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Abstract. Very recently Yilmaz [18] proposed Kantorovich type operators based on adjoint Bernoulli poly-
nomials. She considered the operators on the finite interval [0, 1], but we observe here that these operators
can be defined on positive real axis. We estimate moments using the technique of moment generating
functions. We also obtain some direct results for these operators. Also we consider composition of these
operators with well known Szdsz-Mirakjan operators and estimate some direct convergence estimates.

1. Introduction

Based on the adjoint Bernoulli polynomials {(x)};7, satisfying the generating function of the type [17,
®)I:

-1, v tk
e = kZ_Oﬁk(x)E. 1)

Yilmaz [18] defined the Kantorovich type operators as

(k+1)/n

=9 A [ o @

In case fr(nx) = (e - 1)(nx)*, these operators reduce to the Szdsz-Kantorovich operators. In [18] author
considered the operators defined for the interval [0, 1], it may be observed that these operators holds good
for x € [0, 00). This motivated us to study these operators in more details and here we extend the studies
to recent trends. We mention the readers to some important studies viz. [1], [2], [6], [7], [9] and [11]. The
Kantorovich and Durrmeyer variants of some other related operators have been discussed in [8], [10], [12],
[14] and [15] etc.

We estimate some direct results and show the convergence through graphically. Also, as composition of
operators provide us another new operator (see [13] and references therein), we provide here some new
operators by taking the composition with Szasz-Mirakyan operators and obtain convergence results.

An(f;x) =n
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2. Moments

Lemma 2.1. With the notation exp,(t) = e, for the operators @), we have

n(e)\/n _ 1)(66"/" _ 1)enx(e’”"—1)
Aern(e — 1)

An(exp,;x) =

Proof. By definition of operators A,, we have

k(TIX) (k+1)/n
Aulexp,;x) = n-— Z P ’ eMdr

—nx(e/\/” 1) ,Bk(”x) I
Ale—1) Z

Applying the generating function (), the result is immediate. [

Lemma 2.2. With the notation ey(t) = t*,b = 0,1,2, ..., we have

An (30} x) = ]-/

e+1
An(er; = YTy
ﬂ(ellx) + 21’1(@ — l)/
6enx +4e—1
Ay ler; = e
l’l(ez x) X 3(@ _ 1)7’12

Proof. By Lemma 2.1} we find that

Pald n(eA/n _ 1)(63"/” _ 1)enx(e“”—1)
dAb Aern(e — 1) o

An (eb/' X) =

By simple computation result follows. [J

Lemma 2.3. With the notation u?, (x) = Au((e1 — xe0)");x),b =0,1,2, ...,

[J:?/O(x) = ]-/
A _ e+1
Hna () = 2ne—1)’
A _ X 4e -1
Hna(¥) = n 3(e — 1)n2’
Ay = 10enx + 2nx + 1le+ 1
Hugt) = 4(e—1)n ’
A 15en*x? — 15n%x* + 55enx — 5nx + 41le — 1
[’ln,4(x) = 4 .
5(—1)n

Proof. By Lemma[2.1} we find that

Pald oy n(e)l/n _ 1)(66"/” _ 1)enx(eM”—1)

A —
) = 51 Ael/n(e —1)

A=0

By simple computation result follows. [J

we have
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3. Convergence

The class of continuous and real functions f denoted by C* [0, c0), have finite limit, for x tending to co.
In [5] and [16], some interesting results have been studied for a sequence of operators L,:

Theorem 3.1. [16] For L, : C* [0, 00) — C* [0, 00), if we denote the norms

ay, By and v, respectively, which approach to zero as n — oo, then

,s=0,-1,-2as

L, (exps) — exp, 000)

It = Fligesy < @i llflloy + @+ a) @ (£ (an + 0+ 262)'"),

where w* (f,0) == sup |f(u)—f(t)|.

le~f—e~4|<0
tu>0

Theorem 3.2. For f € C* [0, oo), there holds

1At = Fll oy < 20° (£, @B + 7207,
where

Bu = [lAnexp_; —exp_y[y =0, 1=
and

v = ||Anexp_, - exp_2||[0,oo) 0, 1 — oo.

