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Abstract. Fractional inequalities have recently gained prominence and have been the focus of numerous
research studies. The effects of various sorts of inequalities have been analyzed by identifying revolutionary
methodological approaches and implementations. This research determined reverse Minkowski type
inequalities using fractal-fractional integral operators, such as the convolution of the index kernel, the
exponential decay, and the generalized Mittag-Leffler kernel with fractal derivative. Moreover, we obtain
several inequalities as particular cases of the main outcomes and their respective generalizations. We carried
out a variety of inequalities using the fractal-fractional formulation strategy and achieved several interesting
results in terms of (i) varying fractional order and fixing fractal-dimension, (ii) varying fractional-order and
fixing fractal-dimension, and (iii) varying both fractional-order and fractal-dimension, respectively.

1. Introduction

Fractional calculus (FC), which is defined as the advancement or modification of conventional deriva-
tives and integrals to non-integer order instances, has received considerable scholarly emphasis in recent
times. Numerous scientific and other physical processes involve fractional derivatives, including ideologi-
cal, aquifer, electrostatics, financing, and hydrodynamics, to highlight a few [1, 2, 18].

In 2019, an African professor, Abdon Atangana [7], pioneered a new type of derivative called fractal-
fractional derivatives in the last few decades, which integrates the two key points of fractional and fractal
calculus. He also expanded on the noteworthy fractal-fractional integral in the Caputo [29], Caputo-Fabrizo
[19], and Atangana-Baleanu [8] contexts. These formulations are established by converging power-law,
exponential-law, and generalized Mittag-Leffler-law sort kernels with fractal derivatives. The fractional-
order and the fractal-dimension are the two constituents of fractal-fractional formulations. Differential
equations (DEs) with the fractal-fractional derivative convert the order and dimension of the assumed
scheme into a different structure or fractional-order system. This capability makes us able to generalize
ordinary DEs to generalized structures to any attempt at derivatives and dimensions. However, the primary
goal of identifying these derivatives is to investigate nonlocal BVPs/IVPs in existence that exhibits fractal
behaviour. Several intellectuals identified numerous outcomes and constructed a few fractal-fractional
frameworks that show good simulation studies for portraying mathematical formations in this general area.
For example, Goméz-Aguilar et al. [5] investigated the spread of malaria by incorporating fractal-fractional
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operators. Rashid et al. [32] presented a novel fractal-fractional order model for the comprehension of an
oscillatory and complex analysis of the human liver via a generalized Mittag-Leffler kernel.

In the past few years, inequalities have become increasingly important in all areas of mathematics. The
notable character of inequalities in the growth and enlargement of mathematics is well known. In several
areas of science and technology, mathematical inequalities have effectively spread their impact, and they
are now recognized and imparted as some of the most useful mathematical disciplines. Information theory,
economics, engineering, and other fields have benefited from their use [4, 11, 30].

Inequalities and their associated speculations have experienced significant growth, resulting in the
creation of numerous innovative and generalized configurations of inequalities. Hardy’s inequality,
Minkowski inequality, Jensen inequality, and Hermite-Hadamard inequality, for example, [12, 21, 27],
are several of the most well-known inequalities among researchers because of their diversified implemen-
tations in scientific disciplines. Scientific researchers are now extremely engaged in generalized inequalities,
which encompass many of the variants above in one pattern or another. In recent past extension of inequal-
ities on fractal sets is topic of supreme inters for many reproachers. Several useful inequalities have been
constructed on fractal sets (see [13, 26, 33, 34, 38]) and references therein.

However, to our knowledge, the reverse Minkowski and associated variants with the assistance of
fractal-fractional operators have not yet been calculated. This is the main motivation for this study. The
famous Minkowski integral inequality is as follows:

Let p ≥ 1, 0 <
∫ ϑ2

ϑ1
Υp(κ)dκ < ∞ and 0 <

∫ ϑ2

ϑ1
gp(κ)dκ < ∞. Then

(∫ ϑ2

ϑ1

(Υ(κ) + g(κ))pdκ
)
≤

(∫ ϑ2

ϑ1

Υp(κ)dκ
) 1
p

+

(∫ ϑ2

ϑ1

gp(κ)dκ
) 1
p

. (1)

The reverse Minkowski and Hardy integral inequalities were studied in [10, 14, 15] along with several gen-
eralizations and improvisations. However, the first fractional technique to comply with reverse Minkowski
inequalities were given in [20]. Anber et al. [6] proposed a recent proposal for some fractional integral
inequalities within the framework of Riemann-Liouville fractional integral. By considering Katugampola’s
fractional techniques, the researchers in [36] investigated a few Minkowski inequalities and other variations.
Many researchers have concentrated on finding the unique version of the reverse Minkowski inequality
for generalized fractional conformable integrals using Hadamard fractional integral operators and gener-
alized proportional fractional integral operators [28, 31, 37]. Some recent literature on fractal-fractional
inequalities along with their applications can be observed in [16, 17, 22, 39] and references therein.

Fractional calculus, an extension of classical calculus, is frequently utilised in the sciences, especially
engineering. In the majority of areas of applied sciences, classical calculus provides an outstanding tool
for modelling and elucidating several vital dynamic processes. In order to combine and generalise integer-
order differentiation with n-fold integration, the fractional calculus hypothesis was established. Fractional
analysis is a part of the applied sciences. Numerous findings based on fractional models have been reported
in a variety of scientific fields [23].

By offering more intricately connected answers to practical issues, the fractional operators of integral
and derivative assist to deepen the connections between mathematics and other disciplines. Fractional
integral and derivative operators have evolved over time [3, 24]. In their review article "Fractional Calculus
in the Sky," [9] D. Baleanu and R.P. Agarwal, two esteemed professors, provide the most recent compact
review of fractional calculus.

Motivated by the above literature, we intend to demonstrate the more general version of reverse
Minkowski and associated variants with the aid of fractal-fractional operators. Considering the rigorous
fractional operators, several new theorems and corollaries are derived. Inequalities of this type and their
different versions are created when we have ϖ = 1 and ϱ = 1 in the obtained results. Meanwhile, the
existing results are depicted in the form of remarks. We hope that this invigorating idea will also open new
avenues in convexity, invexity, and inequality theory.

The structure of the article is as follows: Section 2 demonstrates the preliminary concepts of fractal-
fractional derivative and integral operators. Section 3, subdivided into three sections, demonstrates the
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reverse Minkowski and related variants utilizing fractal-fractional integral operator having a power law
kernel, an exponential decay kernel, and the generalized Mittag-Leffler kernel. In Section 4, we give
some further new reverse fractional Minkowski type inequalities. Finally in Section 5, we give concluding
remarks.

