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Abstract. Predator-prey has a long background in the ecological environment. The activity of prey’s daily
life can be altered due to the presence of a predator. Also, some experimental studies have proved that the
induced fear of predators felt by prey, has the capability to change both the birth and death rate of the prey
species. The effect of such fear and its carry-over impact in a predator-prey model where predators get
additional food has been analyzed in a toxic environment. This research delves into the complex dynamics
of a predator-prey system within ecological contexts, highlighting the interactions between species and
environmental effects. Key factors that are explored include fear effect, additional food for predators,
and carry-over effects within a toxic environment. Additionally, the inclusion of a time delay factor
accounts for gestation periods, further enriching the dynamic of the system. Environmental fluctuations
are studied by incorporating Gaussian white noise into the system, allowing for an analysis of their
impact. The study investigates how fear, carry-over effects, and environmental toxicity influence population
dynamics. Notably, the delay parameter introduces a supercritical Hopf bifurcation, significantly enhancing
the dynamics of the system. Moreover, environmental stochasticity adds complexity to such models by
capturing fluctuations in population dynamics. Through bifurcation diagrams, valuable insights are gained
about the behavior of the proposed system across various parameter values. This deeper understanding
sheds light on the system’s stability and response to various environmental influences.

1. Introduction

In the fields of population biology, mathematical biology, and ecology, the predator-prey model has been
extensively investigated and used. It gives researchers vision to investigate the complicated relationships
between different species and aids in their understanding of the variables affecting population dynamics.
Additional aspects including environmental fluctuations, regional concerns and more intricate community
structures have been incorporated and modified within the model.

In “An Essay on the Principle of Population”, published in 1798, Thomas Robert Malthus examined
the relationship between population growth and available resources [1]. As per his opinion, population
growth tends to be exponential, or it may tend to rise over a period of time, at a steady percentage rate.
He thought that although there was potential for a rapid increase in population, the growth of resources,
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especially food, would only be arithmetical or linear. Malthus predicted that this underlying disparity in
growth rates would cause the population to eventually outgrow the resources at hand, leading to what he
called a “Malthusian crisis.”

The Malthus exponential growth model was altered in the 19th century by Belgian mathematician Pierre
François Verhulst, who included the concept of carrying capacity to reflect the larger population sizes that
an ecosystem can support [2]. It is also known as logistic growth model. The logistic growth model takes
environmental constraints into consideration, in contrast to the Malthusian model, which postulates infinite
exponential development. In ecology and population biology, such type of logistic model is applied more
broadly to describe population dynamics in situations when resources are limited. It provides a more
realistic picture of how populations disperse and endure throughout the entire time period in terms of
environmental constraints.

Therefore, in order to construct a predator-prey relationship based on Malthus growth rate, the tra-
ditional Lotka-Volterra model was introduced [3, 4]. Differential equations that explain the dynamics of
predator and prey populations are the foundation of the Lotka-Volterra model. The model has been fur-
ther expanded and altered by researchers throughout time in order to take into consideration ecological
scenarios that are more plausible. Despite its shortcomings and the fact that real ecosystems are frequently
more complicated than the model predicts, the Lotka-Volterra model is nevertheless a key idea in ecolog-
ical modeling. It has opened the door for the creation of more complex models that seek to depict the
complexities of ecological systems. Predator-prey interactions are still a crucial area of study in ecology,
because they help us in better understanding of ecosystem dynamics and biodiversity. Researchers have
been constructing numerous models to examine the behaviors of this type of ecological models and many
other ecological scenarios for so many years [5–11].

Following that, it was changed and evolved into a predator-prey system by adding a predation
term—also referred to as a functional response—and a logistic growth term for the prey species. From
an ecological perspective, “functional response” refers to a connection involving the size of a prey popula-
tion and the pace at which a predator consumes its prey. It illustrates how the presence of prey instigates
a consumer to change its feeding pace. Mainly three types of functional response are used, namely, Type
I Functional Response, Type II Functional Response and Type III Functional Response [12]. There are also
some other types of functional responses such as Beddington–DeAngelis, Crowley-Martin, Ratio-dependent
functional response, etc. Recognising predator-prey relationships and population dynamics in ecosystems
depends significantly on functional responses. By modelling and forecasting the effects of predators on
prey populations and vice versa, ecologists and researchers are able to shape the general stability and
framework of ecological communities.

Direct and indirect impacts are the two ways in which predators affect prey species. The way that
ecological relationships and ecosystem structure are shaped is greatly influenced by these factors. According
to several researchers, indirect or non-fatal impacts are even more effective than direct or lethal impacts in
creating an unpleasant environment for the prey species.

In many different types of ecosystems, fear is such a non-lethal impact that has a big impact on prey
populations [5–7]. The reaction of fear felt by the prey species is frequently an adaptive characteristic that
aids in their survival while predators are nearby. There are a few ways how fear may affect the prey species:
(i) When the prey species realizes the presence of predators, they frequently display behavioral changes.
This may involve adjustments in prey’s diet, mode of mobility, and reproductive strategy. Prey may, for
instance, lessen their pursuit levels, become more watchful, or stay away from specific regions where they
suspect there is a greater chance of being caught by predator. (ii) Prey populations may have lower rates of
successful reproduction as a result of predator fear. Anxiety that arises due to fear can alter the release of
hormones that control reproduction, leading to changes in breeding habits and lowering the fertility rates.
Regarding population increase, this may also have long-term effects. (iii) The grazing behaviour of prey
animals may be altered by induced fear. In situations where they believe that they are in danger due to
predators, prey may spend less time grazing. For this, prey species lessen their interaction to other species
in the ecosystem. (iv) Prey species can go through evolutionary changes throughout time as a result of
their fear of predators. Selected genes can favour characteristics like improved escape methods, heightened
awareness, or altered reproductive practices that improve longevity in the face of predators. Sheriff et
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al. [13] carried out an experiment on female snowshoe hares (Lepus Americanus) in 2009. In the year 2011,
Zanette et al. [14] were able to show predators’ killing and eating practices have a direct effect on the number
of prey. However, the fear of being a victim itself may have a big effect on their behavior, such as making
individuals more cautious or less willing to be in the open. A situation involving a tiny colony of song
sparrows was portrayed, in which all potential threats to the birds were eliminated. Consequently, it was
noted that 40% of the infants were successfully maintained. Predator noises were introduced to numerous
pair of birds who were mating; the birds that got used to greater amounts of perceived predator presence
selected more isolated nest locations and made fewer grazing visits, both of which were detrimental to
the young. The results of these experiments encourage researchers to incorporate fear effects into the prey
population in order to enhance the dynamics of the predator-prey model [15–18, 24].

It is necessary to learn about carryover effects in order to fully investigate the ecological dynamics
between predators and prey. It emphasizes on how crucial it is to take into account not just direct contacts
but also the long-term effects that prior encounters may have on specific prey as well as on the entire
populations. In the fields of evolutionary biology and ecology, where scientists seek to gain insight into
the intricate interactions between different species within ecosystems, this idea is significantly crucial.
Predation events in the past might cause prey animals to change their behavior. The term “carry-over
effect” originated from repeated appraisals of clinical testing. In 2014, O’Connor et al. [19] provided the
following definition of “carry-over” :

“In an ecological context, carry-over effects can occur in any situation in which an individual’s previous
history and experience explains their current performance in a given situation”.

The authors of this paper propose that ecological carryover effects can also happen across developmental
phases, life-history phases, physiological conditions, or social contexts, and that each will have a discrete
time-scale. A model with a Holling type II functional response and prey refuge was explored by Mondal
and Samanta [20]. Because of the impact of a changing environment, they have also compared their model
to a stochastic variant that included Gaussian white noise components. Also Das et al. [21] studied the
effect of predator-induced fear and its carry-over impact on a predator-prey model in which the predator
species can get some alternative or additional food sources.