Proof. By Lemma the operators A, preserve constants, so a, = 0. We have to compute §, and y,. By
the software Maple, we have

xe™ (e+De™ x5+ Dxe L We—Det O(n’3).

A x) = e
o (expoyiv) = e+ 2ie—1) 82  2e-D2 | ble-1)2

Since

1

supex =¢7!, supx’e™ =4e?, supxle ¥ =273, supxe™ = 25674,

x>0 x>0 x>0 x>0
we obtain
B = supl|A, (exp_1 ;x) —e*
x>0
1 (e+1) 1 5(+1) (4e—1) 3
< —+ + + + o
T 2en 2n(e—1) 2e2n2  12e(e-1)n?2  6(e — 1)n? (n )
< 0 (n‘l).
Similarly,
e 2xe™F e+ 1)eF 2x%e ™ (Be+1)2xeF  (de—1)2e7 _
A ;x) = 2 — - 3).
" (exp_z x) et n ne—1) * n2 3(e — 1)n? " 3(e — 1)n2 - O(n )
Since
supe ™ = 1, supe®x=05¢",
x>0 x>0
27
supx’e™™ = ¢, supxleH = §6‘3, sup x*e ™™ = 16¢74,

x>0 x>0 x>0
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we get

—2x

Yn = sup|Ax (exp_z;x> 4

x>0
1 (e+1) . 2 . Be+1) +2(4(3—1)+O( _3)

en nle—1) e2n?2  3e(e—1)n2  3(e— 1)n?

Following Theorem the proof of the theorem is immediate. [

<

Theorem 3.3. Let f and its second derivative belong to the class C* [0, o0), then for x > 0, there follows

1 4 1’
aln (i) - o) - G20

4e —

1
<
~ 6(e—-1)n

11 4e—1 S L
Frf+ rra 0+ gt (7,2,
where

4 1/2
a, (x) = n? [An ((exp_1 (x) —exp_, (t)) ;x) .‘u‘:A(x)] )
Proof. Applying Taylor’s formula to A,, we have

(%)
2

A (f;x) = f () = p (0 f () — £ ()

<A, ((t - X)Z ht,x; x)’

where I, = JM and x < 1 < t. Using Lemma we immediately have

e+1

nlAn () = f W] = 5 f 0= 570

e+1
- 55
4e—1

ol o7

Next by the property used in [3} (3.1)], there holds the inequality

£ )|+ % I, () — x| |7 0] + |nAn ((t = 2P b x)'

(exp_1 (x) —exp_ (t)
52

2
ht,x§[1+ ) ]w*(f”,é), 5> 0.

1/2

Using above inequality along with Cauchy-Schwarz inequality and selecting 6 = n~"/, we have

nA, (|ht,x| (t- x)z ;x) < nw' (f”' 6) ”22(30

+%w" (f”,0) [(An (expf1 (x) —exp_, (t))4 ;x)]l/2 [”1:/4(@]1/2

d4e-11 (., 1
[x+an(x)+m]w (f ,%),

where

a, (x) = n? [(An (exp_1 (x) —exp_, (t))4 ;x) ./,1‘24(95)]1/2 .

This concludes the proof of theorem. [J
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Remark 3.4. By simple computation following limits hold:
L lim P () =
2. 1}1_{1; n? (An (exp_1 (x) —exp_4 (t‘))4 ;x) = 3x2e~4x,
Corollary 3.5. Suppose f and its second derivative belong to C* [0, 00), then immediately one obtains

e+1

-1
Theorem 3.6. Let f and its fourth derivative belong to the class C* [0, 00), then for x € [0, 00), there follows

) e+Df () xf’ )] @e-1f"(x) @+5e)xf” (x) 22f (x)
n[n[An(f’x)_f(x)]_ 2-1) 2 ]_ 6(e—1) 12(-1) 8

- [SSenx —Snx+4le—1

lim n [A, (f;%) = f (0] =

f @)+ 5 @)

+3x% + by (x)] " (), n’1/2)

5(e — 1)n?
(1le+1) 1) " (x )) (1le—-1)x (41e - ‘
24n(e—1) f 24n(e—1)  120n2 (e

where

b, (x) = n® [(An (exp_1 (x) —exp_, (t))8 ;x) .y‘:},s(x)]l/z .