2. Preliminaries

Reviewing some fundamental concepts related to fractal-fractional operators is important before moving
on to the mathematical description. The brief explanations of fractal-fractional calculus in relation to various
operators are provided below:

Definition 2.1. [7] We say that the fractal-fractional operator of κ(κ) having power law kernel in terms of Riemann-
Liouville (RL) can be described as follows:

FFPD
ϖ,ϱ
0,κκ(κ) =

1
Γ(r − ϖ)

d
dκϱ

∫ κ

0
[κ − τ]r−ϖ−1κ(τ)dτ, (2)

where dκ(τ)
dτϱ = limκ→τ

κ(κ)−κ(τ)
κϱ−κτ , r − 1 < ϖ and ϱ ≤ r ∈N.

Definition 2.2. [7] We say that the fractal-fractional operator of κ(κ) having exponential kernel in terms of RL can
be described as follows:

FFED
ϖ,ϱ
0,κκ(κ) =

κ(ϖ)
(1 − ϖ)

d
dκϱ

∫ κ

0
exp

(
ϖ

(1 − ϖ)
[κ − τ]

)
κ(τ)dτ, (3)

such that q(0) = q(1) = 1 having ϖ > 0 and ϱ ≤ r ∈N.

Definition 2.3. [7] We say that the fractal-fractional operator of κ(κ) having Mittag-Leffler kernel in terms of RL
can be described as follows:

FFMD
ϖ,ϱ
0,κκ(κ) =

AB(ϖ)
(1 − ϖ)

d
dκϱ

∫ κ

0
Eϖ

(
ϖ

(1 − ϖ)
[κ − τ]

)
κ(τ)dτ, (4)

such that AB(ϖ) = 1 − ϖ + ϖ
Γ(ϖ) having ϖ > 0 and ϱ ≤ 1 ∈N.

Definition 2.4. [7] The respective fractal-fractional integral version of (2) is stated as follows:

FFPJ
ϖ,ϱ
0,κκ(κ) =

ϱ

Γ(ϖ)

∫ κ

0
[κ − τ]ϖ−1τϱ−1κ(τ)dτ.

Definition 2.5. [7] The respective fractal-fractional integral version of (3) is stated as follows:

FFEJ
ϖ,ϱ
0,κκ(κ) =

ϱϖ

q(ϖ)

∫ κ

0
τϱ−1κ(τ)dτ +

ϱ(1 − ϖ)κϱ−1κ(κ)
q(ϖ)

.

Definition 2.6. [7] The respective fractal-fractional integral version of (4) is stated as follows:

FFMJ
ϖ,ϱ
0,κκ(κ) =

(1 − ϖ)ϱκϱ−1

AB(ϖ)
κ(κ) +

∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
κ(τ)dτ.

3. Fractal-Fractional reverse Minkowski and associated variants

First, we will discuss the reverse Minkowski and related inequalities via the Caputo, Caputo-Fabrizo,
and Atangana-Baleanu-Caputo senses.
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3.1. Fractal-Fractional operator in the Caputo sense
Our first result is the following theorem.

Theorem 3.1. Let ν > 0 and p ≥ 1. Let µ, ν ∈ Cν[ϑ1, ϑ2] be two positive functions in [0,∞) such that FFPJ
ϖ,ϱ
0,κµ(κ) <

∞ and FFPJ
ϖ,ϱ
0,κν(κ) < ∞ for all κ > ϑ1. If 0 < ϖ ≤ µ(κ)

ν(κ) ≤ θ for some ϖ, θ ∈ R∗+ and all κ ∈ [ϑ1, ϑ2], then(
FFPJ

ϖ,ϱ
0,κµ

p(κ)
) 1
p
+

(
FFPJ

ϖ,ϱ
0,κν

p(κ)
) 1
p
≤ A

[
FFPJ

ϖ,ϱ
0,κ (µ(κ) + ν(κ))p

] 1
p , (5)

where

A =
θ(1 + ϖ) + (θ + 1)

(1 + ϖ)(1 + θ)
. (6)

Proof. From the given condition µ(κ)
ν(κ) ≤ θ, we have

µ(κ) ≤
(
θ
θ + 1

)
(µ(κ) + ν(κ)). (7)

Taking the pth power on both sides of equation (7), we get

µp(κ) ≤
(
θ
θ + 1

)p
(µ(κ) + ν(κ))p. (8)

Replace κ = τ in (8) and multiply by ϱ[κ−τ]
ϖ−1τϱ−1

Γ(ϖ) , we obtain

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
µp(τ) ≤

(
θ
θ + 1

)p ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
(µ(τ) + ν(τ))p. (9)

Integrating both sides of (9) with respect to τ, we have∫ κ

0

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
µp(τ)dτ ≤

(
θ
θ + 1

)p ∫ κ

0

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
(µ(τ) + ν(τ))pdτ. (10)

This implies

FFPJϖ0,κµ
p(κ) ≤

(
θ
θ + 1

)p
FFPJϖ0,κ(µ(κ) + ν(κ))p. (11)

Taking 1
p
th power on both sides (11), we have(

FFPJϖ0,κµ
p(κ)

) 1
p
≤

(
θ
θ + 1

) (
FFPJϖ0,κ(µ(κ) + ν(κ))p

) 1
p . (12)

On the other hand, by using the condition 0 < ϖ ≤ µ(κ)
ν(κ) , we directly get

ν(κ) ≤
( 1
ϖ + 1

)
(µ(κ) + ν(κ)). (13)

Taking the pth power on both sides of (13), then we have

νp(κ) ≤
( 1
ϖ + 1

)p
(µ(κ) + ν(κ))p. (14)

Replace κ = τ in (14) and multiply by ϱ[κ−τ]
ϖ−1τϱ−1

Γ(ϖ) , we obtain

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
νp(τ) ≤

( 1
ϖ + 1

)p ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
(µ(τ) + ν(τ))p. (15)
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Integrating both sides of (15) with respect to τ, we have∫ κ

0

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
νp(τ)dτ ≤

( 1
ϖ + 1

)p ∫ κ

0

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
(µ(τ) + ν(τ))pdτ. (16)

This implies

FFPJϖ0,κν
p(κ) ≤

( 1
ϖ + 1

)p
FFPJϖ0,κ(µ(κ) + ν(κ))p. (17)

Taking 1
p
th power on both sides (17), we have

(
FFPJϖ0,κν

p(κ)
) 1
p
≤

( 1
ϖ + 1

) (
FFPJϖ0,κ(µ(κ) + ν(κ))p

) 1
p . (18)

By (12) and (18), we have the required inequality(
FFPJ

ϖ,ϱ
0,κµ

p(κ)
) 1
p
+

(
FFPJ

ϖ,ϱ
0,κν

p(κ)
) 1
p
≤ A

[
FFPJ

ϖ,ϱ
0,κ (µ(κ) + ν(κ))p

] 1
p . (19)

This completes the proof.