Both humans and predator-prey species may be affected in different ways by the presence of toxic
materials in their surroundings. The type of toxic substance, how much of it is present, how long the
exposure lasts, and the particular biological and ecological traits of the creatures involved, all have an
effect on the outcome. Toxic components can cause nausea and respiratory problems, chronic health
problems, neurological disorders, cancer, and reproductive problems in human beings. Toxic materials
can be introduced to humans through a variety of channels, such as the air, water, soil and food. Mining,
inappropriate disposal of waste and industrial operations can all lead to environmental pollution. Also,
environmental toxins can have a direct or indirect impact on both predator and prey species. This may
cause them to suffer acute consequences that impact their psychological behavior, health, and ability to
procreate [22–24].

Time delay is an useful tool in predator-prey models to represent the reality that one population’s
response to changes in the other population takes time to manifest. Time delays have a big effect on the
system’s dynamics and can cause fascinating behaviours like oscillations and instability to appear [25–27].

Modifications or shifts in the environment throughout time are referred to as environmental fluctuations.
There are two types of fluctuations: long-term ones like those brought on by climate change, and short-
term ones like daily or seasonal variations. These changes may have an effect on dynamic populations,
ecosystems and the stability of the environment as a whole [28–30]. Variations in the environment can have
a major effect on predator-prey systems in a number of ways: (a) Population Dynamics, (b) Behavioral
Changes, (c) Resource Availability, (d) Predator-Prey Interactions, etc. All things considered, together with
environmental variations are extremely important in determining how predator-prey systems behave.

We summarize this work section-wise in the following way: The foundation of the model has developed
in Section 2. In the next Section 3, both the study of positivity and boundedness of our proposed system
have been discussed. Thereafter, the evaluation of steady states under some parametric conditions has been
shown in the Section 4. The stability analysis of the system has been depicted in Sub-Section 4.1, where
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various types of phenomena of the system have been shown. The local bifurcation analysis is studied in
Section 5. The inspection with time-delay has been done in Section 6. Next in Section 7, the system has
been examined with environmental stochasticiyty. A brief discussion has been discussed in Section 8.

2. Model Formulation

Let us begin by assuming that, in the absence of predator, the growth rate of the prey species (x1) follows
the logistic law which is given by the following equation:

dx1

dt
= αx1 −m1x1 − d1x2

1, (1)

where, α,m1, d1 respectively represents the reproductive rate, natural death rate and decay rate due to
intraspecific competition. After that, prey biomass is considered with a constant predator biomass (x2).
Numerous studies suggest that the presence of a predator may subsequently affect a prey species’ capacity
to procreate by creating a fear of the predator that leads to the development of complicated dynamics
between them. In contrast to the idea of ingesting a predator directly, we modify the previously discussed
logistic growth model to take into consideration induced fear and its effect of carry-over in reproduction of
prey, which is represented as follows:

dx1

dt
= αx1

(
1 + βx1

1 + βx1 + δx2

)
−m1x1 − d1x2

1, (2)

here, βdenotes the carry-over impact of the predator’s instillation of fear, and δ represents that fear. The term
1+βx1

1+βx1+δx2
, say ζ(x1, x2, β, δ), is associated with fear and carry-over effect. This term carry some fascinating

information which support biological beliefs too, which are defined as given below:

(i) The model reduces to a simple prey biomass model with induced fear effect, for β = 0, as ζ(x1, x2, 0, δ) =
1

1+δx2
.

(ii) For fear level (δ) = 0, the model turns into a simple logistic growth model, which has been already
mentioned earlier.

(iii) Now in absence of predator, i.e., x2 = 0, the prey biomass again follows the logistic growth law, as
prey don’t have to suffer any danger due to the presence of predator.

(iv) A larger value of fear is shown to have a detrimental effect on prey biomass. Furthermore, this
negative effect can worsen to the point where it affects the prey population’s ability to reproduce.

(v) In a similar manner, one can say that for higher values of x2, i.e., predator biomass adversely affect
the growth rate of prey biomass.

(vi) If one increases the value of the parameter β, it brings out a positive impact on the escalation of prey
biomass as the prey species learn and gain experience from earlier incidents.

(vii) Also increasing the number of prey biomass helps them to create a larger community and due to this
anti-predator behavior, the reproduction rate of prey species also increases.

The majority of the previous articles dealt with specialized predators, whose development is solely
dependent on a particular prey. Predator species may go extinct as a result. It is quite uncommon in
ecology to see such kind of predator-prey relationship. When their main food supply is gone, the majority
of predators rely on supplementary or alternative food sources in order to stay alive and prevent extinction.
In the realm of biological control, it is also one of the well recognized tactics. Therefore, it makes sense
to take into account the extra food of constant biomass A that is supplied to the predator species and
distributed impartially across the environment. Next, as predator species have more food, the Holling type
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II functional response is modified. The calculation of such type of functional response is shown in the
previous work [21] and the model takes the following form:

dx1

dt
= αx1

(
1 + βx1

1 + βx1 + δx2

)
−m1x1 − d1x2

1 −
d2x1x2

ρ + ξµA + x1
, (3)

here, d2 is the coefficient representing the consumption rate of predator species, ρ is the half saturation
constant, ξ is the quality of additional food, µ is the coefficient representing effective quantity of additional
food, and A is the additional food biomass.
The following equation represents the increase in predator species linked with the changing type II func-
tional response and natural mortality rate:

dx2

dt
=

cd2(x1 + µA)x2

ρ + ξµA + x1
−m2x2, (4)

here c (0 < c < 1) is the conversion rate of prey biomass to predator biomass and m2 is the natural death
rate of predator biomass. So our model takes the following form:

dx1

dt
= αx1

(
1 + βx1

1 + βx1 + δx2

)
−m1x1 − d1x2

1 −
d2x1x2

ρ + ξµA + x1

dx2

dt
=

cd2(x1 + µA)x2

ρ + ξµA + x1
−m2x2.

(5)

The impact of man-made and natural environmental contaminants on ecosystem health is rising on a
worldwide scale. One of the main global sources of pollution is industrial pollutants. Industrial pollutants
can arise from the decomposition of solid waste, discharge and seepage of water, and air level emission
and deposition. When it comes to poisons, they can also leak into environment via natural processes. So
we added toxic coefficients v1 and v2 to both prey species and predator species. For that reason, the final
model looks like this:

dx1

dt
= αx1

(
1 + βx1

1 + βx1 + δx2

)
−m1x1 − d1x2

1 −
d2x1x2

ρ + ξµA + x1
− v1x3

1,

dx2

dt
=

cd2(x1 + µA)x2

ρ + ξµA + x1
−m2x2 − v2x2

2,

(6)

where the initial conditions are as follows:

x1(0) > 0, x2(0) > 0. (7)

The term ‘v1x3
1’ with negative sign is added to the prey species as toxic elements such as industrial pollutants

directly effects the prey biomass. After ingesting the affected prey species, predator species also become
effected, and that’s why they get less affected. So we add ‘−v2x2

2’ to the growth of predator species. Here,
v1 and v2 are toxicant coefficients related to prey and predator species respectively. These coefficients are

considered to be positive. Here, it should be mentioned that,
d(v1x3

1)
dx1

= 3v1x2
1 > 0 and

d2(v1x3
1)

dx2
1
= 6v1x1 > 0.

As prey species consume an increasing amount of contaminated or poisonous food, it may give rise to a
situation where the production of the harmful components related to those species grows more quickly.
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Table 1: Description and range of system parameters

Parameter Description Range
α Birth rate of prey 0.2 − 6

m1 Natural mortality rate of prey 0.01 − 1
d1 Density dependent decay rate of prey 0.001 − 1
δ Level of fear 0.05 − 10
β Carry-over effect rate due to fear 0.01 − 10
d2 Coefficient of consumption rate of predator 0.1 − 3
ρ Half saturation constant 0.1 − 5
ξ Quality of additional food 0.01 − 2
µ Coefficient of effective quantity of additional food 0.01 − 2
A Additional food 0.1 − 10
c Conversion coefficient 0.01 − 1

m2 Death rate of predator 0.01 − 1
v1 Toxicity coefficient related to prey 0 − 1
v2 Toxicity coefficient related to predator 0 − 1

3. Positiveness and Boundedness

Theorem 3.1. Solution of system (6), with initial conditions (7), exists uniquely and is positive for any time t ≥ 0.