Proof. Applying the Taylor’s formula to A,, we have

A 0= £ - iy ) 220 g - B0 oy i) (x)‘
< A (-2 gewx)|,
where g, = L2700 -y <y <+ Alternatively we can write
" [n (A () £~ (02 S >} et "3( B oy - ”4( £ o >|

|n2An((t - x)(iv) Gtxs x)l .
Now, by Lemma 2.3 we have

X, de-1f"(x)  (Ge+1x ,,, i
oo G- £l 5 - 30| - L G DR gy

(Ile+DIf" ()| ((Ale-Dx = (4le— »
24n(e - 1) +(24n(e—1)+120 o= )lf @)l

+ ’nzAn ((t - x)4gt,x; x)' .
Next by the property used in [3} (3.1)], we can write

4
G < [1 a ;Xp_l ) ]w* (F“n), n>0.
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1/2

Using above and Cauchy-Schwarz inequality and selecting 1 = n=/%, we have

n*A, (|gt,x| (t-x)* ;x)
o <f(iv)/ 5) ()
+Z—§w* (fivl 5) [(An (exp_1 (x) —exp_, (t))8 ;x)]l/Z [u‘:,g(x)]l/z

55enx — bnx + 41e —
5(e — 1)n2

IA

1 +32 + b, (x)] Wt (f(iv)l n—l/z) ,

where

3 8 A 172
b,(x)=n [(An (exp_l (x) —exp_, (t)) ;x).lun,g(x)] .
This completes the proof of theorem. [

Corollary 3.7. Suppose f and its fourth derivative belong to C* [0, 00), then immediately one obtains

1) f 7
lim [n [An(f;2) = f ()] = (e;(e )_f1§x) - xfz(x)]

(de—1)f"(x) (L+5e)xf" (x) x2f (x)
6(e — 1) 12(e—1) * 8

4. Graphical Comparison

In the following figures for the functions x* — x> —5x? + 6x+1+e 3  and —2x%¢ ™ + 7xe ™ + e ¥ +7x> —2x* +5
respectively, the graphs are indicated for different values of n.

Fig. 1

f(x)

r

6

5- Asf

i Asf

4,

? Ago f

3L I A x3_5x2

0\ +6x+1+673%
2F :

Figure 1: Convergence of the operator for the function x* — x> — 532 + 6x + 1 + ¢=> for different values of n

It is also observed from the graphs that as the value of n increases, the operator A, converge to function
more rapidly.
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Fig. 2
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Figure 2: Convergence of the operator for the function —2x3¢™ + 7xe™ + ¢™7* + 7x? — 2x* + 5 for different values of n

5. Composition S, 0 A,

The classical Szdsz-Mirakjan operators, which are well-known be defined by

5, (f;x)=ie”x@f(9).

! n
0=0 v
We consider the composition operator as

Proposition 5.1. The concise form of the operator S, o A, is given by

(k+1)

(S, 0 AN(fix) = 12(”"/6) Zﬁ [ s

Proof. By definition of operators

O -nx v -0 (k+1)/n
SeoA)fn) = Y e Zﬁ o) L foa
0=0 ! n
. (nx/e)” Br(v) (EHI
= d
Z Z o

(k+1)

B (nx/e)” o Pr(0)
= Z Z k F(nb)dt.

O

Lemma 5.2. For the composition operators S, o A,, we have

Aln
e D 1)
Ale — 1)et/n

(Sn o Ap)(exp,; x)

11133
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Consequently, with the notation ys"A(x) = (Sn 0 Ay)((e1 — xeo)?); x),b = 0,1,2, ..., there follow:

SoA

[”an (x) = 1

SoA _ €
Hat ()= 2n(e — 1)’

o 2x 8e+1
hy @ = o

w 3(e—1)n?’

