses of Proposition 3.5, if fi = fo =: f(x2), then f(x?) = c1e™*’, where ¢; € R\ {0},
c €R.
Proof. 1t follows from Proposition 3.5 that ff”” — (f')* = 0, that is, (fT) = 0, with the solution f(x2) = ¢;e%,
wherec; e R\ {0}, e R. O
Proposition 3.7. Let (I, 4, V, A, u) be an almost n-Ricci soliton with V = % If fi = A(x2), f» = fo(x), ' =: f for
i €{1,2,3}, and u is nowhere zero on I, then n = 0 and A = 0. Moreover,
A2 B h 2R
fi i
Proof. In this case, we have a = f2§1 b=0,c=f ;2 d=0,and
RiC(Elel) = RiC(EZ/ E2) = El(c) + EZ(”) - az - C2r

= constant.

Ric(Ey, E2) = Ric(Ey, E3) = Ric(Ey, E3) = Ric(Es, E3) = 0,

and (3) becomes

d P
fl—c +f2—”—a2—c2+)\+y(q1)2:0

f1 fz —a> =+ A+ u() = (11)

A+ u(n )2 =
un'n’ = wfff’ =upn’ =0

Since u is nowhere zero and ' = f, (11) is equivalent to

dc da 5, 5 ’
— th—S-—a-c"+A+ =0
o 2 Hf
A=—pf?
f2=0
It follows that 7 = 0, A = 0, and, from the first equation of the previous system, we get the relation between

f1 and f,. Since f; depends only on x* and f» depends only on x!, we deduce that the obtained ratio must
be a constant. [
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Proposition 3.8. Let (I, 4, V, A, ) be an almost -Ricci soliton with V = % If fi = A(xX?), o = fo(x®), 17 =: f for
i €{1,2,3}, and u is nowhere zero on I, then n = 0 and A = 0. Moreover, V is a Killing vector field, f, is constant,
and either fy is constant or f1(x?) = 2 a o where c; € R\ {0}, c; € R\ L.

-2

Proof. In this case, we have a = fz%, b=c=0,d 5 and

=4

Ric(Ey, E1) = Ex(a) — a*, Ric(Ey, Es) = Ex(a) — a* + Es(d) — d*, Ric(Es, E3) = Es(d) — d?,

Ric(Ey, Ez) = Ric(Ey, E3) = 0, Ric(Ey, E3) = E3(a),

and (3) becomes

da
fzﬁ —a*+ A+ un')y =0

—d+f2% —a*+d -+ A+u?)? =0

X

& —d?+ A+ u(P)? =0 : (12)
un'n? = pn'n® =0

oa 9 3
— + =0
e Hirn

Since u is nowhere zero and ' = f, (12) is equivalent to

fz%—ﬂZ—d:O
d=d —d*
A=—-d

f=0

oa

Erchaly

It follows that n = 0 and f] f; = 0, which, together with the second equation of the system, implies that one
of the functions f; and f, must be constant. If f; = k; € R\ {0}, thena =0, d = 0 (hence, f, is constant), and
A=0.If f, =k, € R\ {0}, thend =0, A =0, and

'\’ 7\ 2
fi f
Then, either f; is a constant, too, or f| # 0, in which case, by integration, we obtain — 7 (1362) =x%+cp, ie.,
1
(%)

A = xzc_l o where ¢; € R\ {0}, c; € R\ L. Since b = d = 0, we deduce that £y =0. O
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3.2. Almost n-Ricci solitons with n = dx®
If n* = = 0and 1° = 1, then the system (2) becomes
E1(VY) —aV? —bV3 + Ric(E1,E1) + A =0
Ex(V?) —cV! —dV3 + Ric(Ep, E2) + A =0
E3(V®) + Ric(E3,E3) + A+ u=0
Ei(V®) + Ex(VY +aVl +cV2 =0 ) (13)