Proof. It can be easily verified that the right hand side of system (6) are continuous and locally lipschitzian
in R2

+. Hence the solution (x1(t), x2(t)) of the system exists uniquely on [0, η) where 0 < η ≤ ∞ [31]. Now
from system (6) with initial conditions x1(0) > 0 and x2(0) > 0, we have

x1(t) = x1(0) exp
[∫ t

0

{
α(1 + βx1(s))

1 + βx1(s) + δx2(s)
−m1 − d1x1(s) −

d2x2(s)
ρ + ξµA + x1(s)

− v1x2
1(s)

}
ds

]
> 0,

x2(t) = x2(0) exp
[∫ t

0

{
cd2(x1(s) + µA)
ρ + ξµA + x1(s)

−m2 − v2x2(s)
}

ds
]
> 0.

(8)

This proves that the solution of the proposed system remains positive for any time t ≥ 0.

Next, we show the uniform boundedness of the system’s solution under certain parametric constraints.

Theorem 3.2. Solutions of system (6), initiating in R2
+, are uniformly bounded, provided α > m1 and (cd2ξ + cd2 −

m2ξ) > 0.

Proof. From the first equation of system (6), we have

dx1

dt
≤ αx1

(
1 + βx1

1 + βx1 + δx2

)
−m1x1 − d1x2

1

≤ (α −m1)x1 − d1x2
1

[
∵

1 + βx1

1 + βx1 + δx2
≤ 1

]
= (α −m1)x1

1 − x1
α−m1

d1

 .
∴ lim

t→∞
sup x1(t) ≤

α −m1

d1
, as α > m1.

From the second equation of system (6) we have,
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dx2

dt
=

cd2(x1 + µA)x2

ρ + ξµA + x1
−m2x2 − v2x2

2,

≤ cd2

(
1 +

1
ξ

)
x2 −m2x2 − v2x2

2,

= κx2

(
1 −

x2
κ
v2

)
, assuming κ =

1
ξ

(cd2ξ + cd2 −m2ξ) > 0.

Which implies lim
t→∞

sup x2(t) ≤
κ
v2

, where κ = 1
ξ (cd2ξ + cd2 −m2ξ) > 0.

This demonstrates that any solution of system (6) is uniformly bounded provided, α > m1 and
(cd2ξ + cd2 −m2ξ) > 0.

4. Equilibrium Points

Here we derive some parametric conditions under which various types of steady state solutions of
system (6 ) are emerged, and further we also explore the stability conditions around these steady states.
Since the conditions α > m1 and (cd2ξ + cd2 −m2ξ) > 0 are sufficient for boundedness of the system
solutions, we, therefore restrict our analysis under these parametric constraints.
System (6) always possesses three following boundary equilibrium points:

(i) Trivial equilibrium point: E0(0, 0)

(ii) Axial equilibrium point: Ea1 (x1a, 0),where x1a =
−d1 +

√
d2

1 + 4v1(α −m1)

2v1
, provided α > m1. But it is

biologically intuitive that higher mortality rate is always harmful for any kind of species and drives
that species to extinction, so throughout this manuscript, we assume that α > m1 .

(iii) Another axial equilibrium point: Ea2 (0, x2a), where x2a =
1
v2

[
cd2µA
ρ + ξµA

−m2

]
, provided

cd2µA
ρ + ξµA

> m2.

The interior equilibrium point Ec(x∗1, x
∗

2) satisfies the two non-trivial prey and predator nullclines together
in the interior of the first quadrant:

f1(x1, x2) ≡ α
(

1 + βx1

1 + βx1 + δx2

)
−m1 − d1x1 −

d2x2

ρ + ξµA + x1
− v1x2

1 = 0, (9)

f2(x1, x2) ≡
cd2(x1 + µA)
ρ + ξµA + x1

−m2 − v2x2 = 0. (10)

From equation (10), we get the explicit expression of x∗2 which is given by

x∗2 =
Acµd2 − Aµξm2 − ρm2 + cd2x∗1 −m2x∗1

v2

(
ξµA + ρ + x∗1

) .

For positive x∗2, the condition cd2(µA + x∗1) > m2(µAξ + ρ + x∗1) must be satisfied.
Now by using the value of x∗2 in (9), we derive the following equation in x1, say 1(x1) = 0, where

1(x1) ≡ A1x6
1 + A2x5

1 + A3x4
1 + A4x3

1 + A5x2
1 + A6x1 + A7 (11)

Here, Ai’s (i = 1, 2, ..., 7) are described in Appendix A.

Table 2: Values of parameters used in numerical simulation

Parameter α m1 d1 δ β d2 ρ ξ µ A c m2 v1 v2 σ1 σ2

Value 4.83 0.47 0.22 5.3 2.9 0.454 4.07 0.183 0.62 5.77 0.485 0.07 0.094 0.0465 0.009 0.002
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4.1. Stability Analysis

Now we investigate the stability behaviour of the system (6) around these equilibrium states by ex-
amining the sign of the eigenvalues of the corresponding Jacobian matrix. The Jacobian matrix J(x1, x2) of
system (6) is given by

J(x1, x2) =


α(1+δx2)(1+2βx1)+αβ2x2

1
(1+βx1+δx2)2 −m1 − 2d1x1 −

(ρ+ξµA)d2x2

(ρ+ξµA+x1)2 − 3v1x2
1 −

δαx1(1+βx1)
(1+βx1+δx2)2 −

d2x1
ρ+ξµA+x1

cd2(ρ+(ξ−1)µA)x2

(ρ+ξµA+x1)2
cd2(x1+µA)
ρ+ξµA+x1

−m2 − 2v2x2

 . (12)

Theorem 4.1. The trivial equilibrium point E0 is always unstable.

Proof. At the trivial equilibrium point E0(0, 0), the Jacobian matrix reduces to

J0 =

(
α −m1 0

0 cd2µA
ρ+ξµA −m2

)
.

Since one of the eigenvalue is (α −m1) > 0, E0(0, 0) is unstable.

Theorem 4.2. The axial equilibrium point Ea1 (x1a, 0) is stable if cd2(x1a + µA) < m2(ρ + ξµA + x1a) and unstable if

cd2(x1a + µA) > m2(ρ + ξµA + x1a), where x1a =
−d1+
√

d2
1+4v1(α−m1)
2v1

.

Proof. Now the Jacobian matrix at the predator free equilibrium point Ea1 (x1a, 0) is given by

J(x1a, 0) =

(α −m1) − 2d1x1a − 3v1x2
1a −

δαx1a
(1+βx1a) −

d2x1a
ρ+ξµA+x1a

0 cd2(x1a+µA)
ρ+ξµA+x1a

−m2

 . (13)

Thus the eigenvalues of this matrix are (α − m1) − 2d1x1a − 3v1x2
1a and cd2(x1a+µA)

ρ+ξµA+x1a
− m2. By putting x2 = 0 in

(9), we have

α −m1 − d1x1a − v1x2
1a = 0 =⇒ α −m1 = d1x1a + v1x2

1a.

Hence, with the help of this, first eigenvalue becomes negative. Therefore, the stability of predator free
steady state Ea1 (x1a, 0) will depend on the sign of the other eigenvalue, i.e., on cd2(x1a+µA)

ρ+ξµA+x1a
−m2. So, the result

follows.

Theorem 4.3. The axial equilibrium point Ea2 (0, x2a) is stable if α(ρ+ξµA) < (1+δx2a)
[
m1(ρ + ξµA) + d2x2a

]
and

unstable if α(ρ + ξµA) > (1 + δx2a)
[
m1(ρ + ξµA) + d2x2a

]
, where x2a =

1
v2

[ cd2µA
ρ+ξµA −m2

]
.

