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A class of the cyclic anti-periodic and nonlocal boundary value problem
to the self-adjoint tripled fractional Langevin differential systems

Ziyuan Zhao?, Guanghao Jiang?, Tengfei Shen®"

“School of Mathematics and Statistics, Huaibei Normal University, Huaibei, Anhui, 235000, P.R. China.

Abstract. This paper aims to study a class of the cyclic anti-periodic and nonlocal boundary value problem
to the self-adjoint tripled fractional Langevin differential systems. Moreover, some sufficient conditions
for the existence and uniqueness of solutions to the problem have been presented. Furthemore, the Ulam-
Hyers and Ulam-Hyers-Rassias stabilities of the problem have been acquired. Our main results enrich and
expand some previous results. And some examples are given to validate our main results.

1. Introduction

In this paper, we are concerned with the following cyclic anti-periodic and integral boundary conditions
of the self-adjoint tripled fractional Langevin differential system.

D, (°Dg, + A)xi (B = fit,x1 (1), 22 (B), %3 (1), £ € (0,1), i =1,2,3,
11(0) + 12(0) = ~(@2(1) + %3(1), [} (@2(5) + x3(5))ds = Ay,
12(0) + x5(0) = ~(@s(1) +11(1), [[7 (@5(5) + x1(5))ds = Az,
x3(0) + 1(0) = ~(n(1) +%2(L), [ (1(9) + xa()ds = As,

1.1)

where €D2, and CDg . mean the Caputo fractional derivatives of order @ and f with0 < a <1, 0 < <
1, 1<a+p<2,0<n<&<1,1>0, A €R, fi:[0,1] X R? - R stand for continuous functions, i = 1,2, 3.

Fractional calculus is established on the basis of integer calculus. Subsequently, fractional differential
equations also emerged as the times require, which has extensive applications in many disciplines, such
as physics, geology, biology (see [17,18,20,23]). The qualitative theory of fractional differential equations
is a core component of the fundamental theory of fractional differential equations. It has attracted a lot of
discussions from many scholars (see [1,3,4,8-10,13-15] and references therein). For example, Ahmad et al.
[3] studied the existence and uniqueness of solutions to a class of Caputo fractional coupled anti-periodic
and nonlocal integral boundary value problems by some fixed point theorems as follows.

CDBx(t) = f(t,x(t),y(t),t€[0,T],
CD(t) = g (t,x(t), y(®),t€[0,T], (1.2)
(x+y)(0) = —(x+ y)(T), f,f (x(s) + y(s))ds = A,
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where D* and “Df are the Caputo fractional derivatives of order a and f with0 <a <1, 0 < g <1,
0<n<&<T,AER, f,g:[0,T] X R? > R are continuous.

In the recent years, the topics on boundary value problems of fractional Langevin equation have become
more popular. The main reason is that the fractional Langevin equation is a generalization of integer form
and can be used to present the fractional Brownian motion in anomalous diffusion of the memory property
(see [11]). Therefore, it has a practical physic background. Fazli and Nieto [12] was concerned with the
existence and uniqueness of solutions to the anti-periodic boundary value problems for a coupled system
of factional Langevin equation via some fixed point theorems of mixed monotone mappings established in
partially ordered metric spaces as follows.

x(0) + x(1) = 0, D?x(0) + D*x(1) = 0, D*x(0) + D*x(1) = 0, (1.3)

{ DF (D + A)x(t) = f(t,x(1),t €(0,1),
where D% and D are the Caputo fractional derivatives of order a and g with a € (0,1],8 € (1,2], f :
[0,1] x R — R is continuous, A € R. After that, Salem [19] considered the existence and uniqueness
of solutions for the following anti-periodic and nonlocal integral boundary value problem to fractional
Langevin equation.

(1.4)

CDF (D + A)x (B) = f(t, x(t), °D*x(t)), t € [0,1],

x(0) + x(1) = 0, ¥'(0) = 0, D%x(1) = rg/) On(r] —s) " x(s)ds,
where €D* and €DF are the Caputo fractional derivatives of order f and a with a € (0,1], p € (1,2],
f:10,1] x R? — R is continuous, n€(0,1), y >0, u € R. And, for the topics on boundary value problems
of fractional Langevin equation, the readers can see [5,6,7,17,21] and references therein.

On the other hand, fractional coupling equations with the cyclic boundary value problems have become
popular. Ahmad et al. [2] discussed a new kind of cyclic anti-periodic boundary conditions of the self-
adjoint nonlinear tripled system of second order Sturm-Liouville differential equations. Subsequently,
Zhang and Ni [22] expanded the results of [2] to case of fractional Langevin equations as follows.

D, (CDg, + A)xi () = fit,x1 (), x2 (1), x5 (1)), € (0,1),i = 1,2,3,
x1(0) + x2(1) =0, ©D%,x1(0)+“Dg, x2(1) = 0,
XZ(O) + X3(1) =0, CD3+Xz(O)+CD3+X3(1) =0,
.X'3(0) + XQ(l) =0, CD8+X3(O)+CD8+X1(1) =0,

(1.5)

where “D3, and CDg . represent the Caputo fractional derivatives of order v and §, 0 <a <1, 0 < <
1, 1<a+B<2 f:[0,1] X R® — RR,i =1,2,3 are continuous, A € (0, +o0). The existence and uniqueness of
solutions to (1.5) are established. And the Ulam-Hyers and Ulam-Hyers-Rassias stabilities of (1.5) are also
presented. It should be mentioned that the cyclic boundary value problems of the self-adjoint nonlinear
tripled system are more general and complex than boundary value problems of the normal coupled systems.

Motivated by the works mentioned above, we are devoted to discussing a class of the cyclic anti-periodic
and nonlocal boundary value problem to the self-adjoint nonlinear tripled fractional Langevin differential
system (1.1). Moreover, from Krasnoselskii fixed point theorem and Banach contraction mapping theorem,
some sufficient conditions for the existence and uniqueness of solutions to the problem have been presented.
Furthemore, the Ulam-Hyers and Ulam-Hyers-Rassias stabilities of the problem have been acquired. Our
main results enrich some previous results. Let’s present the contributions of this paper: Firstly, our model
are more general than (1.2). Secondly, there few papers investigating the cyclic nonlocal boundary value
problems to the self-adjoint nonlinear tripled fractional Langevin differential system. Our main results
expand some existing results. Thirdly, the cyclic boundary value problems of the self-adjoint nonlinear
tripled system are more difficult and challenging than boundary value problems of the normal coupled
systems.
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2. Preliminaries

For the convenience of the reader, we recall some necessary definitions of the Riemann-Liouville frac-
tional integral, the Caputo fractional derivative and some of their properties. In the meanwhile, we state
two theorems, which will be used to prove the main results of the paper.

Definition 2.1 [16] The left-sided Riemann-Liouville fractional integral of order C > 0 of a function
I:(0,0) — Ris gived by

: 1 t
I D(t =—f t—5)"U(s)ds, t> 0,
(I, D(®) 0 O( )" (s)
provided the right-hand side is pointwise defined on (0, o).