%[El(V3) + E3(V') + bV'] + Ric(E1, E3) = 0

%[EQ(W) + E3(V?) +dV?] + Ric(Ey, E3) =0

Theorem 3.9. Let (1,4, V, A, u) be an n-Ricci soliton with n = dxs. If fi = ﬁ(xi)for ie€{1,2}, then
V!, a2, %) = =AF1(xY) + a1 F2(x®) + o + 3
V2(x!, 2%, x%) = —c1F1(xY) = AF»(x®) + cax® + ¢5 , (14)
V3(x!, 22, %) = —coF1(x!) — cuFa (%) — (A + [J)X3 + ¢

where F; is an antiderivative of%fori ef{l,2}andc; e Rforie{1,2,3,4,5,6}.
1

Proof. In this case, we havea = b = ¢ = d = 0, and Ric(E;, E;) = 0 for any i, j € {1,2,3}, and (13) becomes

wvi_ A
ox! A
v __A
ox? f
V3
EN -(A+p)
x . (15)
GV
L ox! 2 ox
v v
Yox! ox3
LIV v
2 ox ox3
Since f; depends only on x/, from the first three equations of (15), we find that
V!, 0%, %) = AR (x!) + I (2, %)
V2!, 2, x%) = —AFy (%) + ho(x, %),
V3! a% %) = —(A + y)x3 + h3(x!, %)
where F] = l for i € {1,2}. From the last three equations of (15), we infer:
oh oh
1 2,1 .3 2 1,2 3
x)—(x,x°) = —fr(x°)— (x5, x°), 16
Sl )3x1( ) =~/ )8x2( ) (16)
oh oh
A6 = 25622, (17)
oh oh
HOAZZ () = == 20, 2), (18)
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Denoting fz(xz)%(xz, x3) =: h1(x®), we have
73
a_h;(le x3) - hl(xz)/
ox fa(x%)

which, by integration, implies
(3, 2%) = I (®)F2(?) + I (),
and, by replacing it in (17), it gives

—I (P)Fo(x?) - fl(xl)%(xl,xz) = I ().

Differentiating the previous relation with respect to x?, it implies

2
) = A S ),
which must be a constant, let’s say c;. Therefore,
)=’ +c
and 21
) = -
Ixx! AEN ()

which, by double integration, implies
h3(x',x%) = —c1Fy(x)Fa () + L (x") + L(x).
e
filxh
ha(x',x%) = =l (F)Fy (x1) + fip ().

oy
ox!

Also, from (16), we have Z=2(x!,x%) = , which gives

From (17), we find .
(%) = —AEHL(,
which must be a constant, let’s say, c3, which gives
ﬁl(x3) = 3x° + ¢4

Since fi(x")l}(x") = —c3, we get
h(x') = —csF1(x") + c5.
From (18), we find .
(%) = 2c1F1(x') = fo(?) (),
which must be a constant, let’s say, cs, which gives
fzz(x3) = cx> + 7.
Since 2c1F1(x") = fo(x?)I,(x?) + ¢ and Fy is not constant, we get

c1 =0, L(x*) = —ceFa(x?) + cs.

We have obtained
V!, 2%, x%) = —AF1(xY) + coFo(x®) + 3% + ¢4
Vz(xl,x2,x3) = —/\Pz(xz) - czFl(xl) +cex® + 07 ,

V3! a%, %) = —(A + /J)Jc3 — c3F1(xY) + ¢5 — c6Fa(x?) + cg

which, by changing the indices of some constants, gives (14).