Proof. The Jacobian matrix at the prey free equilibrium point Ea2 (0, x2a) is given by

J(0, x2a) =

 α
(1+δx2a) −m1 −

d2x2a
(ρ+ξµA) 0

cd2(ρ+(ξ−1)µA)x2a

(ρ+ξµA)2 −v2x2a

 . (14)

Thus the eigenvalues of this matrix are α
(1+δx2a) −m1 −

d2x2a
(ρ+ξµA) and −v2x2a. Therefore, the stability of the prey

free steady state Ea2 (0, x2a) will depend on the sign of the eigenvalue α
(1+δx2a) − m1 −

d2x2a
(ρ+ξµA) . So, the result

follows.

Theorem 4.4. The coexistence steady state Ec(x∗1, x
∗

2) will be stable if the conditions in the following proof are satisfied.
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Proof. Now the Jacobian matrix at the interior equilibrium point Ec(x∗1, x
∗

2) is given by

J(x∗1, x
∗

2) =
(
a11 a12
a21 a22

)
(15)

where,

a11 =
α(1 + δx∗2)(1 + 2βx∗1) + αβ2x∗1

2

(1 + βx∗1 + δx∗2)2 −m1 − 2d1x∗1 −
(ρ + ξµA)d2x∗2

(ρ + ξµA + x∗1)2 − 3v1x∗1
2,

a12 = −
δαx∗1(1 + βx∗1)

(1 + βx∗1 + δx∗2)2 −
d2x∗1

ρ + ξµA + x∗1
,

a21 =
cd2

(
ρ + (ξ − 1)µA

)
x∗2

(ρ + ξµA + x∗1)2 ,

a22 =
cd2(x∗1 + µA)
ρ + ξµA + x∗1

−m2 − 2v2x∗2.

Thus, interior equilibrium point Ec(x∗1, x
∗

2) will be stable if (a11 + a22) < 0 and (a11a22 − a12a21) > 0.

5. Local Bifurcation

Here, we have examined whether or not the system changes its stability through local bifurcation.

5.1. Transcritical Bifurcation
Theorem 5.1. When additional food A is to be considered as a bifurcating parameter, system (6) exhibits a transcritical
bifurcation around the axial steady state Ea1 at the critical value A[TC] =

1
µ

[ m2ρ
cd2−m2ξ

+ m2−cd2
cd2−m2ξ

x1a

]
with cd2 > m2ξ.

Proof. To prove this theorem, we use Sotomayor’s Theorem [32]. For the critical value A[TC], the Jacobian matrix at
the steady state Ea1 (x1a, 0) is as follows:

J(Ea1 ; A = A[TC]) =
(
(α −m1) − 2d1x1a − 3v1x2

1a −
δαx1a

(1+βx1a) −
d2x1a

ρ+ξµA+x1a

0 0

)
. (16)

Clearly, 0 is an eigenvalue of this matrix. For this eigenvalue, we get two eigenvectors P =
(
p1
1

)
and Q =

(
0
1

)
for the

Jacobian matrix J
(
Ea1 ; A = A[TC]

)
and

[
J
(
Ea1 ; A = A[TC]

)]t, where

p1 = −
x1a

(
αδ

1+βx1a
+ d2

ρ+ξµA+x1a

)
d1x1a + 2v1x2

1a

.

Taking similar notations from [32], we may write down the transversality conditions for transcritical bifurcation as
follow:

∆1 = Qt
[
FA

(
Ea1 ; A = A[TC]

)]
= 0,

∆2 = Qt
[
DFA

(
Ea1 ; A = A[TC]

)
P
]
=

µ(cd2 −m2ξ)
ρ + ξµA[TC] + x1a

] , 0,

∆3 = Qt
[
D2F

(
Ea1 ; A = A[TC]

)
(P,P)

]
= −2v2 +

p1(cd2 −m2)
ρ + ξµA[TC] + x1a

, 0.

Here, F ≡
(

f1
f2

)
, where f1, f2 are defined earlier. Hence by the help of Sotomayor’s theorem, we can say system

(6) shows a transcritical bifurcation in the circumference of the axial steady state Ea1 at the critical value A[TC] =
1
µ

[ m2ρ
cd2−m2ξ

+ m2−cd2
cd2−m2ξ

x1a

]
.
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Theorem 5.2. System (6) exhibits transcritical bifurcation for the bifurcating parameters m1,m2 respectively at the

critical values m1T = α−2d1x1a−3v1x2
1a and m2T =

cd2(x1a+µA)
ρ+ξµA+x1a

, where x1a =
−d1+
√

d2
1+4v1(α−m1)
2v1

around the axial steady
state Ea1 .

(a) (b)

Figure 1: (a) One parameter bifurcation diagram with respect to A. (b) One parameter bifurcation diagram
with respect to δ. Solid green curve indicates stable interior equilibrium Ec1 , red doted curve denotes
unstable interior equilibrium Ec2 , pink solid curve indicates stable Ea2 where as dashed cyan color indicates
unstable one and dashed pink curve indicates unstable E0.

In Figure 1, the bifurcation diagrams with respect to the parameter A and δ have been depicted. From
Figure 1a it is clear that at A[BP] = 2.216, there is a branch point and branches are unstable E0 and unstable
Ea2 . A transcritical and a saddle node bifurcation occurs at A[TC] = 4.407 and A[SN] = 7.365 respectively.
The highlighted region in the figures indicates that the bistability phenomenon occurs between the interior
equilibrium points Ec and prey free equilibrium Ea2 . Similarly, Figure 1b shows that the system exhibits
transcritical and sadlle node bifurcation at δ[TC] = 2.986 and δ[SN] = 7.029 respectively.

(a) (b)

Figure 2: (a) One parameter bifurcation diagram with respect to m1 (b) one parameter bifurcation diagram
with respect to m2. Solid green curve indicates stable equilibrium Ec1 , red doted curve denotes unstable Ec2 ,
pink solid curve indicates stable Ea2 where as dashed cyan color indicates unstable one.

Figure 2 demonstrates the bifurcation scenarios regarding the parameters m1 and m2. Both the figures
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have similar types of phenomena. The proposed system exhibits transcritical as well as saddle node
bifurcation for both the parameters at m1[TC] = 0.2018, m2[TC] = 0.1047 and m1[SN] = 0.7348, m2[SN] = 0.0417
respectively. Bifurcation diagrams with respect to v1, v2 and β have been depicted in Figure 3. Figure 3a
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Figure 3: (a) Bifurcation diagram with respect to v1 (b) bifurcation diagram with respect to v2 (c) Bifurcation
diagram with respect to β. Solid green curve indicates stable equilibrium Ec1 , red doted curve denotes
unstable Ec2 , pink solid curve indicates stable Ea2 where as dashed cyan color indicates unstable one.

indicates that the system exhibits a saddle node bifurcation at v1[SN] = 0.359 about the interior equilibrium
point. A transcritical and a saddle node bifurcation occur at v2[TC] = 0.0725 and at v2[SN] = 0.0369 respectively
as shown in Figure 3b. Figure 3c demonstrates that the system exhibits saddle node bifurcation about the
interior equilibrium point at β[SN] = 1.997.

In Figure 4, two parametric bifurcation diagrams have been depicted in m1m2 and v1v2-plane. In m1m2-
plane, the regions divided by the saddle node and transcritical bifurcation curves are defined by B1, B2, B3
and B4. In the region B1 the prey free equilibrium Ea2 is stable where as coexistence equilibrium is stable
in B3 and predator free is in B4. The region B2 is the bistable region where bistability occurs between Ea2

and Ec1 . In v1v2-plane, the B5 is the region where prey free equilibrium Ea2 is stable, and B6 is the bi-stable
region where bistability occurs between Ec1 and Ea1 . In the region B7, Ec1 is stable. The stability nature of
system (6) in various regions of m1m2 and v1v2-plane are described in Table 3 in details.