Corollary 3.2. Let ν > 0 and p ≥ 1. Let µ, ν ∈ Cν[ϑ1, ϑ2] be two positive functions in [0,∞) such that FFPJϖ0,κµ(κ) <

∞ and FFPJϖ0,κν(κ) < ∞ for all κ > ϑ1. If 0 < ϖ ≤ µ(κ)
ν(κ) ≤ θ for some ϖ, θ ∈ R∗+ and all κ ∈ [ϑ1, ϑ2], then

(
FFPJϖ0,κµ

p(κ)
) 1
p
+

(
FFPJϖ0,κν

p(κ)
) 1
p
≤ A

[
FFPJϖ0,κ(µ(κ) + ν(κ))p

] 1
p , (20)

where A is defined by (6).

Remark 3.3. (i) If ϱ = 1, then Theorem 3.1 simplifies to the result proposed by Dahmani [20].

(ii) If ϱ = ϖ = 1, then Theorem 3.1 simplifies to the result proposed by Set et al. [35].

Theorem 3.4. Let ν > 0 and p, q > 1 with 1
p
+ 1
q
= 1. Let µ, ν ∈ Cν[ϑ1, ϑ2] be two positive functions in [0,∞)

such that FFPJ
ϖ,ϱ
0,κµ(κ) < ∞ and FFPJ

ϖ,ϱ
0,κν(κ) < ∞ for all κ > ϑ1. If 0 < ϖ ≤ µ(κ)

ν(κ) ≤ θ for some ϖ, θ ∈ R∗+ and all
κ ∈ [ϑ1, ϑ2], then

(
FFPJ

ϖ,ϱ
0,κµ(κ)

) 1
p
(

FFPJ
ϖ,ϱ
0,κν(κ)

) 1
q
≤

(
θ
ϖ

) 1
pq [

FFPJ
ϖ,ϱ
0,κ (µ

1
p (κ)ν

1
q (κ))

]
. (21)

Proof. Using the given condition µ(κ)
ν(κ) ≤ θ, we have

µ
1
q (κ) ≤ θ

1
q ν

1
q (κ). (22)

Multiplying by µ
1
p (κ) on both sides of (22), we get

µ(κ) ≤ µ
1
p (κ)θ

1
q ν

1
q (κ). (23)

Replace κ = τ in (23) and multiply by ϱ[κ−τ]
ϖ−1τϱ−1

Γ(ϖ) , we obtain

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
µ(τ) ≤ θ

1
q

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
µ

1
p (τ)ν

1
q (τ). (24)
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Integrating both sides of (24) with respect to τ, we have∫ κ

0

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
µ(τ)dτ ≤ θ

1
q

∫ κ

0

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
µ

1
p (τ)ν

1
q (τ)dτ. (25)

This implies

FFPJϖ0,κµ(κ) ≤ θ
1
q

FFPJϖ0,κ[µ
1
p (κ)ν

1
q (κ)]. (26)

Taking 1
p
th power on both sides (26), we get

(
FFPJϖ0,κµ(κ)

) 1
p
≤ θ

1
pq

(
FFPJϖ0,κ

[
µ

1
p (κ)ν

1
q (κ)

]) 1
p

. (27)

Using the given condition µ(κ)
ν(κ) ≤ θ, we obtain

ν
1
p (κ) ≤ ϖ−

1
pµ

1
p (κ). (28)

Multiplying by ν
1
q (κ) on both sides of (28), we have

ν(κ) ≤ ν
1
q (κ)ϖ−

1
pµ

1
p (κ). (29)

Replace κ = τ in (29) and multiply by ϱ[κ−τ]
ϖ−1τϱ−1

Γ(ϖ) , we have

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
ν(τ) ≤ ϖ−

1
p

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
µ

1
p (τ)ν

1
q (τ). (30)

Integrating both sides of (30) with respect to τ, we get∫ κ

0

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
ν(τ)dτ ≤ ϖ−

1
p

∫ κ

0

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
µ

1
p (τ)ν

1
q (τ)dτ. (31)

This implies

FFPJϖ0,κν(κ) ≤ ϖ−
1
p

FFPJϖ0,κ[µ
1
p (κ)ν

1
q (κ)]. (32)

Taking 1
q
th power on both sides (32), we have

(
FFPJϖ0,κν(κ)

) 1
q
≤ ϖ−

1
pq

(
FFPJϖ0,κ

[
µ

1
p (κ)ν

1
q (κ)

]) 1
q

. (33)

By (27) and (33), we have the required inequality. This completes the proof.

Corollary 3.5. Let ν > 0 and p, q > 1 with 1
p
+ 1
q
= 1. Let µ, ν ∈ Cν[ϑ1, ϑ2] be two positive functions in [0,∞)

such that FFPJϖ0,κµ(κ) < ∞ and FFPJϖ0,κν(κ) < ∞ for all κ > ϑ1. If 0 < ϖ ≤ µ(κ)
ν(κ) ≤ θ for some ϖ, θ ∈ R∗+ and all

κ ∈ [ϑ1, ϑ2], then

(
FFPJϖ0,κµ(κ)

) 1
p
(

FFPJϖ0,κν(κ)
) 1
q
≤

(
θ
ϖ

) 1
pq [

FFPJϖ0,κ(µ
1
p (κ)ν

1
q (κ))

]
. (34)

Remark 3.6. (i) If ϱ = 1, then Theorem 3.4 simplifies to the result proposed by Dahmani [20].