10947



A. M. Blaga / Filomat 38:31 (2024), 10935-10961 10948

Example 3.10. For f; = k; € R\ {0}, i € {1,2}, the vector field V with V', V2 and V* given by:

A C1
Vl(xl,xz,x3) =——x'+ =+l + ¢
kq ka
C1 A
V2, x?,x%) = ——=x' — —x® + cx® + ¢35 ,
ky k>
2 Cq
V3!, %, x%) = —k—x1 - k—x2 -—(A+ y)x3 + ce
1 2

where c; € R fori € {1,2,3,4,5, 6}, is the potential vector field of the n-Ricci soliton (I, §, A, i) for n = dxs.
Remark 3.11. If f; = fi(x') for i € {1,2}, then V with V', V? and V® given by:

V2, %) = c1Fa(x?) + cox® + ¢3
V2(x!, %) = —c1F1(x) + cax® + ¢35

V3!, %) = —eaF1(x') — caFa(x?) + ¢
is a Killing vector field on (1, §), where F; is an antiderivative of%for ie{l,2}andc; e Rforie{1,2,3,4,5,6}.
1

Theorem 3.12. Let (I,§,V,A, ) be an almost n-Ricci soliton with n = dx*. If fi = fi(x®) for i € {1,2}, and
Vi= Vi) fori€ {1,2,3)}, then:

1
vi=—
A
C2
Vi= =
f

(b-d)V3 = (b-dy - * - )
(b—d)A =b'd - bd’
b-dPu=-b-db-d) +bd—bd]+[b-dP+6-d>E? +d)

where c1, c; € R.
We have the following cases.

(1) On any open interval |3 C I3 on which (%) # 0 everywhere (equivalent to b # d on J3), we have:
b-d)
AR RV e —(b+d),
pd-bd  (p-d)+bd-bd (b-d'\ o,
A= g M= P +(b—d +b"+d°,

where c1, c; € R.
In particular:
(1) if f1 is constant on an open interval | C [ (from which f, # 0 everywhere on ), we have on J:

d —d*
V1: V2: C_2 V3:
Cl/ le d 7
1" 7\2
/\:0, lu——%-f-(%) +d2,

where c1, c2 €R;
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(2) if fo is constant on an open interval | C J5 (from which f] # 0 everywhere on ]), we have on J:

1_ ¢ 2 _ 3_17’_172

V—fl,V—Cz,V——b ,
b/l b/z 2

A—O,[J——?ﬁ'(?) +b,

where c1, c; € R.

(ii) On any open interval J3 C I3 on which % is constant (equivalent to b = d on [3), we have:

V= V222 gy b2+ A, (VBY = 20 — %) — (A + p),
h f2
where ¢1, c; € R.
In addition:

(1) if ] € J3 is an open interval with f # 0 (and f, # 0) everywhere on |, we have on J:

VioG o2 @ V3=b’—2b2+)\
fll f2/ b 7
A:_(—b ZA) +20% -y,

where ¢1, c; € R;
(2) if f1 and f, are constant on an open interval | C J3, we have on J:

Vi=g, V2=¢,, V3=F
A=0,

where ' = —pand c¢1, c; € R.

Proof. In this case, we havea =0, b = j% c=0,d= %, and

f’ f:
Ric(E1,E1) = b’ — b* — bd, Ric(Ey, Ey) =d —d*—bd, Ric(Es, E3) =V +d —b* —d?,

RiC(El,Ez) = RiC(El,Eg) = RiC(Ez, E3) = 0,

and (13) becomes

fli_‘;_bv3+b’—b2—bd+A=0
fzg_dv3+d’—d2—bd+A=0
a&—‘;j+b’—b2+d’—d2+/\+p:0
f1%+fzi—‘;:=0 ,
fli‘: +(;—‘:31+bV1=0

Ve Iv?
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which is equivalent to

(Vl)/ — _bvl
(V2)/ — _dVZ
(V3 = —b*+d' —d*) = (A +p). (19)

pVi=b —-b>—bd+ A
AVi¥=d —d*—-bd+ A

(“//i) = —J%,i.e., Vi =% wherec; € R\ {0} fori € {1,2}.