(a) (b)

Figure 4: (a) Two parametric bifurcation curves in m1m2-plane (b) Two parametric curves in v1v2-plane.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 5: Phase portraits and nullclines taking point from (a) Region B1 (b) Region B2 (c) Region B3 (d)
Region B4 (e) Region B5 (f) Region B6 (g) Region B7. Here, ( ), ( ),( ), ( ) and ( ) denotes unstable
node, saddle point, stable node, prey-nullcline and predator-nullcline respectively.

Table 3: Descriptions of stability nature of the system (6) in m1m2 and v1v2-plane

Nature of stability
Region E0 Ea1 Ea2 Ec1 Ec2

Type of region

B1 unstable node saddle stable node Monostable
B2 unstable node saddle stable node stable node saddle Bistable
B3 unstable node saddle saddle stable node Monostable
B4 saddle stable node Monostable
B5 unstable node saddle stable node Monostable
B6 unstable node saddle stable node stable node saddle Bistable
B7 unstable node saddle saddle stable node Monostable
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To visually illustrate the dynamic behavior of the system (6) within the specified region outlined in
Table 3, we have constructed a detailed depiction showcasing the phase portrait and nullcline, as presented
in Figure 5. By varying the initial conditions, we have illustrated the presence of distinct equilibrium
points, including stable nodes, unstable nodes, and saddle points. This graphical representation provides
valuable insights into the system’s behavior and stability across different starting conditions, enhancing
our understanding of its dynamic nature within the defined parameter space.

6. Delayed Model

Broadly speaking, time delay is the amount of time a system takes to react to an input or change. Time
delay is commonly expressed by incorporating a delay component into a mathematical model. This idea is
especially important in systems where actions have to be delayed, rather than instantaneous, repercussions.
Time delays can be expressed as functions or state variables at a former time affecting the system’s current
state. For the following reasons, time delays may be taken into account in an ecological model: (i) Gestation
and Maturation Time; (ii) Time Lag in Population Response; (iii) Time for Migration or Dispersal; (iv)
Environmental Factors; (v) Evolutionary Changes. Predator-prey models can better represent the real-life
dynamics and relationships found in ecological systems by incorporating time delays. It makes possible
to depict the temporal components of predator-prey relationships more accurately, which improves our
comprehension of how populations react to changes over time.

6.1. Stability analysis about the interior equilibrium point

dx1

dt
= αx1

(
1 + βx1

1 + βx1 + δx2

)
−m1x1 − d1x2

1 −
d2x1x2

ρ + ξµA + x1
− v1x3

1, x1(0) > 0

dx2

dt
=

cd2(x1(t − τ) + µA)x2(t − τ)
ρ + ξµA + x1(t − τ)

−m2x2 − v2x2
2, x2(0) > 0

(17)

The initial conditions are taken as:
x1(ψ) = u1(ψ), x2(ψ) = u2(ψ), ψ ∈ [−τ, 0], where the function u = (u1,u2) belongs to the Banach space
C = C([−τ, 0],R2

+). It is considered that u j(0) > 0, j = 1, 2, biologically which are meaningful.
Let us perform the transformations x1 = X1 + x∗1 and x2 = X2 + x∗2, so that system (17) be linearized about
the coexistence steady state Ec = (x∗1, x

∗

2) as:

dV1

dt
= Q1V1(t) +Q2V1(t − τ). (18)

Here, V1 = [X1 X2]T, Q1 =

[
a11 a12
0 a22

]
and Q2 =

[
0 0

c21 c22

]
, where

a11 =
α(1 + δx2)(1 + 2βx1) + αβ2x2

1

(1 + βx1 + δx2)2 −m1 − 2d1x1 −
(ρ + ξµA)d2x2

(ρ + ξµA + x1)2 − 3v1x2
1, (19)

a12 =
δαx1(1 + βx1)

(1 + βx1 + δx2)2 −
d2x1

ρ + ξµA + x1
, a22 = −m2 − 2v2x∗2, (20)

c21 =
cd2

(
ρ + (ξ − 1)µA

)
x∗2

(ρ + ξµA + x∗1)2 , c22 =
cd2(x∗1 + µA)
ρ + ξµA + x∗1

. (21)

The characteristic equation of (18) can be expressed as follows:

λ2 +Ma1λ +Ma2 + (Na1λ +Na2)e−λτ = 0, (22)
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where, Ma1 = −(a11 + a22), Ma2 = a11a22, Na1 = −c22 and Na2 = a11c22 − a12c21.
For τ , 0, the nature of stability of the coexistence equilibrium Ec depends on the sign of the roots of the
characteristic equation (22). The system (18) is locally asymptotically stable if real parts of all the roots
of the characteristic equation (22) are negative. For the non-delayed system, we first assume that Ec is
asymptotically stable and find the parametric conditions under which Ec is stable, including the delay. It
is known that due to the continuity property of the delay parameter τ, the characteristic equation (22) has
roots with positive real parts if and only if it has purely imaginary roots. With this information, we can
derive the parametric conditions under which equation (22) has only roots with negative real part so that
interior steady state Ec becomes locally asymptotically stable. Suppose, λ(τ) = p1(τ) + iq1(τ) be a root of
equation (22). However, since τ = 0 indicates that the coexistence equilibrium point Ec is stable, it follows
that p1(0) < 0. It can be demonstrated that p1(τ) < 0 and the coexistence equilibrium point Ec remain stable
for sufficiently smaller values of τ > 0. For the threshold value τ∗ (say) of τ, λ(τ) becomes purely imaginary,
i.e., p1(τ∗) = 0 and q1(τ∗) , 0. The instability of Ec occurs when τ reaches the critical value τ∗. In contrast,
the steady state Ec will always be stable regardless of any τ if there is no τ∗ occurs for which λ(τ∗) is purely
imaginary. We examine the real and imaginary parts of the equation (22) by replacing λ = p1 + iq1, and then
we set p1 = 0.

Now, we obtain:

Na2 cos q1τ +Na1q1 sin q1τ = q2
1 −Ma2 (23)

Na1q1 cos q1τ −Na2 sin q1τ = −Ma1q1 (24)

We have, from equations (23) and (24) by eliminating τ,

q4
1 + (M2

a1 −N2
a1 − 2Ma2)q2

1 +M2
a2 −N2

a2 = 0. (25)

Putting q2
1 = ζ1, we have

Ψ(ζ1) ≡ ζ2
1 + (M2

a1 −N2
a1 − 2Ma2)ζ1 +M2

a2 −N2
a2 = 0 (26)

which is a second degree equation in ζ1. Since, Ψ(∞) = ∞, so equation (26) has at least one positive real
root ifΨ(0) < 0, i.e., if M2

a2 < N2
a2.

Let, ζ1 = ζ∗1 be a positive root of (26), then q1 =
√
ζ∗1.

In 2003, Ruan and Wei [33] developed a lemma, which is given as:

Lemma 6.1. Consider the exponential polynomial

P(λ, e−λτ1 , e−λτ2 , ..., e−λτm ) = λn + p(0)
1 λ

n−1 + ... + p(0)
n−1λ + p(0)

n

+
[
p(1)

1 λ
n−1 + ... + p(1)

n−1λ + p(1)
n

]
e−λτ1

+
[
p(2)

1 λ
n−1 + ... + p(2)

n−1λ + p(2)
n

]
e−λτ2

+ ...

