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Gabor transform in the generalized Weinstein theory setting

Hassen Ben Mohamed?

*University of Gabes, Department of Mathematics, Faculty of Sciences, Tunisia

Abstract. In this paper, we consider the generalized Weinstein operator Ag\’/"’", we introduce and study the
continuous generalized Weinstein Gabor Transform denoted by %, associated with the operator Ai\’,‘”’. We
prove a Plancherel formula and a weak uncertainty principle for it. We obtain analogous of Heisenbeg’s
inequality for the generalized Weinstein Gabor Transform.

1. Introduction

. . . . . A, . _ .
In this paper, we consider the generalized Weinstein operator A" defined on R¥*! = R? x (0, o), by :

AN _ & P 2a+1 9 dn(a+n) _ And 4n (o + n) 1
WSl o ox 2 = By 2 ’ @
=1 X d+1 d+1 xd+1 xd+1

where n € N, a > -1 and A?j\’,d the classical Weinstein operator given by :
d+1

ad _

Ay =
i=1

(See [2], [3], [8], [9], [10], [11], [13], [14] and [15]).
The generalized Weinstein kernel A, 4, is the function given by :

? 2a+1 0
— + . 2
ax? Xd+1 8xd+1 ( )

Vi, € €1, Agan (%, y) = 2206V o (eana yas), 3)

where x = (X', x441), ¥’ = (x1,%2, ..., X4) and j, is the normalized Bessel function of index a defined by :

o]

VEC, ) = Tla+ DY D (G @
n=0
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(See [1] and [5]-[7]).
Using the Weinstein kernel A, 4,, we define the Weinstein transform f{fv’d’” by :

VA e R’iﬂ, g;!v'd'n(f)(/\) = Ldﬂ f(x)Aa,d,n(xr A)dva,d(x)/

where f € LY(R%1, v, 4(x)) and v, 4 is the measure on R%! given by :
Avga(x) = x32 T dx. (5)

The contents of the paper are as follows :
In the section 2, we recapitulate some results related to the harmonic analysis associated with the generalized
Weinstein operator A%"" given by the relation (1).

The section 3, is devoted to studied the analogue of the continuous Gabor transform associated with the
operator A%"" and we give some harmonic properties for it.

In the section 4, we prove the analogous of Heisenberg’s inequality for the generalized Weinstein
continuous Gabor transform.

In the section 5, we will show that the portion of the continuous generalized Weinstein Gabor transform
lying outside some sufficiently small set of finite measure cannot be arbitrarily too small. Using the kernel
reproducing theory given by Saitoh ( see [12]), we study the problem of approximative concentration.

2. Preliminaires

In this section, we shall collect some results and definitions from the theory of the harmonic analysis
associated with the Generalized Weinstein operator A‘I’/‘\’,d'" defined on R%*! by the relation (1).
Notations. In what follows, we need the following notations :
e &,(IR%1), the space of ¥*-functions on R™*!, even with respect to the last variable.
o Z.(R™), the Schwartz space of rapidly decreasing functions on R*!, even with respect to the last
variable.
e 7.(R%™1), the space of ¥°-functions on R?*! which are of compact support, even with respect to the last
variable.
o L (R¥), 1 < p < +00, the space of measurable functions on R%*! such that

Wy = [ fago FOPAraa)] < o0, if1 < p < oo,
e

ess sup |f(x)| < 400,
xeR4+

where v, 4 is the measure given by the relation (5).

o J4(C%1), the space of entire functions on C%*!, even with respect to the last variable, rapidly decreasing
and of exponential type.

o .y, the map defined by :

Vx e R, o (F) (0) = 31, f (%) ©6)
where x = (x', x441) and x’ = (x1, X2, ..., X4)

o I} (R%*1), 1 < p < +oo, the space of measurable functions on R%*! such that ||f|lan, < +c0 where

W llonpy = [f]Riﬂ |'/ln_1f(x)|pdva+2n,d(x)]p ,if1<p <400
£l 1,00 ess sup |2, f(x)|.

d+1
xeRY
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e &,.(R™Y), 2, (R™!) and .7, .(R™!) repespectively stand for the subspace of & (R%*!), 2,(R™!) and
Z.(R™1) consisting of functions f such that

>f

7
k
8xd+1

Vke(l,..,2n—1)

(*’,0) = f(x',0) = 0.