Definition 2.2 [16] Let I € AC"[0,0). The left-side Caputo fractional derivative of order C > 0 for a
function ! is defined by

t
! 5 f (t =) (s)ds, t >0,
- 0

DS I(t) = T

where n = [C] + 1.

Lemma 2.3 [16] If o, u >0, I € C(0, 1), then

@@ 1" 1)) = I“TH1)), D210, () = 1(1),

0+70+ 0+ 0+70+

o T - g T e
a =1 _ atp-1 Cpa -1 _ u—a-1
I8t farp DSt TS

Lemma 2.4 [16] Assuming that ! € AC"[0,1], @ > 0, then
n—-1 .
12,€D2 I(t) = I(t) + Z Gt 0<t<1,
i=0

wherecg, ¢1, -+, cuo1 €ER, n=[a] + 1.

Lemma 2.5 [23] (Krasnoselskii fixed point theorem) Let D be a closed, convex, bounded and nonempty
subset of a Banach space X. Let A and B be two operators such that

(i) Ax+ByeDforallx,y € D;

(ii) A is a completely continuous operator;

(iif) B is a contraction mapping.

Then there exists z € D such that z = Az + Bz.

Lemma 2.6 [23] (Banach contraction mapping theorem) Let X be a Banach space, D C X closed and
T : D — D astrict contraction, that is, ||Tx — Ty|| < pllx — y|| for some y € (0,1) and all x, y € D. Then T has a
fixed point in D.

3. Existence and Uniqueness

We consider the Banach space X = C[0,1] endowed with the norm ||xl.c = maxejo1] [X(f)|. Define the
space X = X X X X X with the norm.

llCx1, 22, 23)l1x = [1X1lloo + [IX2lleo + [l¥3]le0, (X1, %2, X3) € X.

Then (X, || - [|x) is also a Banach space.
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Lemma 3.1 Let h; € AC([a,b],R), i = 1,2,3. Then x = (x1,x2,x3) € X is a solution of the system of linear

fractional Langevin equations
DR, (DG, + Mxlt) = i(h), te (0,1), i=1,2,3,

supplemented with the boundary conditions

&1
x1(0) + x2(0) = —(x2(1) + x3(1)), | (x2(s) + x3(s))ds = Ay,
m
133
x2(0) + x3(0) = —(x3(1) + x1(1)), | (x3(s) + x1(s))ds = Ay,
2

13(0) + 11(0) = ~(x(1) + 1:(1), f " (1(6) + xale))ds = As,
n3

O0<ni<é&<1l, A€eR i1=1,23,

is given by
50 = T f (6= s - s | (= 9 s
A+ Do + el fo (1= 5B ) + hs(5))ds
o 01(1 — 8 (1a(6) + x3(9)ds]
Ao+ e + el | (1 ) + I )
s 01<1 — 8 (xs(6) + 11 (9)ds]

1 1
+[ta<a+1>el-5+ei6u—r(—+ﬁ) [ A=+ e

s [ @9t s

(@ + Degy + es]A f [ f (5 = )" (1(6) + hs(0))d0

F(a +B)
A ’ a-1
“T(a) fo (s = 0)" (x2(6) + x3(0))d0]ds)

Eo
+[t(a + 1)eio + e;10]{A2 [

eem f (5 = )" ((0) + 1 (0))d0

T f (s—0)"" 1(x3(9)+xl(9))d9]ds

&3 S
+[t%(a + D)ej11 + ei12]{Az — f [ f (s — 0)**FL(h1(0) + h2(0))dO

F(oz +pB)

T )f(s— 0) 1 (x1(0) + x2(0))d01ds}, i = 1,2,3, t € [0,1],

where € stand for different constants for the convenience of calculations.

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)
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Proof. we know Lemma 2.4 and apply the operator Ig . on the sides of (3.1),
DS xi(t) = Ib () — Axi(t) + i1, ciq €R, i=1,2,3. (3.6)

Applying the operator Ij, on the sides of (3.6) and using Lemma 2.3 and Lemma 2.4, we get

a

t
xi(t) = I5Phi(t) — AIS xi(h) + Tl Ty * G Gt Gia € R, i=1,2,3. (3.7)

By (3.6) and (3.7) ,we can get

%(0) = ¢ip, x:(1) = I5Phi(1) = AIE, (1) + ( T * i i=1,2,3. (3.8)
Then, bring (3.8) into (3.2)-(3.4), we have
Cia+ e = —(Ig:ﬁ(hz(l) +h3(1)) — ALy, (x2(1) + x3(1)) + F( -: D +cn + ),
Cp +C3p = —(Ig:ﬁ(h3(]) +hi(1)) — /\I&_(Xg(l) + x1(1)) + r( 1) + 30 + C12),
c32 + ¢ = =[P (1 (1) + ha(1)) = AL, (x1(1) + x2(1)) + % + o+ ),
&1 . o1 + ¢y
f [Igf(hz(s) + hs(s)) — Ay, (x2(s) + x3(s)) + @ 1) 8%+ cop + Cc3p]ds = Ay,
[1“+ﬁ<h3<s) +I11(s)) = AL, (x3(5) + x1(5)) + % 5" + 3 + cialds = Ay,
T]z
0009+ 1) = AT (59) + 326 + oy s e+ calds = A

n3

We solve the following system of linear equations to determine the values of ¢;1,¢;», i =1,2,3.

1 1
1 T(a+1) 2 T(a+1) 1 c
L1 o0 1 L "
@ X TarD 12
T(a+1) 2 r(%+1) 1 l? 1 1 | _
1 1 -
E 0 My @ T @ | o2
l"(aiZ) a2 l? 0 r(a2+2) a2 231
32
ey B Tay B 0 0

—I P (o(1) + h3(1)) + AIE, (xa(1) + x3(1))

~I5P (h3(1) + I (1)) + ALS, (x3(1) + x1(1))

—1‘”5(;11(1) + hp(1)) + AIS, (x1(1) + x2(1))
A= [T 006) + ) ~ AT 12)-+ x50 9
Ao [ [1‘“’3 (13(5) + I (s)) = A2, (x3(s) + x1(5)) s
A; — f& [I‘Hﬁ (h1(s) + ha(s)) — AL, (x1(s) + x2(s))]ds

After verification, the coefficient determinant of the system of linear equations (3.9) is not equal to zero. So,
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(3.9) has the unique solution

n =
Ci2 =
C1 =
Cn =
31 =
C3 =

where

Dl =
D, =
D3 =

D4:

Ds =

Dg =

I(a +2)(e1,1D1 + e13D2 + e15D3 + e1,7D4 + e19Ds + €111 Dg),

e12D1 +e14Ds + e16D3 + e18Dy + e1,10D5 + e1,12D,

I'(a +2)(e2,1D1 + e23D; + e25D3 + 27Dy + €29Ds5 + €211 D),

e22D1 + e24D5 + €2 6D3 + e38D4 + €2,10D5 + €312,

I'(a +2)(e31D1 + e33D7 + e35D3 + €3 7D4 + e39D5 + €311 D),

e3pD1 +e34D + e36D3 + e38Dy + €310D5 + €312,

~I0 P (ha(1) + 3(1)) + ALS, (x2(1) + x3(1)),
~I0 P (h3(1) + 1y (1)) + ALS, (x3(1) + x1(1)),

P (1) + ha(1)) + ALS, (x1(1) + x2(1)),

o+

&1

A - f [P (as) + a(5)) — AT, (xa(s) + x3())1ds,
héz .