+
[
p(m)

1 λn−1 + ... + p(m)
n−1λ + p(m)

n

]
e−λτm ,

where τi ≥ 0, (i = 1, 2, ...,m) and p(i)
j , (i = 0, 1, 2, ...,m; j = 1, 2, ...,n) are constants. If (τ1, τ2, ..., τm) vary, the sum

of the orders of zero of P(λ, e−λτ1 , e−λτ2 , ..., e−λτm ) in the open half plane can change only if a zero appears on or crosses
the imaginary axis.
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Figure 6: Bifurcation diagram of the prey and predator populations corresponding to delayed system (17).
Here, α = 0.5, β = 0.5, δ = 1,m1 = 0.1, d1 = 0.38, d2 = 0.08, ρ = 0.4, ξ = 0.7, µ = 0.3,A = 0.5, c = 0.9,m2 =
0.12, v1 = 0.002, v2 = 0.0015.
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Figure 7: (a) Time series plot of the species corresponding to the delayed system (b) Phase portrait. Here,
τ = 9 < τ∗ and other parameters values are same as in Figure 6.

Theorem 6.2. Let the coexistence steady state Ec is LAS for non-delayed system of (17) (that is at τ = 0). Then
delayed system (17) is LAS near Ec with the parametric condition M2

a2 < N2
a2, if τ is less than a threshold value τ∗ (if

exists) of τ and unstable for τ > τ∗, where

τ( j)
+ =

1√
ζ∗1

cos−1

{
ζ∗1(Na2 −Ma1Na1) −Ma2Na2

N2
a1ζ
∗

1 +N2
a2

}
+

2π j√
ζ∗1
, j = 0, 1, 2, 3, ... (27)

and τ∗ = τ(0)
+ (minimum value). Consequently, model (17) experiences a Hopf-bifurcation about Ec at τ = τ∗ provided

A1C1 > B1D1, where A1, B1, C1 and D1 are described in the proof.
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Figure 8: (a) Time series plot of the species (b) Phase portrait. ( ) indicates the stable limit cycle around
the unstable equilibrium point. Here, τ = 16 > τ∗ and other parameters values are same as in Figure 6.

Proof. For M2
a2 < N2

a2, a positive root, ζ∗1, (say) arises from the equation (26). With the help of the equations
(23) and (24), a function τ( j)

+ (say) of ζ∗1 is obtained, where j = 0, 1, 2, 3, ...; which can be written as:

τ( j)
+ =

1√
ζ∗1

cos−1

{
ζ∗1(Na2 −Ma1Na1) −Ma2Na2

N2
a1ζ
∗

1 +N2
a2

}
+

2π j√
ζ∗1
, j = 0, 1, 2, 3, ...

Therefore, for delayed system (17) with τ < τ∗, the interior equilibrium point Ec will remain stable. The
next step is to determine whether or not the transversality criterion

[
d

dτRe(λ(τ))
]
τ=τ∗

> 0 is met. We use
λ = p1 + iq1 and plug it into equation (22) to investigate the transversality criteria. Following a separation
of real and imaginary components and the differentiation with respect to τ, and after setting p1 = 0 and
τ = τ∗, we get:

A1

[ d
dτ

Re(λ(τ))
]
τ=τ∗
+ B1

[ d
dτ

Im(λ(τ))
]
τ=τ∗
= C1, (28)

−B1

[ d
dτ

Re(λ(τ))
]
τ=τ∗
+ A1

[ d
dτ

Im(λ(τ))
]
τ=τ∗
= D1, (29)

where,

A1 =
[
Ma1 +Na1 cos(q1τ) −Na2τ cos(q1τ) −Na1q1τ sin(q1τ)

]
τ=τ∗,q1=

√
ζ∗1

B1 =
[
− 2q1 +Na1 sin(q1τ) −Na2τ sin(q1τ) +Na1q1τ cos(q1τ)

]
τ=τ∗,q1=

√
ζ∗1

C1 =
[
Na2q1 sin(q1τ) −Na1q2

1 cos(q1τ)
]
τ=τ∗,q1=

√
ζ∗1

D1 =
[
Na2q1 cos(q1τ) +Na1q2

1 sin(q1τ)
]
τ=τ∗,q1=

√
ζ∗1

Solving equations (28) and (29), we obtain:[ d
dτ

Re(λ(τ))
]
τ=τ∗
=

A1C1 − B1D1

A2
1 + B2

1

.

For B1D1 < A1C1,
[

d
dτRe(λ(τ))

]
τ=τ∗

> 0. Hence, the transversality condition is verified.
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The bifurcation diagram which is depicted in Figure 6 illustrates the behavior of the delayed system (17).
Notably, the diagram reveals a significant occurrence known as a Hopf bifurcation, manifesting precisely
at the critical point τ∗ = 13.96. This pivotal point marks a transition in the system’s stability characteristics.
Specifically, for delay parameter values τ less than the critical value 13.96, the system exhibits stability,
while for values exceeding τ∗, the system becomes unstable. To gain a more intuitive understanding of
this phenomenon, we have conducted a comparative analysis using two distinct values of τ: τ = 9 < τ∗

and τ = 16 > τ∗. The resulting time series and phase portraits are presented in Figure 7 and Figure 8
respectively. Figure 7 portrays the behavior of the system for τ = 9, showcasing a stable nature. The phase
portrait, denoted by the cyan solid line, converges towards the state Ec(0.1175, 0.9376). This indicates that
trajectories in the phase space tend towards this stable equilibrium point over time. In contrast, Figure 8
illustrates the dynamics of the system corresponding to τ = 16. Notably, for this value of τ, the system
exhibits oscillatory behavior. The phase portrait demonstrates trajectories converging towards a stable limit
cycle, indicated by the black colored closed curve. Thus, the analysis elucidates the important role of the
delay parameter τ in determining the stability and dynamical behavior of the system.

7. Study of System (6) with Environmental Stochasticity

Assume that the environmental fluctuations will manifest themselves primarily as fluctuations in the nat-
ural mortality rate of each species, since these are the main parameters subject to coupling of a prey–predator
pair with its environment. These parameters are perturbed by Gaussian white noise, which is one of the
most useful noises for modeling rapidly fluctuating phenomena.

Thus, we use Gaussian white noises γ1 and γ2 in system (6) to perturb the parameters m1 and m2. Here,
γ1 and γ2 are independent Gaussian white noises having the following properties:

⟨γi(t)⟩ = 0 and ⟨γi(t1)γi(t2)⟩ = µ2
i δi(t1 − t2) for i = 1, 2.

The intensity or strength of γi is denoted by µi > 0 in this case. The Dirac delta function δi is defined as
follows: {

δi(x) = 0, for x , 0,∫
∞

−∞
δi(x)dx = 1

where ⟨·⟩ is the ensemble average of the stochastic process under consideration. So, system (6) is modified
as follows :

dx1

dt
= αx1

(
1 + βx1

1 + βx1 + δx2

)
− (m1 + γ1(t))x1 − d1x2

1 −
d2x1x2

ρ + ξµA + x1
− v1x3

1,

dx2

dt
=

cd2(x1 + µA)x2

ρ + ξµA + x1
− (m2 + γ2(t))x2 − v2x2

2,

=⇒
dx1

dt
= αx1

(
1 + βx1

1 + βx1 + δx2

)
−m1x1 − d1x2

1 −
d2x1x2

ρ + ξµA + x1
− v1x3

1 − σ1x1
dw1

dt
,

dx2

dt
=

cd2(x1 + µA)x2

ρ + ξµA + x1
−m2x2 − v2x2

2 − σ2x2
dw2

dt
.

(30)

Here, we take γ1 = σ1
dw1
dt and γ2 = σ2

dw2
dt , where w = {w1(t), w2(t) | t ≥ 0} denotes standard Brownian motion

in two-dimension. It is assumed that mi + γi(t) is positive and bounded for i = 1, 2.
Thus, from (30), we have the following stochastic system:

dx1 =

[
αx1

(
1 + βx1

1 + βx1 + δx2

)
−m1x1 − d1x2

1 −
d2x1x2

ρ + ξµA + x1
− v1x3

1

]
dt − σ1x1dw1,

dx2 =

[
cd2(x1 + µA)x2

ρ + ξµA + x1
−m2x2 − v2x2

2

]
dt − σ2x2dw2.