Let us begin by the following result.

Lemma 2.1. (See [5]-[7])
i) The map M, is an isomorphism from &,(R%*1) (resp. %(le”)) onto &, (R*1) (1’6519- Yn,*(leﬂ)) :

ii) For all f € &(R™1), we have
Ay oty (f) = My 0 NP (). @)

iii) For all f € &(R¥Y) and g € 2,,,(R*1), we have
[ 0w = [ P00 v ®
Definition 2.2. i) The generalized Weinstein intertwining operator is the operator %ﬁv’d’" defined on &(R™) by :

1 1
a+2n—3
Vx € lR‘i*l, %]‘/‘V’d’” f(x) = aa+2nx§ﬁ1 f (1 - t2) P, txgen)dt, )
0

where a, is the constant given by the relation :

a, = W+l (10)
\nrl (a + %)
ii) The dual of the Weinstein intertwining operator is defined on 2.(R**') by :
+00 1
Yy € RIS (F)(y) = tasan f (- v2,)"" 7 f s s, 1)
Yan1

Proposition 2.3. (See [5]-[7])
i) The operator %’fjf’” is a topological isomorphism from & (R onto &, .(RI*Y) satisfying the following transmu-
tation relation

DA ) = R (Bgia ), f € E(RE), 12

a+1
where Ags1 = Y — is the Laplacian operator on R4,
d+1 ;‘ 8x1.2 p p
ii) ﬂ%’]‘j‘f’” can be extended to a topological isomorphism from %, .(R**1) onto .Z.(R*1) and satisfies the following
transmutation relation

) = dan(E ), f € SR, =

iii) Let f € 2,.(RI*1) and g € £(RI*1), we have

[ e s [ o) @i, 19
R+ Ré+1
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Definition 2.4. The generalized Weinstein kernel Ay 4, is the function given by :
Vx, ye CdH/ Nydn (x/ ]/) = x§213_i<XI'y’>ja+2n(xd+1]/d+1)/
where x = (X', x441), X' = (x1,X2, ..., Xg) and j, is the function given by the relation (4).

Proposition 2.5. (See [5]-[7])
i) We have

Yx,y € Rd+1 |Aqan(x, Yl < xd+1

ii) The function x = Ay 4, (x, y) satisifies the differentiel equation

adn(Aadn( y)(x) —”]/” Aadn(x ]/)
iii) For all x, y € C**', we have

1 a+2n—1
A (%) = Qgiane” V)22 1f (1-2)7" 7 cos(trayan)dt,
0
where a, is the constant given by the relation (10).

Definition 2.6. The generalized Weinstein transform 7/ wdn js ojven for f € IL AR by
LEREL ZEON = [ st D),

where v, 4 is the measure on R4+ given by the relation (5).

fadn

Lemma 2.7. The generalized Weinstein transform 7,

can be written in the form :

g\éx\/,dn :/a ano%_

oﬂx d .

where Z . is the classical Weinstein transform given by :

VAR, F ) = f FOO At A 3).
Proof. Let f € 1L} (R4, For all A € R%Y, using the relations (15) and (19), we obtain
Z (A = f @ o Y V()
R+

= fd //[n_lf(x)/\aﬂn,d(xr /\)dva+2n,d(x)
]R:l

— yéxv+2n,d (%n—lf) (A)

mad

where # " is the classical Weinstein transform given by (21). O

Some basic properties of the transform %, @A are summarized in the following results.

w

10838

(15)

(16)

(17)

(18)

(19)

(20)

(21)



H. Ben Mohamed / Filomat 38:31 (2024), 10835-10850

Proposition 2.8. (See [5]-[7])
i) Forall f € 1L} (R4, we have

yadn(f)“anoo < ”f”anl
ii) Form € N and f € ., .(R™'), we have
Vx e Rd+l a‘&/dﬂ [(Ag\,}d,n) f] (x) = (_1)m ”x”2m§vf:],d,n(f)(x).
iii) For all f in %, .(R™") and m € N, we have
VAR, (ap™)" [T () ) =t Z P I,

where Pyy(A) = (=1)™ ||A]P™.
iv) Forall f € .7, (]Rd“), we have

V]/EIRTJ madn(f)(y) t%adn(f)(y),

where .7, is the classical Fourier transform defined for f € L'(R™!, dx) by
TR, FNW = [ Fe ) costusysa
Ré
v) Let f € LY (RT). If Z57"(f) € LL,(RE), then we have

£ = Coany [ TN ) M, i), nex € R,

where C, 4 is the constant given by :

1

Cog= ——.
(2m)2 2°T(a + 1)

10839

(22)

(23)

(24)

(25)

(26)

(27)

vi) The Weinstein transform F5" is a topological isomorphism from .7, .(R%*1) onto itself and from %, ,(R%*1)

W
onto S(CHY).