As f [P ((5) + I (5)) — AIE, (xes(s) + x1(5))1ds,
2

Az - f% [Ig:ﬁ(hl(s) + ha(s)) — AL, (x1(s) + x2(s))]ds.

3

10988

We are getting the desired solution (3.5) when we substitute the values of c;1, ¢, i = 1,2,3, in (3.7).
Conversely, it is not difficult to verify that (x1, x2, x3) € X given by (3.5) satisfies the system (3.1) and the
boundary conditions (3.2)-(3.4). The proof is completed. [

In view of Lemma 2.5, we define the operator T : X — X by

(Tx)(t)

where

(Tix)(t)

(Tix)(®), (T2x)(1), (T3x)(t))

1

At .
. fo (1= 9 (2(5) + x3(6))ds]

1
(o e + el [ =9 )+ pa s

A ! a—
oo fo (1= 8 (x3(s) + 21 (5))ds]

(T1(x1, x2, x3)(t), T2(x1, X2, x3)(t), T3(x1,x2, X3)(1)),

et A
r(a+,3)fo(t_s) ! 1(lf’i(s)ds—@fo(f—:i) Lxi(s)ds

1
(o e+ el [ 19 )+ o

(3.10)
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1 1
e Do+ eall-rg [ 0= i) + o2

T f (1 = 8)*71(x1(5) + x2(5))ds]

a a+B-1
+[t*(a + 1)e;7 + e s1{As . [F(a+ﬁ) f( 0)** P 1 (pa2(0) + p3(0))d0O

+[t*(a + 1)ei11 + €;1211A3

and

Pi(s)

T(a)
+[t*(a + 1)eio + ei10l{A2 — [
9 101142 fn

T

f (s = )" (12(6) + x5(6))d6]ds]

&2

: F(a ) fo (5 = ) (p3(0) + p1(0))d0

- [ 6= 0 o)+ mopaoias

12
[

T 6= O )+ patona

f( - 0)* 1 (x1(0) + x2(0))dO]ds}, i=1,2,3,t€[0,1],

= fi(s,x1(8), x2(5), x3(5)), i=1,2,3.

10989

So, the function x = (x1, x2, x3) is a solution of problem (1.1), if and only if x is a fixed point of operator T.
In the following, we will calculate our main result. For the convenience of calculation, we have import the
following functions:

m; j(t)
M;(t)
M

7i(t)

w;(t)

t(a + 1)eioj1 + ei2j,
(t"(a+ Dej7 +ejg)Ar + (t"(a + 1)ejo + €;10)Az + (t"(a + 1)ej11 + €12)As,
max{||Mileo, [IM2llco, M3},

1 éoz-%—[%+1 _ na+ﬁ+1
(1 + my1 (D) + mya(t) + mi3(t) + m; 4(f) —————
r(a + ﬁ + 1)( ml,l( ) mz,Z( ) mz,3( ) mz,4( ) a+ ﬁ 1

a+f+l  a+ptl a+p+l  a+p+l
tmie (D22 i3 ,
m5(t) ar B+l me(t) ar Bl )

1 a+f+l a+p+l
Ta+prn O mal) = mis) +mia) =g

a+p+l T]a+ﬁ+1 a+p+l a+p+l
2 2 3 3
()22 ()22,
mis(t) AT prl m;6(t) ST )

1 at+fp+l na+ﬁ+1
- -1 (f) + (1) + (1) + A (F 1 1
T@+p+ 1)(m”1( )+ mialt) + miall) + mia(t) =~ B+1

a+p+l  a+p+l a+p+l na+ﬂ+1
+115(t) — 2 me()—— 3,

a+p+1 ’ a+pf+1
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T = max{||Tille, IT2lleo, lIT3lleo},
w = max{|lwille, llw2lle, llwslleo},
y = max{|[yilleo, I72lleos 73]l },
(iﬁl _ nlel £g+1 _ ng+1
Ni(t) = mi1(t) + mio(t) + miz(t) + m; 4(t +m;5(t) ——————
i(t) i1 (t) + mo(t) + mis(t) + m;4(t) T i5(t) 711
a+l _ na+1
3 3
+m;o(t ,
1,6( ) a+1

N = maX{HNllloor”NZHOOI ||N3||oo}/ i= 1/2/3/ ] = 1/2/3/41 51 6.

With aid of the Krasnoselskii’s fixed point theorem, we now put forward the existence result for the
system (1.1).

Theorem 3.2 Assume that the following conditions hold.

(H1) The functions f; : [0,1] X R* - R,i = 1,2, 3 are continuous.

(H>) There exist nonnegative functions p;, qi, i, ki € C[0, 1], such that, for all (¢, 9,0, ®) € [0,1] X R3, (i =
1/ 2/ 3)/

Ifit, 0,0, @) < ki(t) + pi(Dlol + gi(Dlol| + ri(B)@l,

hold. Then the system (1.1) has at least one solution, provided that

3
T(@+1)>A(1+3N)+T(a+ 1)1+ +7) Z ¢, (3.11)
i=1

where

= t), g; = B, ri = ri(b), ki = ki), & =pi+ai+r,i=1,23.
pi ggﬁlpz()l qi trg%lqz()l ; g}&{‘]"()' ; g&ﬁlz()l i =pit+qitri, i

Proof. Let us fix 6 > 0 such that

T(a+1)(T+w+y) o ki + 3MI(a + 1)
T T+ -(1+3NA-Ta+)r+w+)) Yo, b

and consider the set

Bs = {x = (x1,%2,%3) € X* : [lxlx < 6).

We define now the operators F, G : B; — X by

(Ex)(#) = ((Fix)(h), (F2x)(t), (F3x)(1))
= (F1(x1, x2, x3)(t), Fa(x1, X2, x3)(t), F3(x1, X2, X3)(t)),
(G)() = (G10)(t), (G2x)(t), (G3x)(1))

(G1(x1,x2, x3)(t), Ga(x1, X2, x3)(t), G3(x1, X2, X3)(1)),
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where

__L t _ oya—1,..
(F0) =~ fo (t - 5" Lxi(s)ds
1
@ + ey +e,-,21% f (1 = 811 (xa(s) + x3())ds
0
1
+[t*(a + Ve + e,;ﬂ% fo (1- s)"‘_l(x3(s) + x1(s))ds

1
+[t“(a+1>e,-,5+ei,6]ﬁ fo (1 9" (1(5) + xa(6))ds

&1
A1 iy sl | [% f(; (s — 6) (12(6) + x3(6))d61ds
s e+ enol [ 1= f (s = 01 (12(6) + x1(0))d61ds
’ ’ 2 r(a) 0

+[t"(a + 1)ei11 + ei12] f%[% jo‘ (s — 0) L (x1(0) + x2(0))d0O]ds,i = 1,2, 3.
3

1
I'(a+p)

1 1
—[t%(a + Te;1 + 61',2]r(a—+5) f(; (1 =) (a(s) + pa(s))ds

¢
(Gix)(t) = fo (t —s)* P pi(s)ds

1 1
L+ D+ el [ 09 a0+ i

1
o Dess + el [ 1= i)+ a9

&1

e e R SR AP
[t%(a + 1)e;7 + eig] : [F(a+ 5 fo (s — 0)* P 1 (2(0) + p3(0))dO])ds
&2 1

_— fo (s — 0)"F 1 (3(0) + 1(0))dO]ds

—[t*(a + 1)eio + €i10] nz [F(a +B)

123 1

[ . . - ) _ pya+p-1
e+ De + el | e [ =07 u0) + patondens

+[t%(a + D)ei7 + eiglAr + [t%(a + D)eio + ei10] A + [t (a + 1)ei11 + €;,12]1A3,
i=1,2,3.