(ii) If ϱ = ϖ = 1, then Theorem 3.4 simplifies to the result proposed by Set et al. [35].
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Theorem 3.7. Let ν > 0 and p, q > 1 with 1
p
+ 1
q
= 1. Let µ, ν ∈ Cν[ϑ1, ϑ2] be two positive functions in [0,∞)

such that FFPJ
ϖ,ϱ
0,κµ(κ) < ∞ and FFPJ

ϖ,ϱ
0,κν(κ) < ∞ for all κ > ϑ1. If 0 < ϖ ≤ µ(κ)

ν(κ) ≤ θ for some ϖ, θ ∈ R∗+ and all
κ ∈ [ϑ1, ϑ2], then

FFPJ
ϖ,ϱ
0,κ (µ(κ) + ν(κ)) ≤ Φ FFPJ

ϖ,ϱ
0,κ (µp(κ) + νp(κ)) +Ψ FFPJ

ϖ,ϱ
0,κ (µq(κ) + νq(κ)), (35)

where

Φ =
2p−1θp

p(θ + 1)p
(36)

and

Ψ =
2q−1

q(ϖ + 1)q
. (37)

Proof. From the given condition µ(κ)
ν(κ) ≤ θ, we have

µ(κ) ≤
(
θ
θ + 1

)
(µ(κ) + ν(κ)) (38)

Taking the pth power on both sides of equation (38), we have

µp(κ) ≤
(
θ
θ + 1

)p
(µ(κ) + ν(κ))p. (39)

Replace κ = τ in equation (39) and multiply by ϱ[κ−τ]
ϖ−1τϱ−1

Γ(ϖ) , we have

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
µp(τ) ≤

(
θ
θ + 1

)p ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
(µ(τ) + ν(τ))p. (40)

Integrating both sides of e(40) with respect to τ, we have∫ κ

0

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
µp(τ)dτ ≤

(
θ
θ + 1

)p ∫ κ

0

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
(µ(τ) + ν(τ))pdτ. (41)

This implies

FFPJϖ0,κµ
p(κ) ≤

(
θ
θ + 1

)p
FFPJϖ0,κ(µ(κ) + ν(κ))p. (42)

Multiplying 1
p

on both sides (42), we have

1
p

(
FFPJϖ0,κµ

p(κ)
)
≤

1
p

(
θ
θ + 1

)p (
FFPJϖ0,κ(µ(κ) + ν(κ))p

)
. (43)

On the other hand, by using the condition 0 < ϖ ≤ µ(κ)
ν(κ) , we directly get

ν(κ) ≤
( 1
ϖ + 1

)
(µ(κ) + ν(κ)). (44)

Taking the qth power on both sides of (44), we have

νq(κ) ≤
( 1
ϖ + 1

)q
(µ(κ) + ν(κ))q. (45)
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Replace κ = τ in (45) and multiply by ϱ[κ−τ]
ϖ−1τϱ−1

Γ(ϖ) , we have

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
νq(τ) ≤

( 1
ϖ + 1

)q ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
(µ(τ) + ν(τ))q. (46)

Integrating both sides of (46) with respect to τ, we have∫ κ

0

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
νq(τ)dτ ≤

( 1
ϖ + 1

)q ∫ κ

0

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
(µ(τ) + ν(τ))qdτ. (47)

This implies

FFPJϖ0,κν
q(κ) ≤

( 1
ϖ + 1

)q
FFPJϖ0,κ(µ(κ) + ν(κ))q. (48)

Multiplying 1
q

on both sides (48), we have

1
q

(FFPJϖ0,κν
p(κ)) ≤

1
q

( 1
ϖ + 1

)q
(FFPJϖ0,κ(µ(κ) + ν(κ))q). (49)

By (43) and (49), we have the required inequality

1
p

(FFPJ
ϖ,ϱ
0,κµ

q(κ)) +
1
q

(FFPJϖ0,κν
p(κ))

≤
1
p

(
θ
θ + 1

)p (
FFPJϖ0,κ(µ(κ) + ν(κ))p

)
+

1
q

( 1
ϖ + 1

)q (
FFPJϖ0,κ(µ(κ) + ν(κ))q

)
. (50)

To complete our proof, we have to use Young’s inequality,

µ(κ))ν(κ)) ≤
µp(κ))
p
+
νq(κ))
q

(51)

Replace κ = τ in (51) and multiply by ϱ[κ−τ]
ϖ−1τϱ−1

Γ(ϖ) then we have

µ(τ)ν(τ) ≤
ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)

[
µp(τ)
p
+
νq(τ)
q

]
. (52)

Integrating both sides of (52) with respect to τ, we have∫ κ

0

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
µ(τ)ν(τ)dτ ≤

∫ κ

0

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)

[
µp(τ)
p
+
νq(τ)
q

]
dτ. (53)

This implies

FFPJϖ0,κµ(κ)ν(κ) ≤
1
p

FFPJϖ0,κµ
p(κ) +

1
q

FFPJϖ0,κν
q(κ). (54)

Using (50) and (54), we have

FFPJϖ0,κµ(κ)ν(κ)

≤
1
p

(
θ
θ + 1

)p (
FFPJϖ0,κ(µ(κ) + ν(κ))p

)
+

1
q

( 1
ϖ + 1

)q (
FFPJϖ0,κ(µ(κ) + ν(κ))q

)
. (55)

Using the inequality

(µ(κ) + ν(κ))r ≤ 2r−1(µr(κ) + νr(κ)) µ, ν ≥ 0, r > 0. (56)
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Replace κ = τwith r = p in (56) and multiply by ϱ[κ−τ]
ϖ−1τϱ−1

Γ(ϖ) , we have

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
(µ(τ) + ν(τ))p ≤ 2p−1 ϱ[κ − τ]

ϖ−1τϱ−1

Γ(ϖ)
(µp(τ) + νp(τ)). (57)

Integrating both sides of (57) with respect to τ, we have∫ κ

0

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
(µ(τ) + ν(τ))pdτ

≤ 2p−1
∫ κ

0

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
(µp(τ) + νp(τ))dτ. (58)

This implies

FFPJϖ0,κ(µ(κ) + ν(κ))p ≤ 2p−1FFPJϖ0,κ(µ
p(κ) + νp(κ)). (59)

Repeating the same process with r = q, we get

FFPJϖ0,κ(µ(κ) + ν(κ))q ≤ 2q−1FFPJϖ0,κ(µ
q(κ) + νq(κ)). (60)

Substituting (59) and (60) into (55), this completes the proof.

Theorem 3.8. Let ν > 0 and p ≥ 1. Let µ, ν ∈ Cν[ϑ1, ϑ2] be two positive functions in [0,∞) such that FFPJ
ϖ,ϱ
0,κµ(κ) <

∞ and FFPJ
ϖ,ϱ
0,κν(κ) < ∞ for all κ > ϑ1. If 0 < ϖ ≤ µ(κ)

ν(κ) ≤ θ for some ϖ, θ ∈ R∗+ and all κ ∈ [ϑ1, ϑ2], then

1
θ

(
FFPJ

ϖ,ϱ
0,κ (µ(κ)ν(κ))

)
≤

FFP J
ϖ,ϱ
0,κ (µ(κ) + ν(κ))2

≤
1
ϖ

(
FFPJ

ϖ,ϱ
0,κ (µ(κ)ν(κ))

)
. (61)

Proof. Using the condition, we have

0 < ϖ ≤
µ(κ)
ν(κ)