From the first two equations, we get either Vi=0or
From the last two equations, we obtain
(b-d)V°=(-dy - -d?
and
b-dA=b'd-bd.
Differentiating the second-last equality, multiplying the result with b—d and substituting in it the expressions
of (b — d)V? and (V3), we get
b—dPu=-b-d[b-d) +bd—-bd]+[(b-d) ]+ - d)>*b* +d?).

(i) For x3 € I3, we notice that (%) (x*) # 0if and only if b(x®) # d(x®). From the last three equalities from
above, on any open interval J3 C I3 such that (%) (%) # 0 for any x> € J3 (equivalent to b # d everywhere
on J3), we get the expressions of V3, A, and u.

(ii) We notice that % is constant on J3 if and only if (%) = 0 on J3 (equivalent to b = d on J3). In this
case, (19) becomes

(Vl)l — _bvl

(V2 = -bV?

(VB = =20t/ —b*) - (A +u)
bV =1 -2 + A

On any open interval | C J3 where f| # 0 everywhere, we have b # 0 and

b -2+ A
b 4
which, by differentiation and using the third relation, gives the expression of .
If f; and f, are constanton | C J3, then b = d = 0 on | and (19) becomes

V3=

A=0

vy =0

vy =0 -
(V%) = —p

Example 3.13. The Riemannian Sols Lie group (R?, ), where fi(x®) = ¢ and fo(x®) = e*, is an n-Ricci soliton
for n = dx?, with

Vool

axl +C2% (C1,C2€IR), A=0, [J=2
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Remark 3.14. If f; = f;(x®) for i € {1,2}, then V with V', V2 and V® given by:

Vi) = 4
=@

V2(3) = 2
=2

V3=0

is a Killing vector field on (I, §), where c; € R fori € {1,2}.

Theorem 3.15. Let (I, §,V, A, u) be an almost n-Ricci soliton with n = dx®. If i = fixY), o = f(x%), and
Vi=Vi(x®) forie(1,2,3}, then:

Vl =0C
C2
V==
f
dV3 =d _dZ ’
A=0
dZy — (d/)2 +d4 —dd’

where ¢1,c2 € R.
We have the following cases.
(i) On any open interval |3 C I3 on which f, is constant, we have:

Vi=g, V2=¢,, V3=F

A =0,

where F' = —pand c¢1, c; € R.
(it) On any open interval J3 C Iz on which f; # 0 everywhere (equivalent to d # 0 on J3), we have:
C2

d' - d
Vi=e, V2==, V= ,
C1 f2 d

1’ /2
A=0, yz—%+(%) +d?,

where c1,¢c2 € R.

Proof. In this case, wehavea=b=c=0,d = %, and

Ric(Ey, Ey) = Ric(E3, E3) = d’ — d?,

Ric(Ey, E1) = Ric(Ey, E) = Ric(Ey, E3) = Ric(Ey, E3) = 0,
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and (13) becomes

V!
fl% +A=0
2
fz%—dV3+d’—d2+/\:O
X
3
213+d’—d2+)\+y=0
X
av: oVt ’
- — =0
f ox! th ox?
av: ov!
—+—==0
f oxt o
Ve Iv? )
fzy + % +dV-=0
equivalent to
A=0
(VY =0
(V3 = -dv? , (20)
(V3 =—d +d*—pu
AV =d —d?

from which we get

c
1 2 _ 02
Vi=g¢, V2=2,

2

f

where ¢, ¢; € R. Differentiating the last equality of the previous system, multiplying the result with 4 and
substituting in it the expressions of V3 and (V3)’, we get

A=)y +d -dd’.