By using Krasnoselskii’s fixed point theorem, we divide our proof into three steps.
(i) Firstly, we need to verify the following property.

Gx + Fy € By,

for any x = (x1,%2,%3), ¥ = (1, Y2, Y3) € Bs. In reality, it follows from x, y € B, that [|x|lx < 6, ||lyllx < 6. Then,
by using condition (H,), we get
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1 t
- _ oyatp-1
GO0 = gy | =9 ks
1
+[t(a + 1ery + 61'2]1-‘(0(;4-‘3) fo (1 =)™ N pa(s)| + lps(s)ds
1 1
e Dera + el [ 0=97 g+ o)
0
1
o+ Ders + ek [ =97 01+ o)
&1

a 1 ) _ pyat+p-1
HE@r Dag el | [—W+ 5 f (5= 0" (lp2(0)] + lp3(O))dO)ds

f (s — 0 (p3(0)] + g2 (0))dO1ds

52
+[t"(a + 1)eg 9 + 61,10]

F(a +B)
(@ + ey + el %[W 5 f (s = 0711 ()] + lpa(6))dONds
HIMilloo
o kiraldix | ma®) Y3 G+ Gl mma() T (i + Gl
- T(a+p+1) INa+p+1) IFa+p+1)

a+ﬁ+1 a+f+1

ms(t) Yo, (ki + Gillxllx) mmﬂ% L ki + ilixllx)

[a+p+1) - [a+p+1)
a+ﬁ+1_ a+p+1
115 (8) Ft— Ly (ks + i)
i I(a+p+1)
a+ﬂ+1_qa+ +1 3
mle(t)Tﬁ Yoimq (ki + Cillxllx) u

< litallooks + llwillookz + [y1llooks + (1T1lleolt + llwtlleola + [1Y1lleot3)0 + [[Mi [leo.
In the same way, we also find

[(G2x)(D)] < [y2lleoks + lIT2lleokz + llw2lleoks + (2]t + [|T2lleot2 + ll@2lleol3)0 + [IM2]leo,
[(Gax)(B)] < llwslleoks + [[y3llockz + lIT3lleoks + (lwslleolr + llY3lleol2 + IIT3ll0€3)0 + [IM3]lco.-

Besides, for all t € [0, 1], we obtain the following inequality.

. IS T
EDOL < g [ =9 s

+H[t(a + Dej1 + eip]l =

i L a9 o+ s

HE G+ e+ eul s f (1= 51 1ys(6)] + lya ()i

HE @+ ey + el f (1= 1" (ya ()] + lya(s))ds

10992
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&1 A

+[t(a+ 1)ei7 +eig] f [=—
L T

I

fo (s = 0 1(1y2(0)] + lys(O))dOlds
Eo

HE(@ + Dess + ero] [% f (s = 01 (1ya(6)] + ly1 ())AOds
2 O() 0

+[t(a + 1)ei11 + e 12] ES[L fS(S = 0)* (ly1(0)| + ly2(0)))d0O]ds
’ ’ n3 r(a) 0

Myilloo N Ami1(Ollyllx . Amia(H)llyllx . Amiz()llyllx

IA

Ia+1) Ia+1) Ia+1) Ia+1)
Slwl_nzlwl ég+l_n3+l 5g+1_ng+1
Amia()=—7—lyllx  Amis()2m7llyllx  Amie(t) =7 lyllx
+ +
Ia+1) Ia+1) Ia+1)
Myl . MINillsollyllx
- T(a+1) F(a+1)
/\ illoo illoo .
< Ml ANllwd 5 g 5 5

Ia+1) T(a+1)’
According to above, we can obtain the following estimates immediately,

[(G1)() + (Fiy)(®)] < NTalleokn + [lwilleoka + [[y1lleoks + (1T1lleatt + llwtlleolz + 1Y1llet3)d + IMilleo
Miyallo  AlIN1leod
Ta+1) T@+1)’

[(G2x)(t) + (F2y)(D)] < ly2lleoks + [IT2lleokz + llwalleoks + ([[y2llol1 + [IT2lleol2 + llw2lleot3)d + [|Mo2]leo
Mly2lle N MIN2 o0
INa+1) T(a+1)’

I(Gsx)(t) + (F3y)(H)] < llwslleoks + [lyslleokz + IT3lleoks + (lwslleott + Iy3lleotz + IT3lle0€3)0 + [|M3]lco

Mlyslleo N AlIN3|le0d
Ta+1) T(@+1)"

Taking the norm for Gx + Fy on X, we finally obtain

IG1x + F1ylleo + [1G2x + F2Ylloo + ||G3x + F3Yllo

(1+3N)AS <
Ia+1)

IGx + Fyllx

3
(T+a)+7/)2(ki+{’i6)+3M+

i=1

IA

Therefore, Gx + Fy € B, for all x, y € Bs.
(ii) We claim that F is a contraction on Bs. In fact, for any x = (x1, X2, x3), ¥ = (y1, Y2, y3) € Bs, we can get

' ‘ _ AMixi = yillo . AlINilleo
|(Fix)(t) — (Fiy)(H)] = Ta+1) + T(a+ 1)(lel Yilleo + %2 — V2lloo + [1x3 — Y3llco),
AMxi = villo  AlINiloo

Ta+1) Ia+1)

Ilx = yllx.

Using the norm Fx — Fy, we conclude

A(1 + 3N)

- <
IFx=Fylle < T

llx = ylix.
In view of the condition (3.11), we infer that F is a contraction.