Theorem 2.9. ( See [5]-[7])
i) Forall f,g € %,.(IR™1), we have the following Parseval formula

Jo P10 = o [ ZHH PN QW 20a D),

where C, 4 is the constant given by the relation (27).
ii) ( Plancherel formula ).
Forall f € .7, .(R™), we have :

Jo VT s = s [ 1 OO vt

iii) ( Plancherel Theorem ) :

The transform F 3" extends uniquely to an isometric isomorphism from L* (IR, dv, 4(x)) onto L2(R%, C

(28)

(29)

§+2n ddVa+2n,d (X))
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Definition 2.10. The translation operator T, x € R4*1, associated with the generalized Weinstein operator A‘;f’”
is defined on &,,(RT) by :

Vy e RY, TSV £ (y) = 20 M, TSt f (), (30)

where

. a " / ’ : o
T f (y) = > f f (x +y, \/x§+1 + 12, + 2X441Y4+1 COS 9) (sin 0)** dO, (31)
0
X +y = (%14 Y1,..., Xq + Ya) and a, is the constant given by (10).

The following proposition summarizes some properties of the generalized Weinstein translation operator.

Proposition 2.11. (see [5]-[7])
i) We have

Vx € RET, AL o TOA" = T o AL, (32)
ii) Let f € I}, ,(R1), 1 < p < +o0 and x € R™!. Then TS f belongs to 1L}, ,(R%*) and we have

TS Fllapn < 35551 fllapn- (33)
iii) The function Ay g, (., A), A € €1, satisfies on R the following product formula:

Yy € REY, Aain (06 ) Aaan (1, 4) = TE [Aaan (D] (W) (34)

iv) Let f € .7, (R and x € R4, we have

Wy € RE, Fob (T F) (y) = A (-3, 9) Fa () (). (35)

Definition 2.12. The generalized Weinstein convolution product of f,g € 1L} ,(R4*1) is given by :

Vx e R, fogn g (x) = fR T ) g () dvaa(y). (36)

Proposition 2.13. ( See [5]-[7])
i) Let p,q,r € [1, +00] such that % + % — L =1 Thenforall f e L}, ,(REY) and g € L] ,(REY), the function f %o g

€ 1L}, (R4 and we have

If *an Gllarn < U fllapnllgllaqn- (37)
ii) Forall f,g € L}, ,(RT), f ., g €Ll (RE) and we have

TN ran 9) = T (DT @), (38)

iii) Let f,g € L2 ,(R&1). Then f %o, g € L2, (R if and only if ™" () F5"" (g) belongs to L2 ,(R¥*) and in
this case, we have

fadn(f*ang) g\adn(f madn(g)
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3. The generalized continuous Weinstein Gabor transform

In this section, we introduce the analogue of the continuous Weinstein Gabor transform associated with
the generalized Weinstein operator A’;\’,’i’” and we give some harmonic analysis properties for it.
In what follows, we need the following notations :
Notations. We denote by :
. Xp w1 < p < oo, the space of measurable functions on R4+ x R4*! with respect to the measure
dwa,d,n (x y) = dva+2n,d (x)dva+2n,d (]/) such that || f ”wa/d,,z,p < 400, where

1
_ _ v,
”f”wmd,mp = I:j]iQiHX]Riﬂ |%n,;%n,;f(xl y)lpdwa,d,n(x/ y)] 7 lf 1 < P < +00,
Iflkopspeo = eSS sup |ttty fx, y)].
x,y€R1
° Xp = Xp

i ”f”wad p= ”f”wado P and dw, A, y) = dVa,d(x)dVa,d(y)~
Definition 3.1. Let t € RT" and g € 12 ,(R%), the modulation of the function g by t is given by the relation :

a,dn n adn _ 2
Mg = g; := a+2nd/// yw’d’ [\//// t§+1Ttd (///n1|-‘7| )J' (39)

where T“’d’” are generalized Weinstein translation operators given by the relation (30).