Proof. Using (), we have

(Sn o Ayp)(exp,;x)

(nx/e)” Br(v) [ eM (k+D)/n
e—l Z Z k! [7]

k/n

0o

_ n(eA/” —1e™ Z (nx/e)v Z pr(®) K/

Ale—1)
_onEM = 1) - 1)e™ i (nxe(e ‘1))U
a Ale — 1)ern
_ n(e/\/rl 1)( A/n ) _nx(l—E(L’MyLl))
Ale — 1et/n '

The other consequence holds by the methods used in Lemma 2.3} we omit the details. [

Theorem 5.3. Ifn € N and f € Cy[0, oo) (the class of bounded and continuous functions on positive real axis), then
we get

4e—1
kaoMﬁm—wdwaZJﬂ 5*%335)

Proof. We start as follows

(Sio AP0 -S| = Y T

v>0

@n)-rG)

Using Lemma [2.3]in the following steps:

A

o)
IMJW%ﬂM._P+y;]w@®

1 (x 4e -1
[1+62(n+—( D 2)]a)(f6)

Thus, we get

|(Su 0 Auf)() = (Suf) (x)]

IA

e (M)° 1 4 1

020
1 (x 4e —
(1+62( +—3(e ))a)(f 0).

. X 4e—1 -1/2
choosing 0 = (; + 3(871)712) , the result follows. [
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6. Composition A, o S,
We consider here the composition operator A, o S,,.

Proposition 6.1. The concise form of the operator is given by

(AnoSp)(fix) = 12”‘”")2 R (),

v!

where I'(a, k) is incomplete Gamma function.

Proof. By definition of A, and S, we have

(A 0 Su)(f;x)

Il
=

)[R ()

v=0

Z ﬁk(nx) Z U,k) 1"(1 + 0,k + 1)f(Z)Tl_1) .

0!
The proof of proposition is complete. [

Lemma 6.2. For the composition operators A, o S,, we have

n(e(ez\/n_l) 1)( E(g An_q) 1)671)((6((’/‘/”71)_1)

(An o SH)(eXp/\;x) = /\6(6/\/" 1)(€ _ 1)

Consequently, with the notation yA"S (x) = (A, 0 Sp)((e1 — xep)’); x),b = 0,1,2, .., one may have the following:

) = 1,
AoS _ e
tun 1 (x) - Tl(é’ _ 1)/
o 2x 8e+1
”szs( ) =

' 3(e—1n2’
Proof. Using (), we have
(A © Sp)(exp,; x)

AVI (expn(e"/”—l)’ x)
n(e(e/\/n_l) _ 1)(68(3/‘/Ll) _ 1)enx(€(gl\/n,1)_1)
Aee"D(e — 1)
The other consequence holds by the methods used in Lemma we omit the details. [

Theorem 6.3. Ifn € N and f € Cp[0, o0), then we get

(gt ) de-1
|(An 0 S, )(x) = (Suf) (x)| < 2(2 —e (n BT ) ]w(f, \/g-i-— m).

Proof. We consider S, f = h, then
[(Aw 0 Sup@ = (Suf) @] = [(Aug)@) - 9)|

1 (x 4e—1
(1+52(n W))w(snﬂé).

IA
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Also, by [4, Ex. (D)], we have w(S, f,0) < (2 — e™)w(f, 6), thus

1(x 4e — 1

Arosn0-6Nw] < @-em(1e g (2 3ot

- g1 _\712
choosing 0 = (z + “—) , the result follows. [

n 3(e—1)n?

Corollary 6.4. Under the assumptions of Theorems|5.3|and[6.3] we have

(e V7 / 4e—1
|(An o Snf)(x) — (Sn o Anf)(x)| < 2(1 —e (n3 3(01)»,4) Ja) (f, % + —3(66— 1)1’12) .
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