(iii) We have to show that G is equicontinuous on Bs. As a matter of fact, since the functions fi, f>, f3
are continuous, which implies that operator G is continuous on Bs. Therefore, it remains to prove that G is
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compact on Bs. Firstly, for any x(t) € Bs, t € [0, 1], by using (i), we obtain G is uniformly bounded on B;.
Next, for x = (x1,%2,x3) € Bs and t1,t, € [0,1] with0 < t; < t; <1, we get

k g
(G)) = Gl = <P [y -yt =5y 1

1) b 361(ta Ja
+jt: (tr —5)**F 1ds}+1“(a+2—ﬁl)z(k + Cillxlx)

er7(a + 1)(t - t“)(g“*ﬁ“ nclv+ﬁ+1
CEYE e ES) ;(k,- + Gl

e+ 108~ B)E T P
(@+B+DI(a+p+1) Z(k‘+£-||x||x)

ey (a+ 1) — 1)(EP - g
(@a+B+1DI(a+p+1) ;(ki + Cillxllx)

+(t5 — t1)(e1,7A1 + e19A2 + e1,1143)

kl + (Pl + q1 + 7’1)||X||X a+p atp 361(1’“ _ a)
< —
S Trarprn b A )Y raageD Z(k + €ilxllx)
3ey (15 a)
+W Z(k + Gillxllx) + (85 — 1)(e17A1 + e1,0A2 + €111A3)
ki+ (1 +g1+711)0 )
< 1 (Pl q1 7’1) (ta+ﬁ _ ta+ﬁ) " 3e1 + 3eq Z(k 4 fé)(tg B ti‘)

Fa+p+1) 2 ! Tla+p+1) &=
+(t5 — t1)(e1,7A1 + e19A2 + e1,11A3).
In a similar manner, we have
[(G2x)(t2) — (G2x)(£1)

ko + 2+ q2+712)0 asp  asp, 32+ 3ex 3 o
Farpen 2 00 e L0+ 0 )

+(e27A1 + 2942 + €211 A3)(ty — 1)),

[(Gsx)(t2) — (G3x)(t1)

ks + (p3 + g3 +13)0 (15— P 3es + 3ex

3
Ta+p+1) TTa+p+1) ;(ki + 6ot — 1)

+(e37A1 + e39As +e311A3)(t5 — 7).

For the convenience of calculation, we have import the following constants.

e; = maxfe;1(a + 1), eiz(a+1), ej5(a + 1)},

a+f+l a+p+l a+p+l a+p+l a+f+l  a+ptl
er = max{eiz(a + 1) ——-"1 ) eig(a + 1) 22— (@ + 1) a2},
i {1,7( ) 06+‘8+1 1,9( ) oz+ﬁ+l 1,11( ) oz+ﬁ+1 }

where i = 1,2, 3. Since **f and ¢ are uniformly continuous on [0, 1], we can get

[(Gix)(t2) — (Gix)(t1)] = O, as t, — t; independent of x, i =1,2,3.
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Therefore, the operator G is equicontinuous on Bs, and so, through using the Arzeld-Ascoli theorem, we
obtain that G is a compact on Bs. Hence, all the assumptions of Lemma 2.5 are satisfied, and then by Lemma
2.5 we deduce that there exists a fixed point of operator G + F, which is a solution of the system (1.1). This

completes the proof. [

In the following result, we prove the uniqueness of solution to the system (1.1) with the Banach’s contraction

mapping theorem.

Theorem 3.3 Suppose that the (H;) and the following condition hold.
(H3) There exist constants L; > 0 (i = 1,2, 3) such that for any t € [0,1], x;, v; € R(i =1,2,3),

Ifi(t, x1, %2, x3) = fi(t, y1, Y2, y3)l < Li(lx1 — yal + [x2 — vl + x5 — y3)), 1 =1,2,3,
Then system (1.1) has a unique solution, provided that

AB+3N) +T(a+ 1)(Ar + Ay + A3) <T(a + 1),
where

Ay =1Ly + wLly +yL3, Ay =yLy+ Ly +wls, Az = wL; +yL; + TL3.
Proof. Let us fix p > 0 such that

Fa+1D)(t+w+ )01+ 92+ 93) +3MI(a + 1)
p= Fa@+1)—31-3AN-T(a+1)(t +w + y)(L1 + Lo + L3)’

where

d; = g}oa,i(] |fi(t,0,0,0), i=1,2,3.
We first consider the set
B, = {(x1,x2,%3) € X : |Ixllx < p},
and show that TB,, C B,. In fact, for any x = (x1,x2,x3) € By, t € [0, 1], from (H3), it follows
|ﬁ(t/x1/x21x3)| < |ﬁ'(t,x1,x2,X3) _ﬂ(t/O/O/O)l + |fl(t10/010)|
<

Li(llx1lleo + [lx2]leo + [lx3]le0) +
= Lilxllx + 9 < L,‘p +9;, i=1,2,3.

Next, we have

I(Thx)(®)]
Ap N AlIN1lleop . Lip+$
" Ta+1) T(a+1) T(a+p+1)

+7’}’l11(f)(L1p + \91 + sz + \92 + L3p + \93) + mlz(t)(Llp + \91 + sz + \92 + L3p + \93)

[a+p+1) Ia+p+1)
+m13(t)(L1p + \91 + sz + \92 + L3p + \93)
IFa+p+1)

at+p+l  a+p+l

m14(t)gl¢(L1p + 99 + sz + 9 + L3p + \93)

" a+p+1
F(a+p+1)

(3.12)
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catBrl  atpHl

m15(t)%(L1p + \91 + sz + \92 + L3p + \93)

n a+p+1
Ia+p+1)

cat+p+l a+p+l

m16(t)w(L1p + 191 + sz + \92 + L3p + \93)

a+p+1
+ ||M1|leo
* Ta+p+1) el

< Ap N AMIN1lloop
I'a+1) T(a+1)

+It1lleo(Lip + 91) + llwilleo(L2p + 92) + [[y1lleo(Lap + 93) + [[Mi]lco.

In similar manner, we have

Ap AlINalleop

TIO] S gy * Taasy * el@p+ 9
HTalleo(Lap + 92) + lwalleo(Lap + 93) + [IMalleo,
Ap AlNslle
(S0 —" VP | fwsllaeLap + 91)

Ta+1)  T@+l
Hlysllo(Lap + 92) + [ITalleo(Lap + 93) + ||M3]lco,
which, on taking the norm for ¢ € [0, 1], yields

Tlly < 3Ap . 3ANp
WX=Ta+) "Tary

| +(t+w+y)Lip+ 91 +Lp+ 9 +L3p+93)+3M < p.

This implies, TB,J C Bp. We now show that T is a contraction mapping on Bp. In fact, for any x =
(x1,%2,%3), ¥y = (Y1, Y2, ¥3) € X, let

(Pix(s) = ﬁ(sl X1 (S)/ Xz(S), X3(S)), (Piy(s) = ﬂ(S, n (S)/ ]/2(5)1 y?)(s))/ i= 1/ 2/ 3.