≤ θ, (62)

we conclude that

(1 + ϖ)ν(κ) ≤ (µ(κ) + ν(κ)) ≤ (1 + θ)ν(κ) (63)

and

1 + θ
θ
µ(κ) ≤ (µ(κ) + ν(κ)) ≤

1 + ϖ
ϖ
µ(κ). (64)

By (63) and (64), we have

1
θ

(µ(κ)ν(κ)) ≤
(µ(κ) + ν(κ))2

(1 + ϖ)(1 + θ)
≤

1
ϖ

(µ(κ)ν(κ)). (65)

Replace κ = τ in (65) and multiply by ϱ[κ−τ]
ϖ−1τϱ−1

Γ(ϖ) , we have

1
θ

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
µ(τ)ν(τ) ≤

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
(µ(τ) + ν(τ))2

(1 + ϖ)(1 + θ)

≤
1
ϖ

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
µ(τ)ν(τ). (66)
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Integrating both sides of (66) with respect to τ, we have

1
θ

∫ κ

0

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
µ(τ)ν(τ)dτ ≤

∫ κ

0

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
(µ(τ) + ν(τ))2

(1 + ϖ)(1 + θ)
dτ

≤
1
ϖ

∫ κ

0

ϱ[κ − τ]ϖ−1τϱ−1

Γ(ϖ)
µ(τ)ν(τ)dτ. (67)

This implies

1
θ

(
FFPJ

ϖ,ϱ
0,κ (µ(κ)ν(κ))

)
≤

FFP J
ϖ,ϱ
0,κ (µ(κ) + ν(κ))2

≤
1
ϖ

(
FFPJ

ϖ,ϱ
0,κ (µ(κ)ν(κ))

)
.

Therefore, the proof is completed.

3.2. Fractal-Fractional operator in the Caputo-Fabrizio sense

New Minkowski type inequalities utilizing fractal-fractional integral operator pertaining exponential
kernel is presented in this section.

Theorem 3.9. Let ν > 0 and p ≥ 1. Let µ, ν ∈ Cν[ϑ1, ϑ2] be two positive functions in [0,∞) such that FFEJ
ϖ,ϱ
0,κµ(κ) <

∞ and FFEJ
ϖ,ϱ
0,κν(κ) < ∞ for all κ > ϑ1. If 0 < ϖ ≤ µ(κ)

ν(κ) ≤ θ for some ϖ, θ ∈ R∗+ and all κ ∈ [ϑ1, ϑ2], then

(
FFEJ

ϖ,ϱ
0,κµ

p(κ)
) 1
p
+

(
FFEJ

ϖ,ϱ
0,κν

p(κ)
) 1
p
≤ A

[
FFEJ

ϖ,ϱ
0,κ (µ(κ) + ν(κ))p

] 1
p , (68)

where A is defined by (6).

Proof. From the given condition µ(κ)
ν(κ) ≤ θ, we have

µ(κ) ≤
(
θ
θ + 1

)
(µ(κ) + ν(κ)). (69)

Taking the pth power on both sides of equation (69), we have

µp(κ) ≤
(
θ
θ + 1

)p
(µ(κ) + ν(κ))p. (70)

Multiplying (70) on both sides by (1−ϖ)ϱκϱ−1

q(ϖ) , we have

(1 − ϖ)ϱκϱ−1

q(ϖ)
µp(κ) ≤

(
θ
θ + 1

)p (1 − ϖ)ϱκϱ−1

q(ϖ)
(µ(κ) + ν(κ))p. (71)

Replace κ = τ in (70) and multiply by ϖϱτ
ϱ−1

q(ϖ) , we have

ϖϱτϱ−1

q(ϖ)
µp(τ) ≤

(
θ
θ + 1

)p ϖϱτϱ−1

q(ϖ)
(µ(τ) + ν(τ))p. (72)

Integrating both sides of (72) with respect to τ, we have∫ κ

0

ϖϱτϱ−1

q(ϖ)
µp(τ)dτ ≤

(
θ
θ + 1

)p ∫ κ

0

ϖϱτϱ−1

q(ϖ)
(µ(τ) + ν(τ))pdτ. (73)

The proof can be followed similarly as Theorem 3.1.
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Theorem 3.10. Let ν > 0 and p, q > 1 with 1
p
+ 1
q
= 1. Let µ, ν ∈ Cν[ϑ1, ϑ2] be two positive functions in [0,∞)

such that FFEJ
ϖ,ϱ
0,κµ(κ) < ∞ and FFEJ

ϖ,ϱ
0,κν(κ) < ∞ for all κ > ϑ1. If 0 < ϖ ≤ µ(κ)

ν(κ) ≤ θ for some ϖ, θ ∈ R∗+ and all
κ ∈ [ϑ1, ϑ2], then(

FFEJ
ϖ,ϱ
0,κµ(κ)

) 1
p
(

FFEJ
ϖ,ϱ
0,κν(κ)

) 1
q
≤

(
θ
ϖ

) 1
pq [

FFEJ
ϖ,ϱ
0,κ (µ

1
p (κ)ν

1
q (κ))

]
. (74)

Proof. Using the given condition µ(κ)
ν(κ) ≤ θ, we have

µ
1
q (κ) ≤ θ

1
q ν

1
q (κ). (75)

Multiplying by µ
1
p (κ) on both sides of (75), we have

µ(κ) ≤ µ
1
p (κ)θ

1
q ν

1
q (κ). (76)

Multiplying (76) on both sides by (1−ϖ)ϱκϱ−1

q(ϖ) , we have

(1 − ϖ)ϱκϱ−1

q(ϖ)
µ(κ) ≤ θ

1
q

(1 − ϖ)ϱκϱ−1

q(ϖ)
µ

1
p (κ)ν

1
q (κ). (77)

Replace κ = τ in (76) and multiply by ϖϱτ
ϱ−1

q(ϖ) , we have

ϖϱτϱ−1

q(ϖ)
µ(τ) ≤ θ

1
q

ϖϱτϱ−1

q(ϖ)
µ

1
p (τ)ν

1
q (τ). (78)

Integrating both sides of (78) with respect to τ, we have∫ κ

0

ϖϱτϱ−1

q(ϖ)
µ(τ)dτ ≤ θ

1
q

∫ κ

0

ϖϱτϱ−1

q(ϖ)
µ

1
p (τ)ν

1
q (τ)dτ. (79)

The proof can be followed similarly as Theorem 3.4.