Remark 3.2. Let t € R4 and g € 1.2 (RT), we have

Vy c ]Rd+1 (a‘ad n (!] ) y)) = t[zizl//fn_le’d’n (//fn_l )g|2) (_y) . 0

Proposition 3.3. Let t € R% and g € 1.2 ,(R%*).
i) The function g; belongs to IL2 , (R%*1) and we have

“gt”a,Z,n = C“+2nfdt§?-1 ”g“a,Z,n : (41)
ii) We have
f |75 @) O v 00 = g, (42)

iii) We have
fR (75 @) W dvasana @) = 5 ol - (43)

Proof. i) Lett € Ri*! and g € L2, (R%*"), using the relation (29) and (40), we obtain

”gf”iz,n = a+2n dtﬁil f /% 1Ta A n n_l ‘g|2) (y) dva+2n,d (y)

_ 2 2n a,dn 71 ‘ |
C<r+2n dtd+1 T ( n |9
a,ln
2

CZ t4n |%—1 ‘ |

a+2n,d d+1 n |9 aln

2
Ca+2n d d+1 ||g||a 21"

ii) An easily combination of the relations (40), (29) and (41), we obtain the result.
iii) The result follows from the relations (29) and (41). O
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Definition 3.4. Let g € L2 (R%™). We consider the family gx,y,
x,y € R defined by :

VEERM, g, (8) = To " gy (8. (44)
For any function f € L2 (R%), we define its continuous Weinstein Gabor transform by :

Yy e R, 4, F (x,y) = fR () 9y (O dvaa(c), (45)

Remark 3.5. Let g € L2 (R%). The transform can 9, can be written in the form

Gof (,y) = fram 92 (v) - (46)

The following Lemmas will plays an important role in the sequel.

Lemma 3.6. Let x € Ri* and g € L2 ,(RT) NLY, (]R‘i”). We have

fw |75 @ @ dvasana @) < <l ., ol (47)

Proof. Letx € Ri*! and g € L2 ,(R%) N LY, (R%). Using the relations (40) and (33), we obtain :

Ty (///;1 Igiz)r (=&) Ao (&)

f |gzlt/]\‘/,dn (gx)| (é) dVa+2nd (‘E) - xd+1 f
]Riﬂ ]R+
2
Tadn ( n_l 'glz)
a,2n

|2 of

- xd+1

8n
< xd+1

a22n

8n
= xd+1 ||g||a,oo,n “g”a,Z,n '

0
Lemma 3.7. Let g € L2 ,(R%1) N LY, (RE)NA{0}. For any positive integer m, we consider the two functions given
by :
x,d,n 2
I ©=Crns [ [ MeaacE 0| @0 i s 0, )
B‘i“(O, m) IRiH
and
B +1(

where B (0, m) = {x e R, |Ix|| < m}.
Then for all m € N, hy, € L2 (R¥), ky, € L2 ,(R™!) N LS, (R4) and we have FL™" (1) = k.

Proof. Using Cauchy-Schwartz inequality, we obtain

I (OF < Cy f
BH1(0, m)

2

2
[ A1 (@) f @020 0] s )
]R++l
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where

=Cy (o, d,n,m) = a+2ndf AV ().

BE(0, m)

According to the Fubini theorem, the relations (26), (29) and (38), we get
[ i @R dvaae
IRli‘Fl

Biﬂ(ol m) ]RT-] (

Now, from the relation (29) and (47), we obtain

jl;iﬂ

=Ch o f |78 )| (&) dvsama ()
Ré+

2
7 (175 @ )] s @ 0.