Then, we have

(T - T
L (o ety () — o A ) - v
7 | =9 o) = pulis + s [ =9 - o

IA

1
+[1%(a + 1)e;1 + ei,z][F(a;Jrﬁ) fo (1= 9" (p2e(s) = 2y(9)] + lpsx(5) = Py (s)D)ls
1
+% f(; (1 = )% (|xa(s) — Y2 (s)| + x3(s) — ya(s)|)ds]
1
+[t% (@ + e;s + ef,4][1"(0¢;+ﬁ) fo (1= 8" (1p32(5) = Pay ()| + |p1x(5) = P1y(s))ds
1
+% j(; (1= 9)" 7 (Ix3(5) = y3(S)| + xa(s) = ya(s)ds]
1
@+ Dess + el gy [ 09 (9= 91,09+ bpas) = o s

/\ ! a—
+m fo (1 =8) 1 (|x1(s) — y1(8)| + |x2(s) — ya(s)])ds]

+[t"‘(0c + 1)6,‘/7 + 61',8]

1 1 S
x{ . [m fo (s = O)* P71 (102x(6) = P2y (O)] + 193:(6) — 3,(O))dO
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et [ 6= 0020) - (00 +13(0) - (@0l
" (a + 1)619 + €0l

133
{ [ f(s 0) P (|p3x(0) — @3y(O)] + lp1x(0) — P1,(O)))dO

F(a +pB)
+@ fo (5 = 0)'"1(3(0) = y(O)] + [¥1(0) = y2(O))dOds]

+[t*(a + 1)ei11 + €12]
N S 9)+h-1 0 0 0 0)))do
U g J, 60 00 = 001+ lp2(0) ~ 20

s [ (501 (0) - 10) + 1) - ya(ENONS
A

( ) 12( )
< Xi = Yilleo X =

T+ 1)|| yill Ta+ ) T(a + )|| yllx
Ay (0) A I

ot 1)|| - yllx + T+ 1) llx — yllx
Ay s(H) Aot S5
Ty A gy e
Lillx — yllx N m;i1 () (L1 + Lo + La)llx — yllx N mio(t)(L1 + Lo + La)llx — yllx
Ia+p+1) IFa+p+1) Ia+p+1)

u+ﬂ+1 a+f+1
-

miz(H)(Ly + L + La)llx — vllx m,4(t)10(T(L1 + Ly + Lg)llx — yllx

[a+p+1) * Fa+p+1)
Eu+ﬁ+] r’a+[3+1 Y+ﬂ+1_nY+ﬁ+l
+mi,5(t)Tﬁ+1(Ll + Ly + La)llx — yllx . mzﬁ(f)T,gfl(Ll + Ly + Ls)llx — yllx
Fa+p+1) [a+p+1)
A AlINil|eo
< Allx— — k= Vil =1,2,
< Aillx—yllx + Ta+ 1)lez vill Ta+ D" i=1,23.
According to the above inequalities, we can get
ITx = Tyllx < (A1 + A + As + A SAN N = yll (3.13)
Y =t B T8 o) T Ty Y '

In view of the condition (3.12), we deduce that T is a contraction. Then, we obtain by the Lemma 2.6 that the
operator T has a unique fixed point x € B,, which is the unique solution of the system (1.1). The theorem is
proved. [J

4. Ulam Stability Analysis

In this section, we prove the Ulam-Hyers and Ulam-Hyers-Rassias stabilities of the system (1.1). For
this purpose, we first provide the related stability concepts of our problem. Let ¢; > 0, f; : [0,1]XR®> — Rbe
continuous functions and ¢; (¢) : [0,1] — R* (i = 1,2, 3) are non-increasing continuous functions. Consider
the following inequalities:

D5, (D, + A)xi () = fi 6,11 (), 22 (), 33 ()] < &5, £ €[0,1], i =1,2,3. (4.1)

D5, (D3, + A) i (6 = fi (6,11 (1), 22 (1), 25 ()] < i (D&, € 0,11, i=1,2,3, 4.2)
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Definition 4.1 If there is a constant cf, , ;, > 0 such that for each ¢ = ¢(e1,¢€2,¢3) > 0 and for each
v = (v1,v2,v3) € X be such that the inequalities (4.1) and conditions (3.2)-(3.4), there exists a solution
u = (u1, up, uz) € X of (1.1) with

lu—vllx <cpppe
the system (1.1) is called Ulam-Hyers stable.

Remark 4.2 If there exist functions x; € C([0,1],R) (i = 1,2, 3), which depend on v; (i = 1,2, 3), separately
such that

@il <e, tel0,1], (=12, ,n);

(i) €Df, (CDg, + A)v; (1) = fi (t,01 (), 02 (1), 0 () + xi (1), t € [0,1], i=1,2,3,

we say that v = (v1,v2,v3) € X be a solution of (4.1).

Definition 4.3 If there exists a constant cy, 5, r, , > 0 such that for every ¢ = ¢(e1,€2,€3) > 0 and for
each v = (v1,v2,v3) € X be such that inequalities (4.2) and conditions (3.2)-(3.4), there exists a solution
u = (uq,up,u3) € X of (1.1) with

| u—2llx <cpppee ), tel0,1],
the system (1.1) is called Ulam-Hyers-Rassias stable with respect to ¢ = 1 (1, 2, 3) € C([0, 1], R*).

Remark 4.4 If there exist functions ¢; € C([0,1],R)(i =1,2,3) , which depend on v;(i =1,2,3), sepa-
rately such that

Q) o (O < i) e, tel0,1], (=1,2,--+,n);
(i) €Df, (°Dg, + A)v; (t) = fi (t,01 (), 02 (£), 03 () + i (1), £ €[0,1], i =1,2,3,
we say that v = (v1,v2,v3) € X be a solution of (4.2).

In the next two theorems, we present sufficient conditions on which the system (1.1) is Ulam-Hyers
stable and Ulam-Hyers-Rassias stable.

Theorem 4.5 Assume that (Hy), (H3) and (3.12) are satisfied. Let u = (uy, us, u3) € X be the solution of the
system (1.1) and v = (v1, v, v3) € X is the solution of the inequality problem (4.1) and (3.2)-(3.4). Then, there
exists a constant cy, r, r, > 0 such that for each ¢ = ¢ (¢1, &2, 3) > 0,

|l u—ollx <cpppe

that is, system (1.1) is Ulam-Hyers stable.

Proof. Since v is the solution of (4.1) and (3.2)-(3.4), then by Remark 4.2, v; is the solution of the following
system.

D}, (D&, + A)ovi () = fi(t, 01 (£), 02 (), 03 (1) + xi (), £ € (0,1),i=1,2,3,
01(0) + 02(0) = ~(02(1) + 5(1)), [ (©2(6) + 05(3))ds = Ay,
02(0) + 03(0) = ~(05(1) +01(1)), [ (©3(6) + 01(3))ds = Az,
03(0) +01(0) = ~(©1(1) + 02(1), [ (@1(5) + 02(9)ds = As.