(31)
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We have already defined parameters in Table 1. The Euler Maruyama method is used in MATLAB to
determine the dynamical behavior of system (31). We have studied the system behavior numerically and
depicted the results in Figures 9, 10 and 11, with σ1 = 0.009 and σ2 = 0.002.

Figure 9 illustrates the impact of environmental fluctuations on the stability of coexistence steady states.
In Figure 9a, we present the time series of prey and predator populations in both stochastic and deterministic
systems. The trajectories of prey populations are denoted by ( ), ( ), while the trajectories of predator
populations are represented by ( ), ( ) in stochastic and deterministic systems, respectively. This
depiction reveals that due to environmental fluctuations, the trajectories closely align with the deterministic
trajectory’s values, which reflects a realistic scenario. It would seem implausible for population sizes to
remain constant over time, indicating an absence of external factors affecting the system. In addition to the
time series presented in Figure 9a, the corresponding histograms are depicted in Figure 9b. These histograms
illustrates the frequency distributions of the population sizes for both prey and predator populations.
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Figure 9: (a) Trajectories of the species in deterministic model (6) and stochastic model (31). Here, ( ),
( ) indicate the trajectories of prey population and ( ), ( ) indicate the trajectories of predator
population in stochastic and deterministic system, respectively. (b) Histograms of the species corresponding
to the system (30). All the parameters values are given in Table 2.

Figure 10 illustrates the temporal evolution and population distribution of species in both stochastic
and deterministic systems corresponding to the predator-free steady state Ea1 . In the Figure 10a, ( )
and ( ) denote the trajectories of the prey population, while ( ) and ( ) represent the trajectories
of the predator population in the stochastic and deterministic systems, respectively. It’s worth noting
that the trajectories of the stochastic system exhibit fluctuations around those of the deterministic system,
as observed in previous cases. Additionally, Figure 10b provides histograms to visually represent the
distribution of populations, offering further insight into the dynamics of the system.

Similarly to the aforementioned cases, we also observe the impact of environmental fluctuations on
the prey-free steady state Ea2 , as depicted in Figure 11. This observation yields results similar to those
previously discussed.
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Figure 10: (a) Trajectories of the species in deterministic model (6) and stochastic model (31). Here, ( ),
( ) indicate the trajectories of prey population and ( ), ( ) indicate the trajectories of predator
population in stochastic and deterministic system, respectively. (b) Histograms of the species corresponding
to the system (30). Here, m2 = 0.25 and other parameters values are given in Table 2.
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Figure 11: (a) Trajectories of the species in deterministic model (6) and stochastic model (31). Here, ( ),
( ) indicate the trajectories of prey population and ( ), ( ) indicate the trajectories of predator
population in stochastic and deterministic system, respectively. (b) Histograms of the species corresponding
to the system (30). Here, m2 = 0.02 and other parameters values are given in Table 2.

8. Discussions

The interplay between predators and prey species within ecological systems is multifaceted, encompass-
ing both direct and indirect impacts. While direct impacts involve physical encounters leading to predation,
indirect impacts, often non-lethal, can significantly shape ecosystem dynamics. Research suggests that in-
direct impacts, such as fear induced by the presence of predators, can be even more influential in altering
prey behaviors and population dynamics. Fear-induced changes can affect prey populations by reducing
reproductive success rates, altering grazing behavior, and even driving evolutionary changes over time.
Again, understanding the concept of carryover effects is important in elucidating the complex dynamics
between predators and prey. Carryover effects highlight the long-term consequences of past interactions
on individual prey and entire populations. This concept is particularly relevant in evolutionary biology
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and ecology, where scientists aim to unravel the intricate relationships between several-species within an
ecosystem. Incorporating time delays into predator-prey models further enhances their ability to capture
real-life dynamics. The presence of toxic materials in the environment poses significant risks to both hu-
mans and predator-prey species. The type, concentration, duration of exposure, and biological/ecological
characteristics of the organisms involved all play crucial roles in determining the extent of the impact. Time
delays account for the lag between actions and their consequences, encompassing factors such as gestation
and maturation time, population response time, migration, environmental fluctuations, and evolutionary
changes. By integrating time delays, mathematical models can offer a more accurate portrayal of temporal
dynamics, thereby deepening our understanding of how populations respond to environmental changes
over time. Moreover, environmental stochasticity introduces additional complexity to ecological models
by accounting for fluctuations in population birth and mortality rates driven by factors like temperature,
humidity, parasites, pollutants, and food availability. While deterministic models may overlook these
fluctuations, stochastic approaches, particularly those incorporating Gaussian white noise, offer a more
realistic representation of rapidly changing environmental conditions. Recognizing the significance of the
factors outlined above, we delve into our predator-prey model, incorporating fear-induced responses, ad-
ditional food supply for predator and carry-over effects within a toxic environment. Additionally, we also
incorporate time delays, treating them as gestation delays. Furthermore, we investigate the influence of
environmental fluctuations by examining the stochastic system corresponding to our model. In our analysis
we get the following insight:

The bifurcation diagrams depicted in Figures 1, 2, 3, and 4 offer comprehensive insights into the system’s
dynamic behavior concerning various parameters such as A, δ, m1, m2, v1, v2, and β.

In Figure 1, we observe critical points indicating significant transitions in system behavior. Notably, at
A[BP] = 2.216, unstable branches emerge for E0 and Ea2 , marking a branch point. Subsequently, transcritical
and saddle node bifurcations occur at A[TC] = 4.407 and A[SN] = 7.365, respectively. The highlighted region
illustrates bistability between interior equilibrium points Ec and prey-free equilibrium Ea2 . Similarly, Figure
1b displays transcritical and saddle node bifurcations at δ[TC] = 2.986 and δ[SN] = 7.029, respectively.

Figure 2 provides insights into bifurcation scenarios concerning parameters m1 and m2, revealing trans-
critical and saddle node bifurcations at m1[TC] = 0.2018, m2[TC] = 0.1047, and m1[SN] = 0.7348, m2[SN] = 0.0417,
respectively.

In Figures 3 and 4, we explore the bifurcation phenomena related to v1, v2, and β, as well as in the
m1m2 and v1v2-planes. These diagrams elucidate the emergence of saddle node bifurcations, transcritical
bifurcations, and regions of bistability, delineating stability patterns across parameter spaces.

Moreover, the phase portrait and nullcline illustrated in Figure 5 provide a visual representation of the
system’s dynamic behavior, emphasizing the presence of stable nodes, unstable nodes, and saddle points
across varying initial conditions. This holistic analysis enhances our understanding of the system’s intricate
dynamics within the defined parameter space, offering valuable insights into its stability and behavior.

The bifurcation diagram depicted in Figure 6 for the delayed system (10) highlights the occurrence of
Hopf bifurcation at the critical point τ∗ = 13.96. This critical point signifies a transition in the stability
characteristics of the system. For delay parameter values τ less than τ∗, the system remains stable, while for
values exceeding τ∗, instability arises. To illustrate this phenomenon, we conducted a comparative analysis
for two distinct values of τ: τ = 9 < τ∗ and τ = 16 > τ∗. Figure 7 showcases the stable behavior of the
system for τ = 9, with trajectories converging towards a stable equilibrium point. Conversely, Figure 8
demonstrates oscillatory behavior for τ = 16, with trajectories forming a stable limit cycle. This analysis
underscores the critical role of the delay parameter τ in determining the stability and dynamic behavior of
the system.

Using the Euler-Maruyama method implemented in MATLAB, we have investigated the behavior of
system (31) under environmental stochasticity, employing σ1 = 0.009 and σ2 = 0.002 as parameter values.
Our numerical exploration have been culminated due to the depiction of results in Figures 9, 10, and 11.