(Za)” (17 @of (é))‘2 e (£)

< Ca+2nd d+1 ”gHaoon ”g”azn

Then

fmd i ©F dvea () < C1C2, 4 ol Nl

Ava g () < +oo.
"znj;;l(o,m) d+1 ad()

On the other hand, it is clear that k,, € L2 ,(R%) N LY

a,n

(R4*1) and we have

(50) " (€ = oy [ o) Aoty i (0

-, f A (=&,%) f Iﬁad"(g)(xn (B Vst (3)
i+ Bd+1(0 n

= Chizna f f Nadn(—E, %) |35 S0 (g1) (x)| Avaq (t) dvarona (x)
B+1(0, m) J R
=hw (£).
U
Lemma 3.8. Let g € L2 (R NS, (REY). The function hy,, m € IN given by the relation (48) can also be written

in the form

VCE S ]RT—l, hm (5) = f :q: *an Gt (é) dva,d (t) ’ (50)

BE(0, m)
where g (&) = g (=&) .
Proof. From the relations (26) and (38), we obtain the result. [J
Lemma 3.9. Let g € L2 (RT) NLY,(RT) and f € 12 (RE). We consider the sequence (f),,en, Siven by :

R f©= [ g D) 61

Then for all m € IN, we have
fm =hy *a,n f (52)
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Proof. From the relations (36) and (46), we have

P@= [ O @D T E ) (1) s )
B0, m) JREH
= f gg (f) (x,.) *an ‘5;: (&) dVa,d (%)
B4+1(0, m)
= f f *an Jx *an é:c (5) dva,d (x)
B2+1(0, m)

= f f TEY F (=) v %an 9x (1) W () AV (1)
Bi*1(0, m) JRiH

On the other hand, we have

ﬁiﬂ (0, m) fu;{”

< f Hf| *an éjc *an Jx (5)| dva,d (X) .
BH1(0, m)

T F () Ao 9 ()| Ve () v ()

Using the fact that g € IL2  (RT") N LY, (RTH), we deduce that gy *q gx € L2 ,(RTH).
From Young’s inequality and Parseval theorem and the relation (47) , we obtain

A 5 G e gl < WAl 15 20 94,00
An
< Ca+2”rdxd+1 Hf”a,n,Z Hg”a,n,z “g”a,n,oo :

Thus

[ o ioon s @ans <ol ll, oo
B#1(0, m)

where

G =G (0(1 d, n, m) = Ca+2n,d f dva+2n,d (X) .

B0, m)

Now applying the Fubini’s theorem, we get
fu@= [ 1o [ 5 ran 0 0)vaa ) vas )
R © BE1(0, m)

- Lm Tg’d,nf (=) (¥) dva,a (y)

= hm *a,n f (E) .
O

Theorem 3.10. (Inversion formula )
Let g € 12 (R N 1LY, (R4 such that ||gllanz = 1. For any function f € 1.2, (IRT), we consider the sequence
(fin) e given by :

f©) = f f Gy f (5, ) G-y (~E) de0na(x, ).
BT—l(O, m) ]Riﬂ

Then for all m € N, f,, € L2 ,(R%*!) and we have
mlirﬂ)o”fm - f”a,n,Z =0. (53)
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Proof. Let g € L2 (R N LY, (R%T) such that [|glla. = 1.
From Lemma 3. 7 we deduce that f e L2 (R%*1) and we have

a,n

5\01 dan (fm) — O«a dn (f) (54)

From the relation (54) and the Plancherel formula, we obtain

U= 2= G [P0 (0= ) 757 (1) 0 vt 0

= o [ 1 (D0 0= 20 9.

Then using the fact that k,, — 1 pointwise as m — +co0 and the dominated convergence theorem, we deduce
that

mligloo”fm - f”a,n,Z =0
Which finishes the proof. [J
Now, we give some properties of the generalized continuous Weinstein Gabor transform ¥;.

Proposition 3.11. Let f,g € L2 ,(R4*). Then &, f € LY, (RE! x R4*) and we have

a,n

“ggf“wa,d,n,oo < Ca+2n,d||g||a,n,2”f||a,n,2- (55)
Proof. The result is a direct consequence of the relations (46), (37) and (41) O

Proposition 3.12. ( Plancherel formula )
Let f,g € L2 (R4, Then 9, f € L2 ,(RT x R and we have

19 flleon gz = Ngllan2ll fllam2- (56)
Proof. From the relations (46), (29), (42) and Fubini’s theorem, we obtain
-, 2
19,2, , = f f 1f 5o 5 ) () v )evea(y)
aradn 2\ adn 2
C o f f |5 A | Z2 GO Bt @avas20a ()

= il [ 1F DO st
Riﬂ

=l [, Ireof dvuate

= 9113, 21,0
Which achieves the proof. [

In the following resultat, we can see that the generalized continuous Weinstein Gabor transform preserves
the orthogonality relation.