4.3)
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In view of Lemma 3.1, the solution v = (v1,v;,v3) € X of system (4.3) is given by

o) = f (= Y"1 (@s) + xa(s))ds — —— f (t 5y 1oy (s)ds

T(a+p) I'(a)
+[t"(a + 1)e;1 + ei,z][—m fo (1= s)* P (@a(s) + P3(5) + x2(s) + x3(s))ds
At .
o fo (1 = )" (0a(s) + 03(s))ds]

1
+H[E(a + eiz + 31,4][—ﬁ f (1= )P @5(s) + @r(s) + x3(s) + x1(s))ds

f (1 = 8 (03(6) + 01(5))ds]

1“( )
+[t"(a + 1)eis + ei6l[— Ta+p +ﬁ f (1= s)* P (@1(s) + Pa(s) + x1(s) + xa(s))ds
A ' a-1
+@ | (1 =) (v1(s) + va(s))ds]
+[t%(a + 1)ei7 + eigl{A1 — gl[; fs(s = 0)"* F 1 (@2(0) + @3(0) + x2(0) + x3(6))dO
o n La+p)

~o [ 6= 0700 + ox@onas
133
s Ve el - [t 16071 x0) 4910 4000 + 100

A ) a-1
“T(@) fo (s = 0)"~' (05(0) + ©1(0))dO}ds)

HIE (@ + g + epnallAs — f 0 f (5 = OYF1($1(6) + $2(0) + x1(6) + x2(6))d6
0

1
I'(a+p)

F( ) f (s — 0)" L (v1(0) + v2(6))dO)ds}, i=1,2,3, te]0,1].
where

@i(s) = fi(s,01(s),02(5),v3(5)),i = 1,2,3.

Recalling the operator T, defined in (3.10), under current conditions, T is a contraction, and hence (1.1) has
a unique solution u = (u1, up, u3) € X , which is the fixed point of T. From (3.13) we also know that

A 3AN
— = — < -
I Tt = Tolhe =l = Tollx < (14 Ao + A + e o g =l

This implies,

Ta+1)
lu—ollx < T(a+D[1— (A1 + A2+ A3)] - A —3AN

ITv - vl|x. (4.4)
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On the other hand, we have the following estimate

[(T10)(t) — v1(2)]
t
ﬁﬁ(t—s)a+ﬁl|X1(S)|ds

1
G Do + el [ =9 ) + s

IA

1
(s Do+ el [ =97 000 + s

1
+H[t(a + Deys + 31,6]r(a;+ﬁ) j(; (1 = s)**FL(|x1(s) + x2(s)l)ds

&1 1
@ 1
[t + )er7 + e18] . [I“(a+/3)
&2 1 S
a _ pyatp-1
e Dera el | T [ 6= 00 + m@os

fo (s = 01 (12(0) + xa(6))AO)ds

&3
1
+[t"(a + 1)eg11 + eq12] . [m foi(s - 9)a+ﬁ_1(|X1(9) + x2(0)))d0]ds
€1 min(OZ) & mI e mip(OZ) &

Ta+p+1) T@+p+l) T@+p+1) T@+p+l)

IN

£a+f5+1 _na+5+1 3 a+f+l_a+p+l 3 £¢1+p5+1 _T]Ll+ﬁ+1 3
1 1 A 2 2 . 3 3 .
()= i€ s 6 me(t) o — L €

+
Ta+p+1) - Ta+pB+1) Ta+p+1) ’
< tilleogr + llwtlleo€2 + IIy1lleos.

In a similar manner,we get

[(T20)()) —v2(B)] < lIy2llogr + lI72llco€2 + llwalloes,
I(Tz0)()) —v3())] < llwsllotr +[[ysllco2 + |73l €3

We deduce by the above inequalities that

[[T10 = v1lles + [IT20 = V2|l + IT57 — 3]l
< (t+w+ y)Z?zlei.

| To - vllx

Let ¢ = max {¢1, €2, €3}, which is combined with (4.4), we obtain

3A(a+1)
u—7lx <
T'(a+1)[1- (A1 + Ay + A3)] — A = 3AN

(T+w+y)e.
Hence, we conclude that the system (1.1) is Ulam-Hyers stable. Thus, Theorem 4.5 is proved. [
Theorem 4.6 Assume that (H;), (Hs3), and (3.12) are satisfied. Let u = (uy,up,u3) € X be the solu-

tion of the system (1.1), v = (v1,v2,v3) € X is the solution of the inequality problem (4.2) and (3.2)-(3.4),
Y; € C([0,1],R"),i = 1,2,3 and there exist py, > 0, such that for each t € [0,1],

[P ilt) < py, i), i=1,2,3.
Then, there exist a constant cy, r, r, » > 0 and ¥ € C([0, 1], R") such that for each ¢ = ¢(e1, €2, €3) > 0,

lu —llx < cp 5, p0e(t), te€[0,1],
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that is, system (1.1) is Ulam-Hyers-Rassias stable.

Proof. Let v = (v1,v2,v3) € X is a solution of (4.2) and (3.2)-(3.4), by using Remark 4.4, Lemma 3.1 and
proceeding as in the proof of Theorem 4.5, v1,v,, v3 can be given by

1 t a+p-1; A t a—
o) = Ty . €900 + 0o~ s [ =9 o
1
HE o+ Degs + e,-,zu—r(%w) fo (1= Y™ (@als) + @5(6) + bals) + hals))ds
1
+$ [ 1=9 9+ oxas]
+[t*(a + 1)eis + eiall— Ta+p f (1 = 9)" P (@3(s) + P1(s) + Pa(s) + P1(s))ds
1
+% (1= )+ 1 6]

1
@ Do+ eall—grr gy [ 0910+ a6) + 016) + ais

f (1 = 8 (01(5) + 02(5))ds]

@
HE G+ ey + el - f g, 6= 002000+ 32(0) + 6200) + 00
A a—
- [ 6= 0 wx0) + extopaonas
+[t*(a + 1)eio + ei10{A2 — j,:z[l“(a1+ 5 jo‘ (s = O)** P U P3(0) + @1(0) + P3(0) + p1(0))dO

A i a-
_m L (S - 9) 1(03(9) + Ul(@))de]ds}

o+ e + egraliAs — f ) f (5 — 0P (@1(0) + $2(6) + §1(6) + $2(6))d0
3

F(a +B)

T )f(s—G)“ Lw1(0) + 02(0))d0lds}, i=1,2,3, te[0,1].

Note that u = (u1, 12, u3) € X is the solution of the system (1.1). An argument similar to the one used in the
proof of Theorem 4.5 shows that

A N 3AN
IFa+1) T(a+1)

| Tu - Tollx =l u—Tollx < (A1 + Az + Az + ) [l u—llx,

we deduce that

Ta+1)
Il u— mu_lx +1)[1 - (A1 + A2 + A3)] - A = 3AN

I'Tv - ol|x. (4.5)
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On the other hand, we have the following estimate

IA

IA

IN

<

I(T1o)(t) — o1 (D)l

t
_ o\atp-1 4.
g . € s

1
(o Dera + ezl [ 097 (o) + ol

1
G+ Do+ el [ 0=97 7 0n(0) + 0n 0

1
o Ders +enalprgy [ 097 n(0) + ol

+(@+ ey +es] f g J, €= 0002000 + gn(@ods

&2

: S
At e el [l [ 607000+ ool

123
+[t"( + Deran + e1,12] [P(a B f(s O (1p1(6) + P2(6))d6]ds

S A ST
g . 9 s

f (L= ™ (lexgn(s) + e20a(s) + extas)ds

+[ta(0( + 1)81,1 + e 2]