Theorem 3.11. Let ν > 0 and p, q > 1 with 1
p
+ 1
q
= 1. Let µ, ν ∈ Cν[ϑ1, ϑ2] be two positive functions in [0,∞)

such that FFEJ
ϖ,ϱ
0,κµ(κ) < ∞ and FFEJ

ϖ,ϱ
0,κν(κ) < ∞ for all κ > ϑ1. If 0 < ϖ ≤ µ(κ)

ν(κ) ≤ θ for some ϖ, θ ∈ R∗+ and all
κ ∈ [ϑ1, ϑ2], then

FFEJ
ϖ,ϱ
0,κ (µ(κ) + ν(κ)) ≤ Φ FFEJ

ϖ,ϱ
0,κ (µp(κ) + νp(κ)) +Ψ FFEJ

ϖ,ϱ
0,κ (µq(κ) + νq(κ)), (80)

where Φ andΨ are defined by (36) and (37), respectively.

Proof. From the given condition µ(κ)
ν(κ) ≤ θ, we have

µ(κ) ≤
(
θ
θ + 1

)
(µ(κ) + ν(κ)) (81)

Taking the pth power on both sides of (81), we have

µp(κ) ≤
(
θ
θ + 1

)p
(µ(κ) + ν(κ))p. (82)

Multiplying (82) on both sides by (1−ϖ)ϱκϱ−1

q(ϖ) , we have

(1 − ϖ)ϱκϱ−1

q(ϖ)
µp(κ) ≤

(
θ
θ + 1

)p (1 − ϖ)ϱκϱ−1

q(ϖ)
(µ(κ) + ν(κ))p. (83)
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Replace κ = τ in (82) and multiply by ϖϱτ
ϱ−1

q(ϖ) , we have

ϖϱτϱ−1

q(ϖ)
µp(τ) ≤

(
θ
θ + 1

)p ϖϱτϱ−1

q(ϖ)
(µ(τ) + ν(τ))p. (84)

Integrating both sides of (84) with respect to τ, we have∫ κ

0

ϖϱτϱ−1

q(ϖ)
µp(τ)dτ ≤

(
θ
θ + 1

)p ∫ κ

0

ϖϱτϱ−1

q(ϖ)
(µ(τ) + ν(τ))pdτ. (85)

The proof can be followed similarly as Theorem 3.7.

Theorem 3.12. Let ν > 0 and p ≥ 1. Let µ, ν ∈ Cν[ϑ1, ϑ2] be two positive functions in [0,∞) such that FFEJ
ϖ,ϱ
0,κµ(κ) <

∞ and FFEJ
ϖ,ϱ
0,κν(κ) < ∞ for all κ > ϑ1. If 0 < ϖ ≤ µ(κ)

ν(κ) ≤ θ for some ϖ, θ ∈ R∗+ and all κ ∈ [ϑ1, ϑ2], then

1
θ

(
FFEJ

ϖ,ϱ
0,κ (µ(κ)ν(κ))

)
≤

FFE J
ϖ,ϱ
0,κ (µ(κ) + ν(κ))2

≤
1
ϖ

(
FFEJ

ϖ,ϱ
0,κ (µ(κ)ν(κ))

)
. (86)

Proof. Using the condition, we have

0 < ϖ ≤
µ(κ)
ν(κ)

≤ θ, (87)

we conclude that

(1 + ϖ)ν(κ) ≤ (µ(κ) + ν(κ)) ≤ (1 + θ)ν(κ), (88)

and
1 + θ
θ
µ(κ) ≤ (µ(κ) + ν(κ)) ≤

1 + ϖ
ϖ
µ(κ). (89)

By (88) and (89), we have

1
θ

(µ(κ)ν(κ)) ≤
(µ(κ) + ν(κ))2

(1 + ϖ)(1 + θ)
≤

1
ϖ

(µ(κ)ν(κ)). (90)

Multiplying (90) on both sides by (1−ϖ)ϱκϱ−1

q(ϖ) , we have

1
θ

(1 − ϖ)ϱκϱ−1

q(ϖ)
µ(κ)ν(κ) ≤

(1 − ϖ)ϱκϱ−1

q(ϖ)
(µ(κ) + ν(κ))2

(1 + ϖ)(1 + θ)

≤
1
ϖ

(1 − ϖ)ϱκϱ−1

q(ϖ)
µ(κ)ν(κ). (91)

Replace κ = τ in (90) and multiply by ϖϱτ
ϱ−1

q(ϖ) , we have

1
θ

ϖϱτϱ−1

q(ϖ)
µ(τ)ν(τ) ≤

ϖϱτϱ−1

q(ϖ)
(µ(τ) + ν(τ))2

(1 + ϖ)(1 + θ)

≤
1
ϖ

ϖϱτϱ−1

q(ϖ)
µ(τ)ν(τ). (92)

Integrating both sides of (92) with respect to τ, we have

1
θ

∫ κ

0

ϖϱτϱ−1

q(ϖ)
µ(τ)ν(τ)dτ ≤

∫ κ

0

ϖϱτϱ−1

q(ϖ)
(µ(τ) + ν(τ))2

(1 + ϖ)(1 + θ)
dτ

≤
1
ϖ

∫ κ

0

ϖϱτϱ−1

q(ϖ)
µ(τ)ν(τ)dτ. (93)

The proof can be followed similarly as Theorem 3.8.
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3.3. Fractal-Fractional operator in the Atangana-Baleanu-Caputo sense

Theorem 3.13. Let ν > 0 and p ≥ 1. Letµ, ν ∈ Cν[ϑ1, ϑ2] be two positive functions in [0,∞) such that FFMJϖ0,κµ(κ) <

∞ and FFMJϖ0,κν(κ) < ∞ for all κ > ϑ1. If 0 < ϖ ≤ µ(κ)
ν(κ) ≤ θ for some ϖ, θ ∈ R∗+ and all κ ∈ [ϑ1, ϑ2], then

(
FFMJϖ0,κµ

p(κ)
) 1
p
+

(
FFMJϖ0,κν

p(κ)
) 1
p
≤ A

[
FFMJϖ0,κ

(
µp(κ) + νp(κ)

)] 1
p , (94)

where A is defined by (6).

Proof. From the given condition µ(κ)
ν(κ) ≤ θ, we have

µ(κ) ≤
(
θ
θ + 1

)
(µ(κ) + ν(κ)). (95)

Taking the pth power on both sides of (95), then we have

µp(κ) ≤
(
θ
θ + 1

)p
(µ(κ) + ν(κ))p. (96)

Multiplying (96) on both sides by (1−ϖ)ϱκϱ−1

AB(ϖ) , then we have

(1 − ϖ)ϱκϱ−1

AB(ϖ)
µp(κ) ≤

(
θ
θ + 1

)p (1 − ϖ)ϱκϱ−1

AB(ϖ)
(µ(κ) + ν(κ))p. (97)

Replace κ = τ in (96) and multiply by ϖϱ[κ−τ]
ϖ−1τϱ−1

AB(ϖ) , we have

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
µp(τ) ≤

(
θ
θ + 1

)p ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
(µ(τ) + ν(τ))p. (98)

Integrating both sides of (98) with respect to τ, we have∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
µp(τ)dτ ≤

(
θ
θ + 1

)p ∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
(µ(τ) + ν(τ))pdτ. (99)

Add (99) and (97), we have

(1 − ϖ)ϱκϱ−1

AB(ϖ)
µp(κ) +

∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
µp(τ)dτ

≤

(
θ
θ + 1

)p (1 − ϖ)ϱκϱ−1

AB(ϖ)
(µ(κ) + ν(κ))p

+
(
θ
θ + 1

)p ∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
(µ(τ) + ν(τ))pdτ.