Figure 9 provides insights into how environmental fluctuations influence the stability of coexistence
steady states. Specifically, in Figure 9a, we have presented time series data for prey and predator pop-
ulations, comparing stochastic and deterministic systems. Trajectories of prey and predator populations
in stochastic systems are represented by distinct symbols and lines, showcasing fluctuations driven by



B. K. Das et al. / Filomat 38:31 (2024), 11061–11083 11081

environmental noise. Remarkably, these trajectories closely align with deterministic trajectories, indicating
realistic deviations from constant population sizes over time. Moreover, Figure 9b complements the time
series data by presenting histograms illustrating the frequency distributions of population sizes for both
prey and predator populations. These histograms offer additional insights into the variability induced
by environmental stochasticity, providing a comprehensive understanding of population dynamics under
fluctuating environmental conditions.

Although the suggested model reveals some interesting dynamics, there are several phenomena that we
may incorporate into the model in order to increase its realism with the surrounding environment. Further
exploration of the model can be carried out by incorporating a ratio-dependent functional response for
interactions between healthy prey and predators. In addition to this, a diffusive model can be explored by
implementing spatio-temporal effects to investigate the spatial pattern.
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Appendix A

A1 =βv2
1v2

A2 =βd1v1v2 + cδd2v1v2 − δm2v1v2 + v2
1v2 + 3Aβµξv2

1v2 + 3βρv2
1v2

A3 = −
(
− cδd1d2v2 + δd1m2v2 + αβv1v2 − d1v1v2 − 3Aβµξd1v1v2 − 3βρd1v1v2 − Acδµd2v1v2

− 2Acδµξd2v1v2 − 2cδρd2v1v2 − βm1v1v2 + 3Aδµξm2v1v2 + 3δρm2v1v2 − 3Aµξv2
1v2

− 3A2βµ2ξ2v2
1v2 − 3ρv2

1v2 − 6Aβµξρv2
1v2 − 3βρ2v2

1v2

)
A4 = −

(
− cβd2

2v1 + βd2m2v1 − Acδµd1d2v2 − 2Acδµξd1d2v2 − 2cδρd1d2v2 − cδd2m1v2 + 3Aδµξd1m2v2

+ 3δρd1m2v2 + δm1m2v2 + αv1v2 + 3Aαβµξv1v2 + 3αβρv1v2 − 3Aµξd1v1v2 − 3A2βµ2ξ2d1v1v2

− 3ρd1v1v2 − 6Aβµξρd1v1v2 − 3βρ2d1v1v2 − 2A2cδµ2ξd2v1v2 − A2cδµ2ξ2d2v1v2 − 2Acδµρd2v1v2

− 2Acδµξρd2v1v2 − cδρ2d2v1v2 −m1v1v2 − 3Aβµξm1v1v2 − 3βρm1v1v2 + 3A2δµ2ξ2m2v1v2

+ 6Aδµξρm2v1v2 + 3δρ2m2v1v2 − 3A2µ2ξ2v2
1v2 − A3βµ3ξ3v2

1v2 − 6Aµξρv2
1v2 − 3A2βµ2ξ2ρv2

1v2

− 3ρ2v2
1v2 − 3Aβµξρ2v2

1v2 − βρ
3v2

1v2

)
A5 = −

(
− c2δd3

2 + 2cδd2
2m2 − δd2m2

2 − cd2
2v1 − Acβµd2

2v1 − Acβµξd2
2v1 − cβρd2

2v1 + d2m2v1

+ 2Aβµξd2m2v1 + 2βρd2m2v1 − 2A2cδµ2ξd1d2v2 − A2cδµ2ξ2d1d2v2 − 2Acδµρd1d2v2 − 2Acδµξρd1d2v2

− cδρ2d1d2v2 − Acδµd2m1v2 − 2Acδµξd2m1v2 − 2cδρd2m1v2 + 3A2δµ2ξ2d1m2v2 + 6Aδµξρd1m2v2

+ 3δρ2d1m2v2 + 3Aδµξm1m2v2 + 3δρm1m2v2 + 3Aαµξv1v2 + 3A2αβµ2ξ2v1v2 + 3αρv1v2
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+ 6Aαβµξρv1v2 + 3αβρ2v1v2 − 3A2µ2ξ2d1v1v2 − A3βµ3ξ3d1v1v2 − 6Aµξρd1v1v2 − 3A2βµ2ξ2ρd1v1v2

− 3ρ2d1v1v2 − 3Aβµξρ2d1v1v2 − βρ
3d1v1v2 − A3cδµ3ξ2d2v1v2 − 2A2cδµ2ξρd2v1v2 − Acδµρ2d2v1v2

− 3Aµξm1v1v2 − 3A2βµ2ξ2m1v1v2 − 3ρm1v1v2 − 6Aβµξρm1v1v2 − 3βρ2m1v1v2 + A3δµ3ξ3m2v1v2

+ 3A2δµ2ξ2ρm2v1v2 + 3Aδµξρ2m2v1v2 + δρ
3m2v1v2 − A3µ3ξ3v2

1v2 − 3A2µ2ξ2ρv2
1v2 − 3Aµξρ2v2

1v2

− ρ3v2
1v2

)
A6 = −

(
− 2Ac2δµd3

2 + 2Acδµd2
2m2 + 2Acδµξd2

2m2 + 2cδρd2
2m2 − 2Aδµξd2m2

2 − 2δρd2m2
2 − Acµd2

2v1

− Acµξd2
2v1 − A2cβµ2ξd2

2v1 − cρd2
2v1 − Acβµρd2

2v1 + 2Aµξd2m2v1 + A2βµ2ξ2d2m2v1 + 2ρd2m2v1

+ 2Aβµξρd2m2v1 + βρ
2d2m2v1 − A3cδµ3ξ2d1d2v2 − 2A2cδµ2ξρd1d2v2 − Acδµρ2d1d2v2 − 2A2cδµ2ξd2m1v2

− A2cδµ2ξ2d2m1v2 − 2Acδµρd2m1v2 − 2Acδµξρd2m1v2 − cδρ2d2m1v2 + A3δµ3ξ3d1m2v2

+ 3A2δµ2ξ2ρd1m2v2 + 3Aδµξρ2d1m2v2 + δρ
3d1m2v2 + 3A2δµ2ξ2m1m2v2 + 6Aδµξρm1m2v2

+ 3δρ2m1m2v2 + 3A2αµ2ξ2v1v2 + A3αβµ3ξ3v1v2 + 6Aαµξρv1v2 + 3A2αβµ2ξ2ρv1v2 + 3αρ2v1v2

+ 3Aαβµξρ2v1v2 + αβρ
3v1v2 − A3µ3ξ3d1v1v2 − 3A2µ2ξ2ρd1v1v2 − 3Aµξρ2d1v1v2 − ρ

3d1v1v2

− 3A2µ2ξ2m1v1v2 − A3βµ3ξ3m1v1v2 − 6Aµξρm1v1v2 − 3A2βµ2ξ2ρm1v1v2 − 3ρ2m1v1v2

− 3Aβµξρ2m1v1v2 − βρ
3m1v1v2

)
A7 = −

(
− A2c2δµ2d3

2 + 2A2cδµ2ξd2
2m2 + 2Acδµρd2

2m2 − A2δµ2ξ2d2m2
2 − 2Aδµξρd2m2

2 − δρ
2d2m2

2

− A2cµ2ξd2
2v1 − Acµρd2

2v1 + A2µ2ξ2d2m2v1 + 2Aµξρd2m2v1 + ρ
2d2m2v1 − A3cδµ3ξ2d2m1v2

− 2A2cδµ2ξρd2m1v2 − Acδµρ2d2m1v2 + A3δµ3ξ3m1m2v2 + 3A2δµ2ξ2ρm1m2v2 + 3Aδµξρ2m1m2v2

+ δρ3m1m2v2 + A3αµ3ξ3v1v2 + 3A2αµ2ξ2ρv1v2 + 3Aαµξρ2v1v2 + αρ
3v1v2 − A3µ3ξ3m1v1v2

− 3A2µ2ξ2ρm1v1v2 − 3Aµξρ2m1v1v2 − ρ
3m1v1v2

)
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