Ia+ ﬁ)
+[t*(a + 1)e1 3 +eq 4] <P f (1= s)**F L (|ler1(s) + e2ta(8) + e33(5)l)ds

+[t“<a+1>e1,5+e1,61r(a—+ﬁ) [ 9 e+ a9+ espsion

&1
+H[t(a + D)ery + exg] [F(a;Jr,B) f(s — 0)**F 1 (le1y1(0) + 21p2(0) + e31p3(0)))dONds

1]1

+[ (@ + Ders + 1] f T f (s = 0" (e11(6) + £22(6) + esya(O))dO1ds

&3
A D+l | iy [ 6= 071 era(©) + c29a(@) + cxgai@onas

e1py, P1(t) + mll(t)[€1p¢1¢1(f) + e2py,P2(t) + e3py,P3(t)]
+mipp(t)[e1py, P1(t) + e20y,Pa(t) + 3py,P3(H)]

+maz(H)[e1py, P1(t) + €20y, Pa(t) + e3py,P3(t)]

+mya() (&1 — n)le1py, P1(t) + €20y, Pa(t) + e3py, P3(t)]

+mis(E)(E2 — M)[e1py, Y1(t) + e2py, P2(t) + e3py,3(H)]

+mis(t)(Es — N3)[e1py, Y1(t) + e2py, P2(t) + e3py,P3(H)]

(llctlleo + De1py,p1(t) + llcillooe2py, P2(t) + llcilloezpy,Pa(t), t € [0,1].

Similarly, we obtain

[(T20)(t) — v2(b)|

lic2lloo€1py, Y1(t) + (llc2lleo + 1)e2py, P2(t) + llc2lloespy, 3 (t),

<
[(Tz0)()) — o3l < llcallot1py, P1(E) + llcsllco €20y, P2(t) + (Icslleo + 1)ezpy, 3 (H).

11002
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In the above content,

cilt) = mip(t) +myp(t) + mysz(t) + mia(t)(E1 — 1) + m5(E)(E2 — M2) + mie(E)(E3 — 113),
c max{|l¢illeo, lIc2lleo, llGalleo}, i=1,2,3.

In view of the above estimates, we find that

| To-ollx = [T10=01lle + IT20 = V2lle + T30 — V3]l
< @Bc+Dlerpy, Yi(t) + eapy,Pa(t) + e3py,a(t)], t€[0,1].
Let € = max{ey, €2, €3}, P(t) = max{1(f), P2(f), P3(f)} , which is combined with (4.5), we get

F(D( + 1)(3C + 1)(p¢11 + Py, + p#’s)
a+1[1—-(A1+A+A3)]-A-3AN

lu—-ollx < I ep(t), tel0,1].

Let

. B [(a+1)Bc + D(py, + py, + py,)
Sl T Fla+ 1)1 = (A + Ay + Ag)] = A = 3AN

We deduce that the system (1.1) is Ulam-Hyers-Rassias stable. So, we finish the proof of Theorem 4.6. [J

Conclusion

In this paper, the cyclic anti-periodic and nonlocal integral boundary value problem to the self-adjoint
nonlinear tripled fractional Langevin differential system was investigated. By some fixed point theorems,
some sufficient conditions for the existence and uniqueness of solutions to the problem have been presented.
And, the Ulam-Hyers and Ulam-Hyers-Rassias stabilities of the problem have been established. Our main
results enrich some previous results. Furthermore, some examples is given to validate our main results.
From our view, there few papers discussing the cyclic nonlocal boundary value problems to the self-adjoint
nonlinear tripled fractional Langevin differential system. Moreover, the cyclic boundary value problems of
the self-adjoint nonlinear tripled system are more difficult and challenging than boundary value problems
of the normal coupled systems.

5. Example

Example 5.1 Let o
Ar=3,A =32 A3 =

S B=3,A=4%x108, & =3, m=3, &=3, m=1, &=
. We consider the following tripled system.

A=
<
=
w
1l
Ni—
N

Dy, Dy, +4x 10790 = fi(t, x1(8), %2, x3(), £ € 0, 1),
11(0) + %:(0) = ~(x2(1) + x3(1)), [;' (2(5) + x3(5))ds = 3,
12(0) +23(0) = ~(xs(1) + 11 (D), [ (x3(5) + x1(6))s = 3,
15(0) +1(0) = ~((1) + (D), [ (1(6) + xa(6))ds = 3.

(5.1)

Where
fi(t, x1(t), xa(t), x3(1))

fa(t, x1(t), x2(t), x3())
f3(t, x1(t), x2(t), x3(t))

£ +8x10%0+5x 107 + 1.7 x 107 sin @,

t5+1x107sing+1x1070 +1x107a,

£ +25%x 107 sing+2x 10 °sing + 3 x 10 %a.
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We choose

k() = £, ka(t) = 5, k() = £2,
pr1=8x10"% p,=1x107, p3=25x107,
;1=5%10"%, g, =1x107, g3 =2x107°,
r1=17%x10"7,rn,=1x107, r3=3x107°,

then assumption (H;), (H) are satisfied. In addition, we can calculate
T+ +7y < 56738010, N < 19792106, {; = pi +q; +1;=3%x107,i=1,2,3.

Therefore, we find

3
AL +3N 4% 1078 x 59376319
(C+w+)) ) G+ r( ) < 56738010 x 9 x 107 + 210X ~08<1,
i=1

@+1) T(1.6)

that is, condition (3.11) holds. Therefore, by Theorem 3.2, we conclude that the system (5.1) has at least one
solution on [0, 1].

Example 5.2 Let o
Ar=3,A =% A3 =

7

B=3 A=8x10"% & =4, m=3 &=3, m=1 &=
We consider the following tripled system.

Ni—

s M3 =

[ [

3
57
5
7

Dy, Dy, +8x 1079t = filt, x1(8), %2, x3(), £ € O, 1),
11(0) + x2(0) = ~(a(1) + x3(1), J} (32(5) + 236 = 2,
12(0) +23(0) = ~(xs(1) + 11 (D), [} (x3(5) + x1(6))s = 3,
15(0) +1(0) = ~(1(1) + (D), [ (1(6) + xa(6))ds = 3.

(5.2)

Where

) ol Gl )
fl(t,X1(t),X2(t),X3(t)) = 2x10 [3 I le(t)| + 3+ |.X'2(t)| + 3+ |X3(t)| ’
it 1), 00, 5(0) = 4x 10_7[% +sinfea()] + sin ()],

f3(t, x1(t), xa2(t), x3(t))

We take

3 x 1077 [sin |x1 ()] + sin |x2 ()] + sin |x3(8)]].

L,=2x107, L, =4%x107, Ly =3x 1077,

then assumption (H;), (H3) are satisfied. In addition, we can find

A(B+3N) A3 +3N)
_—_— < Ty 1)
T@+1) +A1+ A+ A3 < T+ 1) +(t+w+y)(Li + Ly + La)
-8
< 20 rg 56?376321 +56738010 x 9x 1077 ~ 0.723 < 1,

that is, condition (3.12) is also satisfied. Then we conclude from Theorem 3.3 that the system (5.2) has a
unique solution.
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