This implies

FFMJϖ0,κµ
p(κ) ≤

(
θ
θ + 1

)p
FFMJϖ0,κ(µ(κ) + ν(κ))p. (100)

Taking 1
p
th power on both sides (100), we have

(
FFMJϖ0,κµ

p(κ)
) 1
p
≤

(
θ
θ + 1

)
(FFMJϖ0,κ(µ(κ) + ν(κ))p)

1
p . (101)
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On the other hand, by using the condition 0 < ϖ ≤ µ(κ)
ν(κ) , we directly get

ν(κ) ≤
( 1
ϖ + 1

)
(µ(κ) + ν(κ)). (102)

Taking the pth power on both sides of (102), we have

νp(κ) ≤
( 1
ϖ + 1

)p
(µ(κ) + ν(κ))p. (103)

Multiplying (103) on both sides by (1−ϖ)ϱκϱ−1

AB(ϖ) , we have

(1 − ϖ)ϱκϱ−1

AB(ϖ)
νp(κ) ≤

( 1
ϖ + 1

)p (1 − ϖ)ϱκϱ−1

AB(ϖ)
(µ(κ) + ν(κ))p. (104)

Replace κ = τ in (103) and multiply by ϖϱ[κ−τ]
ϖ−1τϱ−1

AB(ϖ) , we have

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
νp(τ) ≤

( 1
ϖ + 1

)p ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
(µ(τ) + ν(τ))p. (105)

Integrating both sides of (105) with respect to τ, we have∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
νp(τ)dτ ≤

( 1
ϖ + 1

)p ∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
(µ(τ) + ν(τ))pdτ. (106)

Add (106) and (104), we have

(1 − ϖ)ϱκϱ−1

AB(ϖ)
νp(κ) +

∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
µp(τ)dτ

≤

( 1
ϖ + 1

)p (1 − ϖ)ϱκϱ−1

AB(ϖ)
(ν(κ) + ν(κ))p

+
( 1
ϖ + 1

)p ∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
(µ(τ) + ν(τ))pdτ.

This implies

FFMJϖ0,κν
p(κ) ≤

( 1
ϖ + 1

)p
FFMJϖ0,κ(µ(κ) + ν(κ))p. (107)

Taking 1
p
th power on both sides (107), we have(

FFMJϖ0,κν
p(κ)

) 1
p
≤

( 1
ϖ + 1

)
(FFMJϖ0,κ(µ(κ) + ν(κ))p)

1
p . (108)

By (101) and (108), we have the required inequality(
FFMJϖ0,κµ

p(κ)
) 1
p
+

(
FFMJϖ0,κν

p(κ)
) 1
p
≤ A

[
FFMJϖ0,κ(µ

p(κ) + νp(κ))
] 1
p . (109)

This completes the proof.

Remark 3.14. (i) If we set ϖ = 1 = ϱ in Theorem 3.13, then we obtain [10, Theorem 1.2].

(ii) If we set ϱ = 1 in Theorem 3.13, then we get(
AB
0 Iϖκµ

p(κ)
) 1
p
+

(
AB
0 Iϖκ ν

p(κ)
) 1
p
≤ A

[
AB
0 Iϖκ (µp(κ) + νp(κ))

] 1
p ,

which is proved by Khan et al. in [25], when ϑ1 → 0.
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4. Other type of Inequalities

In this section we will present some further reverse Minkowski type inequalities for fractal-fractional
integral operators.

Theorem 4.1. Let ν > 0 and p, q > 1 with 1
p
+ 1
q
= 1. Let µ, ν ∈ Cν[ϑ1, ϑ2] be two positive functions in [0,∞)

such that FFMJϖ0,κµ(κ) < ∞ and FFMJϖ0,κν(κ) < ∞ for all κ > ϑ1. If 0 < ϖ ≤ µ(κ)
ν(κ) ≤ θ for some ϖ, θ ∈ R∗+ and all

κ ∈ [ϑ1, ϑ2], then(
FFMJϖ0,κµ(κ)

) 1
p
(

FFMJϖ0,κν(κ)
) 1
q
≤

(
θ
ϖ

) 1
pq [

FFMJϖ0,κ(µ
1
p (κ)ν

1
q (κ))

]
. (110)

Proof. Using the given condition µ(κ)
ν(κ) ≤ θ, we have

µ
1
q (κ) ≤ θ

1
q ν

1
q (κ). (111)

Multiplying by µ
1
p (κ) on both sides of equation (111), we have

µ(κ) ≤ µ
1
p (κ)θ

1
q ν

1
q (κ). (112)

Multiplying (112) on both sides by (1−ϖ)ϱκϱ−1

AB(ϖ) , we have

(1 − ϖ)ϱκϱ−1

AB(ϖ)
µ(κ) ≤ θ

1
q

(1 − ϖ)ϱκϱ−1

AB(ϖ)
µ

1
p (κ)ν

1
q (κ). (113)

Replace κ = τ in (112) and multiply by ϖϱ[κ−τ]
ϖ−1τϱ−1

AB(ϖ) , we have

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
µ(τ) ≤ θ

1
q

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
µ

1
p (τ)ν

1
q (τ). (114)

Integrating both sides of (114) with respect to τ, we have∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
µ(τ)dτ ≤ θ

1
q

∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
µ

1
p (τ)ν

1
q (τ)dτ. (115)

Add (115) and (113), we have

(1 − ϖ)ϱκϱ−1

AB(ϖ)
µ(κ) +

∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
µ(τ)dτ

≤ θ
1
q

(1 − ϖ)ϱκϱ−1

AB(ϖ)
µ

1
p (κ)ν

1
q (κ) + θ

1
q

∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
µ

1
p (τ)ν

1
q (τ)dτ.