Corollary 3.13. Let g € L2 (RT). Then for all f,h € 1.2 ,(R%*1), we have

f f Gy (5, ) Ty oy Y )vag() = 1., f @ T @dvan (). 57)
Riﬂ ]Ri+1 ]Rzi+1
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Proof. Letg, f,h € L2 ,(R%1). Using the relations (46), (28) and (43), we have
oo [ G TG a0
— [ [ S BT T () s
Rdﬂ ]Rtrrl
= C§c+2n,d f f aa o (f *an gx) A) O\a dn (h *an éjc) (/\) dV{HZn,d (A) dva,d (x)
d+ Rd+1
5\& dn o, d n aradn 2
i [ [ ZHODT DD Z ] s W dves 0
C a0z [ FHDDF ) Diviana)
R+

gl [ FOREIrL 0.

O

Remark 3.14. Let f,g € L2 (R%). We have

fmﬂ fmﬂ

In the following, we show the weak uncertainty principle for the generalized continuous Weinstein Gabor transform.

Gof (5, 9)[ dwaa (x,9) = IRl . (58)

Proposition 3.15. Let ¢ > 0and f,g € L2 (RT) such that
Ngllan2 = | fllanz = 1. Then for all U ¢ R x R4 satisfying :

f Awg g.4(x, y) < 00 and f |%f (x, y)|2 dw, (x,y) =2 1-¢,
u u

we have

CzZHan f Awaan(x,y) 21— €.
u

Proof. Using the relation (55), we obtain (|, fll.,,,c0 < Cat21,4- Then
—e < [ s Gf doaste ) < UAAE, o [ dwnntin
u

C[21+2n d L dwa,d,n (x/ ]/)

Which finishes the proof. [J

Proposition 3.16. Let 2 <p < coand f,g € L2 (R such that ||gllan2 = 1. Then

fl;dﬂX]Rdﬂ |/fn_/;///,;;g f(x y)| dw“d”(x y) < Ca+2n d”fHanZ (59)

Proof. The result follows immediatly from the relations (55) and (56) . O



H. Ben Mohamed / Filomat 38:31 (2024), 10835-10850 10847

4. Uncertainty Principale of Heisenberg Type

In this section, we will to prove the Heisenberg inequality for the generalized continuous Weinstein
Gabor transform.
In the following proposition, we give an Uncertainty Principale of Heisenberg type for the generalized

Weinstein transform.%, If‘v’d’”.

Lemma4.1. Let f € IL.2(R%*Y). Then we have

(fR ol |75 (D @l v @/))2 ( [P @f dvas)) = € (60)

+1

where C; , = cl ((x + g + 1) and Cg 4 is the constant given by the relation (27).

Proof. We obtain the result by combing the Heisenberg inequality for the classical Fourier and Fourier-Bessel
Transform. (See [11]). O

Proposition 4.2. Let f € L2 (RT). Then we have

1
2

([ W 0 s ) ([ P ) o

d
> Cpaond (a +2n+ 5+ 1) ([

Proof. Using the relations (20) and (60), we obtain :

( fR IR () O v (y)); ( fR I @ ave (y))%

1

= ([ WPz (s ) s <y>)§ (L WP O )

_ d _ _ d
2 Ca}—Zn,d (0[ +2n+ E + 1) ”ﬂn 1f||zzx+2n,2 = Ca}—Zn,d (0( +2n+1+ E) ”f”fv,n,Z‘

|
Lemma 4.3. Let f,g € L2 (RT). We have

[ o WP 25 () 60 @ s ) v 0 )

= llglE .. fR Il [ 75 () W dvaszna ()

Proof. Let f,g € ]L[z),,n (IR%*1). From the relations (46), (42) and Fubini’s theorem, we obtain :

[ L |75 ) 6 00 st s 0
]Rtiﬂ ]Riﬂ

fRiﬂ fl;bfrl
ol
= g”aZn
nld IRL1’+]

WP 128 () W] 1255 @) W) veasana (1) dvaa ()

P 1759 () W @vasana (4)
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Theorem 4.4. ( Uncertainty Principale of Heisenberg Type for &)

Let f,g € L2 ,(R%), the following inequality holds

an

([ 15 D0 dvnna] ([ WP b G dtoas ) ©
Ri+1 R+ JRa+

_ d
>ClL, (a +2n+ 2+ 1) el 12,

Proof. Let us assume the non-trivial case that both integrals on the left hand side of the relation (63) are
finite. Using the relation (61) for all y € R%!, we have