(i) We notice that f, is constant on J3 if and only if d = 0 on J3, and (20) becomes

A=0
(Vly =0
(V%) =0
(V) =—p

(ii) We notice that f; # 0 on J3 if and only if d # 0 on J5. Dividing the relations for dV* and d*u by d and
d?, respectively, we obtain the expressions of V® and u. [

Example 3.16. For fi(x') = ¥, fo(x®) = €°, the vector field

0 0
V= cle"l— +p—

o g2 T g e EeR)

is the potential vector field of the n-Ricci soliton (R?, §,0,1) for n = dx®.
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Theorem 3.17. Let (I, 4, V, A, u) be an almost n-Ricci soliton withn = dx>. If f; = fi(x*) fori € {1,2}and V' = V' (x®)
forie{1,2,3}, then:

Vlzcl
V2=C2
V3=F

aff =0=cf]
2
4 f/ 44
PPy _1) _ el pl
fz (fl f2f2f1 2 fl
where c1,¢2 € R, F' = G, pu(x?,x%) = —A(x2) — G(x3), with G = G(x*) a smooth function on I.
We have the following cases.
(i) For ], C I, a nontrivial interval on which fi is constant, we have

AP =0, F(x°) = —u@?, %) for x* € Jo,x° € L.

(ii) For fi constant, we have
A=0, u=u@®, F@E®)=—-u@® forx®el.

(iii) For fi not constant, we have
Vi=v2=0.

Proof. In this case, we have a = fz% ,b=c=d=0,and

Ric(E1, E1) = Ric(Ey, Ez) = Ex(a) — a?,
RiC(El,E2) = RiC(El,E3) = RiC(Ez, E3) = RiC(E3,E3) = 0,

and (13) becomes

1
fl&ll —aV?+ foa' —a*+ 1 =0
ox
oV? .
fza—xz +f2a —-a“+A=0
3
? + A+ u= 0
oV? ov! ’
— + for—s +aV' =0
f ax! f2 x>
ov:  ov?
fi=3 7 =0
ox ox
ove  9V?
+ =0
f2 o oxd
that is,
avt =0
av? =0
(Vly =0
(V3 =0
(V3 =~ +p)
fd —a*+A=0
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From the second-last equation, we deduce that A + u depends only on x%; therefore,

_dA+u)
oox2 o2’

P)
,, ok

which, by integration, gives
U6, %) = -A@) - G()

with G = G(x®) a smooth function on I3. We obtain

vi=¢

VZ=o¢,

V3 =F

=0 , (21)
aV? =0

A =—fa +a*

where I’ = Gand ¢1,¢, € R.

(i) We notice that f is constant on |, if and only if 4 = 0 on J,; therefore, a’ = 0and A = 0, hence F’ = —u
on ]2.

(ii) It follows from (i) for J, = L.

(iii) For f; not constant, there exists x(z) € I such that f/ (x%) #0,1ie., a(xg) # 0, and from the second- and
third-last equations of (21), it follows that V1 =V, =0. O

Example 3.18. The manifold H*> X R := {(x!,x2,x*) e R® : x* > 0} with
~_ 1, 1, o000, 13,03
g= Fdx ®dx + —dx” @dx" +dx’ ®@dx’,
where f(x?) = x2, is an n-Ricci soliton for n = dx®, with

1% A=1, u=-1

- ox3’

Theorem 3.19. Let (I, §,V, A, ) be an almost n-Ricci soliton with n = dx*. If i = fi(x?), o = fo(x"), and
Vi=Vi(x®) fori€(1,2,3}, then:

Vi=g

Vi=c,

Vi=F

aphh = and ,
szzjf%l = lel%

A=apleg [(ﬁ) —(f”*fzz [(ﬁ) _(71)]

where ci,¢; € Rand F' = —(A + p).
Forcy #00rcy # 0, we get fi and f, constant, A =0, and F' = —p.
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Proof. In this case, we have a = f2j;1 b=0,c=f {(2 d=0,and

Ric(E;, E1) = Ric(E,, E3) = E1(c) + Ex(a) — a* = ¢,
Ric(E1, E») = Ric(E1, E3) = Ric(E,, E3) = Ric(Es, E3) = 0,
and (13) becomes
Ei(V) —aV2 + Ei(c) + Ex(a) —a®> = ?+ A =0
Ex(V®) = eV + E1(c) + Ex(@) —a®> =2+ A =0
Es(V)+A+u=0
E{(V?) + Exy(VY +aV! +cV? =0
Ey(V?) + Es(V!) =
Ex(V3) + E3(V?) =0

(22)

Since V' for i € {1,2,3} depends only on x%, (22) becomes

:f1% +f2;;ﬂz—a2—c2+)\:cV1
x x

aVl = —cV?