1 1
2 2 2
( f oIl [ 75 (06) ) )] Avasana (y)) ( f vl af Gl dvaa ()
]R‘iﬂ ]Riﬂ
> C;}rzm (a +2n + é + 1)f (%f (x, ]/)|2 Avaa ().
. 2 ]Riﬂ
Integrating over x and using Cauchy- Schwartz inequality, we obtain

(L [ WP 65) 5 0 s i)
]Rtrrl IREIjl

o
]R-dv:H ]R[-f{-+1

d 2
> C;izn’d (a +2n + 5 + 1) fd 1 fd 1 |%f (x, y)( AVag (X) dvaq ().
R+ JRE

P 1635 0 s 0100 )

Then, using the relations (62) and (58), we obtain

llglla,n,z( [ IolF 7 (f><y>|2dva+2n,d<y)) ( Lo [ 105 o )
]R‘f'l ]Riﬂ ]Rtfrl

d
-1 2 2
2 Ca+2n,d (a +2n+ E + 1) ”f”a,n,Z”gHa,n,Z'

Thus the proof is completed. [

5. Reproducing kernel

an

Hilbert space in X2, with kernel function :

Proposition 5.1. Let g € L2 (R4 N 1LY, (IRT) such that g # 0. Then 9, (Li,n(RiH) is a reproducing kernel

%‘ﬂ_/; %7;1}'//!"1_/21 %7;} a,dn _ adn—
T2 () (=y) TS (~1) dv (). (64)
R:i’ﬂ ¥

@Dt,d/n(x, y, Z, t) =
g Ca+2n,d||g”i/n,2

The kernel is pointwise bounded and we have

Vx,y,z,t € R4+,

O (x, y; z,b| < 1. (65)
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Proof. Using the relation (45) and (57), we obtain

1

— [ [ €T Gt 2.
||!]||al,,,2 R JRIH

Gof (x,y) =

Then for all x, y, z,t € R%*!, we obtain

1 -1 -1 -1
My L//ln,y///nrz ,//ln,t

G gy (2,1). (66)
CorandllZ,, 7%

@‘;'d'"(x, vz, t) =

Now, according the relations (33), (41), (46) and (55), we obtain the result. O

We need the following notations :
Notations. We denote by :

- Py : X2, — X2, the orthogonal projection from X2, onto &, (]Lgm (I[{i*l)).
<Py : X3, — X2, the orthogonal projection from X2 , onto the subspace of function supported in the subset
U c R x R with w, 4, (U) < oo.

We put

[Pupyll = sup PPl oo £ € Xeana |1l . =1} ©)

The main result in this section is the following :

Theorem 5.2. ( Concentration of 4, f in small sets )
Letg € L2 ,(REHNLY, (RE ) such that g # 0and U € RETVXRI withw, g, (U) < 1. Then forall f € 12 (R4,

we have

%, f - xu%,f

oz 2 (1= Vi W) 1flamligllenz, (68)

where X is the characteristic function of U.

Proof. From the definition of P, and Py;, we have

“%f - xu¥;f

,=||(1-PoPu)%f

Wa,dnr wa,d,nrz

Then from the relation (56), we obtain

5 - xufl,,, o = (1= [Pupel) [ Al -
> (1= [[PuPy||) I llan2Mglla 2

On the other hand P, is the projection onto a reproducing kernel Hilbert space, then from Saitoh see [12],
P, can be represented by :

PyF(x,y) = f F(z,8) O3 (x, y; 2, Do, (2, 1),
]Riﬂ ><]Ri+1

with @;’d’” is given by the relation (64)

Hence for all F € X2, we have
PyPyF(x,y) = f xu(%, YF (z,0) 05" (x, y; 2, )dwa,an (2, 1),
]Riﬂleiﬂ
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and its Hilbert-Schmidt norm

1
2
PPyl 55 = ( f}R - xu 105 y; 2, dwain (x,y) devaan D)

Using the Cauchy-Schwartz inequality, we see that
[PuPsllus = [[PuPs]| (69)

On the other hand, from the relation (66) and Fubini’s theorem, it easy to see that

”PUP9“H5 < NVWadn (U). (70)

Thus from the relations (69) and (70), we obtain the result. [
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