(Vly =0

(V¥ =0

(V3) = —(A +p)

From the last three equations, we infer V! = ¢y, V2 = ¢, where ¢1,¢; € R, and V2 = F, where F' = —(A + p),
and the previous system is equivalent to

o

_lelj;z"'fl [(fz) (fz)} fz [(ﬁ) (fi)]
C2a = (1€
3::;C2c

We get (C% + c%)a =0.Ifc; #0o0rc; #0, thena =0, i.e, f1 is constant, and further, c = 0, i.e., f, is constant.
In this case,
A=0, V®=F

where F’ = —u. So, we get the conclusion. [
Example 3.20. For f;(x2) = ¢* and fo(x") = e"', the vector field

1 20 0
2 o3

is the potential vector field of the almost n-Ricci soliton

V==

(R® 3, A(x!,2%) = e + ¢, u(x!, 2%, 2%) = =+ +¢™))

forn = dx3.
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Theorem 3.21. Let (I, §,V,A, u) be an almost n-Ricci soliton with n = dx°. If i = fi(x?), f» = f(x*), and
Vi=Vi(x®) fori€(1,2,3}, then:
Vl =0C

= szz
av' =0
dve =aV? +d - d* ’
a= —C2f2 +F
A=aV2 - HF +a?
(V) =~ -d*) - (A +p)

where c1,¢y,¢3 € R, and F is a smooth real function on I. Moreover,
(i) if f, is constant, then V2 is constant;
(ii) if fa is not constant, then f1(x?) = cie™%  where ¢y € R\ {0}, and a = —ca fo;
(iii) if V1 # 0, thena = 0,dV3 = d' —d?, A = — ,F', and f, is constant. If, in addition, f, is not constant, then
V2= %3 F=0,A=0and u=—(V3 - (d - d?).
2

Proof. In this case, we havea = f, ? b=c=0,d= ?, and

Ric(E1, E1) = Ex(a) — a?, Ric(Ey, Ep) = Ea(a) — a® + E3(d) — d%, Ric(E3, E3) = E3(d) —
Ric(Ey, Ez) = Ric(Eq, E3) = 0, Ric(Ey, E3) = Es(a),

fz

and (13) becomes

1
f1&l—{lvz fz——ll +A=0
2
fZ&l—dV3 d/—d2+f2—2—ﬂ2+)\=0
ax
3
(zlﬂi’ d2+)\+y:0
i
2 s
fi (;V +f2 +aV1 0
V° av1
—+—=0
S 8x1 ox°
8V3 8V2 da
+dV? |+ — =0
fz 8x3 ox®
which is equlvalent to
(Vly =0
av' =0
, oa
(V2 +dV? = —2F

P) (23)
= fza—; —112 +A

(Ve =~(@d - d*) - (A +p)

:fz%—a2+d’—d2+/\
X
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. . da
From the first equation, it follows that V! is constant. From the third equation, we deduce that ENg depends

only on x%, while a4 depends on x? and x°. On the other hand, we have ; =5 ;1 Since fl depends only

’

on x2, if there exists xg € I3 such that f) (xg) # 0, then 71 is constant on I, let’s say ]T = ¢; with ¢; € R. So,
1 1

. oa
in the case f, not constant, we infer that f; (x?) = czecl"z, where ¢c; € R\ {0}, and a = ¢; f,. Hence, 3 =cify,

and we obtain the equation

(V2 + éV2 = -2c1f;,
f
oa
with the solution V2 = —¢; f + f , where c3 € R. If f, is constant on I3, we obtain — Erie =0andd =0, and the
2

third equation of the system becomes (V?) =0, s0 V2 = ¢4, where c; € R. We notice that we always have

da 3

e =cify and V2= —c1fo + E,

where cj,c3 € R. We infer that a(x?,x%) = ¢ fo+ F(x?), where F is a smooth real function on I,. Hence,
da

2 = F’, and, from the fourth equation of the system, we get
A=aV? - HF +a*.

The fifth equation of (23) gives
p=—(V (@ —d) -2

while, from the last equation of the system and the expression of A, we get

avi =aV? +d - d?,

that is, ; ;-
271 1 ’ 2
—C1 +Cc3— + d —d-. O
Ry rer,
Example 3.22. For fi(x2) = e*" and fo(x?) = ¢*, the vector field
PR
=(1-¢ ) 32 —e Er

is a potential vector field of the almost n-Ricci soliton
(R 5,4 =1, u() = 2°7)

forn = dx>.
3.3. Almost n-Ricci solitons with n = dx3 and V = E
IfVI=V2=nl = =0and V° = 1® = 1, then the system (2) becomes

—b+Ric(Ey,E1)+A=0

—d+RiC(E2,E2) +A=0

Ric(Es, E3)+A+u=0 . (24)

RiC(El,Eg) =0

Ric(E,, E3) =0
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Theorem 3.23. Let V = % and n =dx>. If f; = fi(x®) fori € {1,2}, then (I, §,V, A, u) is an almost n-Ricci soliton
if and only if

1 S RS R { S 2
and fi and f, satisfy
Aoff] £ fg]
Proof. In this case, we havea =0,b = {} c=0,d= %, and (24) becomes

—b+RiC(E1,E1) +A=0
—d +Ric(Ey, E2) +A =0, (26)
RiC(E3,E3) + A+ u= 0

with

Ric(Ey, E1) = — -2

! (f’ )2 fif

fl fi 2 Ak
s {5 53]

The two functions f; and f, must satisfy (25) due to the first two equations of (26), and we obtain the
expressions of A and u from the first and the last equation of the same system. O

Example 3.24. For ﬁ(x3) = kiek"S, ie{1,2}, k,ki,kp e R\ {0}, V
soliton if and only if

8&3' and n = dx3, (R, §,V, A, u) is an n-Ricci

A=2k*+k and p=—

Corollary 3.25. Under the hypotheses of Theorem 3.23, if fi = fo =: f(x3), then (I, §, V) is an almost n-Ricci soliton
with A and u as scalar functions if and only if they are given by

sl o5 a0 L5

Proof. It follows immediately from Theorem 3.23. [

Theorem 3.26. Let V = 2~ and 1 = dx3. | 1= A0, o= H(3), then (1,3, V, A, u) is an almost n-Ricci soliton
o3 n g H n
if and only if
A =ce™, A=0, p=1,

where ¢y € R\ {0}, or

c1 6"

A=0, 3 = ,
px’) = Gt 1

() =

C2€x3 +17

where ¢1,c2 € R\ {0} such that ¢, # —e for all X e ls.
In particular, for I = R, we additionally have the condition c; > 0.
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Proof. In this case, wehavea=b=c=0,d = ;2 and (24) becomes
A=0
—d+d -d*=0
d-d*+u=0

If d = 0, then f, is constant, and A = u = 0 (which contradicts p # 0). If d = —1, then In|f2(x*)| = —x + ko,
where kg € IR, and we get f,(x®) = 2" and = 1. If d # —1 and d # 0, from the second equation of the

above system, we get
da’ d’ da’

T P+d d d+1

which, by integration, gives
d(x3)
d(x3)

_X3+k1,

where k; € R, from which . ,
(1 = kpe® )d(x) = koe™,

where k, € R\ {0} and for all x3 € I3. This infers

’ x3 3
EO) ey = 22
f2(x3) 1 — kpe*
where k; # e for all ¥* € I3, and, by integrating, we get
k
3\ _ 3
fz(‘x ) - 1 _ k26x3’
where k3 € R \ {0}, and
B = ()~ () = - = =
1- kz@x

Theorem 3.27. Let V = % and n = dx3. If f; = fi(x?) fori € {1,2}, then (I, §,V, A, w) is an almost n-Ricci soliton

e _a|(fY 1'2 ia| - el(A) 1’2 fif
fz[(fl) (fl) fle} e fz[(fl) (fl) fle}

Proof. In this case, we have a = fz%, b=c=d=0,and (24) becomes

RiC(El,El) +A=0
RiC(Ez,Ez) +A=0 ,

A+u=0
with N .
Ric(Es, E1) = Ric(Ep, Ey) = f2 [(ﬁ) (fi) N ]% fi] .
Example 3.28. For fi(x?) = kie™, fo(x?) = kee®, ki, k» € R\ {0}, V = %, and 1 = dx®, (R®,§,V, A, ) is an

almost n-Ricci soliton if and only if

A(x?) = 2k§ezx2 and p(x*) = —2k§e2x2.
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Corollary 3.29. Under the hypotheses of Theorem 3.27,if fi = f» =: f(x2), then (I, §, V) is an almost n-Ricci soliton
with A and u as scalar functions if and only if they are given by

A:(f,)z_f”f and ‘u:_(f,)z'i'f”f.

Proof. It follows immediately from Theorem 3.27. [

Theorem 3.30. Let V = % and n =dx®. If fi = fi(x?) and f, = fo(x"), then (1,3, V, A, u) is an almost n-Ricci
soliton if and only if

) )l -5

Proof. In this case, we have a = fZ? b=0,c=f ;2 d = 0, and (24) becomes

RiC(El,El) +A=0
Ric(Ey, E2) + A =0,
A+u=0

e N[ N

Example 3.31. For fi(x?) = ¢, fo(x}) = ¢*, V =
and only if

with

&83, and n = dx®, (R3, 4, V, A, u) is an almost n-Ricci soliton if

A, x?) = e + e and p(xt, x%) = —e2 — 2

Theorem 3.32. Let V = % and n =dx®. If fi = i(x?) and f, = f2(x3), then (I, §,V, A, p) is an almost n-Ricci

soliton if and only if
=dd+1), fif,=0,

i 0 R R o R o R

Moreover, one of the following cases is satisfied:

(i) fo = ks € R\ {0} and
=~f [(fi -G ) =23 - ()]

, where c1, ¢y € R\ {0} such that ¢, # —e for all x5 el and

(i) fi = ki € R\ {0}, fo(x°) =

cze"3 +1
(iii) f1 = ki1 € R\ {0}, o(x®) = coe = where co € R\ {0}, and

A=0, u=1
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Proof. In this case, we have a = fzj;l b=c=0,d= ?, and (24) becomes
RiC(El,El) +A=0
—d+ RiC(Ez,Ez) +A=0
Ric(Es, E3)+A+u=0 "~
Ric(E;, E3) =0

(27)

with

g
f

RiC(El,El) = fz [(

—J

/ 7\ 2
Ric(Ex, Ex) = f2 [(% - ] fi) ,
RiclBs, F) = (f) - (f)
RiC(Ez, E3) = J%

fo must satisfy d’ = d(d + 1) due to the first two equations of (27), and we obtain the cases:
(i) f» constant;

(ii) f1 constant and fz(x3) = 53—11 on I3, where ¢1, ¢, € R\ {0} and & % —% on Iz;
cre +

(iii) f1 constant and fo(x%) = coe"‘s, wherecg € R\ {0}. O

Example 3.33. For fi =1, o(x®) =™,V = 833' and n = dx®, (R%,§,V, A, u) is an n-Ricci soliton if and only if

A=0and u=1
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