This implies

FFMJϖ0,κµ(κ) ≤ θ
1
q

FFMJϖ0,κ
[
µ

1
p (κ)ν

1
q (κ)

]
. (116)

Taking 1
p
th power on both sides (116), we have(

FFMJϖ0,κµ(κ)
) 1
p
≤ θ

1
pq

(
FFMJϖ0,κ

[
µ

1
p (κ)ν

1
q (κ)

]) 1
p

. (117)

Using the given condition µ(κ)
ν(κ) ≤ θ, we have

ν
1
p (κ) ≤ ϖ−

1
pµ

1
p (κ). (118)
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Multiplying by ν
1
q (κ) on both sides of (118), we have

ν(κ) ≤ ν
1
q (κ)ϖ−

1
pµ

1
p (κ). (119)

Multiplying (119) on both sides by (1−ϖ)ϱκϱ−1

AB(ϖ) , we have

(1 − ϖ)ϱκϱ−1

AB(ϖ)
ν(κ) ≤ ϖ−

1
p

(1 − ϖ)ϱκϱ−1

AB(ϖ)
µ

1
p (κ)ν

1
q (κ). (120)

Replace κ = τ in (119) and multiply by ϖϱ[κ−τ]
ϖ−1τϱ−1

AB(ϖ) , we have

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
ν(τ) ≤ ϖ−

1
p

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
µ

1
p (τ)ν

1
q (τ). (121)

Integrating both sides of (121) with respect to τ, we have∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
ν(τ)dτ ≤ ϖ−

1
p

∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
µ

1
p (τ)ν

1
q (τ)dτ. (122)

Add (122) and (120), we have

(1 − ϖ)ϱκϱ−1

AB(ϖ)
ν(κ) +

∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
ν(τ)dτ

≤ ϖ−
1
p

(1 − ϖ)ϱκϱ−1

AB(ϖ)
µ

1
p (κ)ν

1
q (κ) + ϖ−

1
p

∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
µ

1
p (τ)ν

1
q (τ)dτ.

This implies

FFMJϖ0,κν(κ) ≤ ϖ−
1
p

FFMJϖ0,κ
[
µ

1
p (κ)ν

1
q (κ)

]
. (123)

Taking 1
q
th power on both sides (123), we have

(
FFMJϖ0,κν(κ)

) 1
q
≤ ϖ−

1
pq

(
FFMJϖ0,κ

[
µ

1
p (κ)ν

1
q (κ)

]) 1
q

. (124)

By equations (117) and (124), we have the required inequality.

Remark 4.2. If we set ϱ = 1 in Theorem 4.1, then we get

(
AB
0 Iϖκµ(κ)

) 1
p
(

AB
0 Iϖκ ν(κ)

) 1
q
≤

(
θ
ϖ

) 1
pq [

AB
0 Iϖκ (µ

1
p (κ)ν

1
q (κ))

]
, (125)

which is proved by Khan et al. in [25], when ϑ1 → 0.

Theorem 4.3. Let ν > 0 and p, q > 1 with 1
p
+ 1
q
= 1. Let µ, ν ∈ Cν[ϑ1, ϑ2] be two positive functions in [0,∞)

such that FFMJϖ0,κµ(κ) < ∞ and FFMJϖ0,κν(κ) < ∞ for all κ > ϑ1. If 0 < ϖ ≤ µ(κ)
ν(κ) ≤ θ for some ϖ, θ ∈ R∗+ and all

κ ∈ [ϑ1, ϑ2], then

FFMJϖ0,κ(µ(κ) + ν(κ)) ≤ Φ FFMJϖ0,κ(µ
p(κ) + νp(κ)) +Ψ FFMJϖ0,κ(µ

q(κ) + νq(κ)), (126)

where Φ andΨ are defined by (36) and (37), respectively.
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Proof. From the given condition µ(κ)
ν(κ) ≤ θ, we have

µ(κ) ≤
(
θ
θ + 1

)
(µ(κ) + ν(κ)) (127)

Taking the pth power on both sides of (127), then we have

µp(κ) ≤
(
θ
θ + 1

)p
(µ(κ) + ν(κ))p. (128)

Multiplying (128) on both sides by (1−ϖ)ϱκϱ−1

AB(ϖ) , we have

(1 − ϖ)ϱκϱ−1

AB(ϖ)
µp(κ) ≤

(
θ
θ + 1

)p (1 − ϖ)ϱκϱ−1

AB(ϖ)
(µ(κ) + ν(κ))p. (129)

Replace κ = τ in (128) and multiply by ϖϱ[κ−τ]
ϖ−1τϱ−1

AB(ϖ) , we have

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
µp(τ) ≤

(
θ
θ + 1

)p ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
(µ(τ) + ν(τ))p. (130)

Integrating both sides of (130) with respect to τ, we have∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
µp(τ)dτ ≤

(
θ
θ + 1

)p ∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
(µ(τ) + ν(τ))pdτ. (131)

Add (131) and (129), we have

(1 − ϖ)ϱκϱ−1

AB(ϖ)
µp(κ) +

∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
µp(τ)dτ

≤

(
θ
θ + 1

)p (1 − ϖ)ϱκϱ−1

AB(ϖ)
(µ(κ) + ν(κ))p

+
(
θ
θ + 1

)p ∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
(µ(τ) + ν(τ))pdτ.

This implies

FFMJϖ0,κµ
p(κ) ≤

(
θ
θ + 1

)p
FFMJϖ0,κ(µ(κ) + ν(κ))p. (132)

Multiplying 1
p

on both sides (132), then we have

1
p

(FFMJϖ0,κµ
p(κ)) ≤

1
p

(
θ
θ + 1

)p
(FFMJϖ0,κ(µ(κ) + ν(κ))p). (133)

On the other hand, by using the condition 0 < ϖ ≤ µ(κ)
ν(κ) , we directly get

ν(κ) ≤
( 1
ϖ + 1

)
(µ(κ) + ν(κ)). (134)

Taking the qth power on both sides of (134), we have

νq(κ) ≤
( 1
ϖ + 1

)q
(µ(κ) + ν(κ))q. (135)
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Multiplying (135) on both sides by (1−ϖ)ϱκϱ−1

AB(ϖ) , we have

(1 − ϖ)ϱκϱ−1

AB(ϖ)
νq(κ) ≤

( 1
ϖ + 1

)q (1 − ϖ)ϱκϱ−1

AB(ϖ)
(µ(κ) + ν(κ))q. (136)

Replace κ = τ in (135) and multiply by ϖϱ[κ−τ]
ϖ−1τϱ−1

AB(ϖ) , we have

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
νq(τ) ≤

( 1
ϖ + 1

)q ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
(µ(τ) + ν(τ))q. (137)

Integrating both sides of (137) with respect to τ, we have∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
νq(τ)dτ ≤

( 1
ϖ + 1

)q ∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
(µ(τ) + ν(τ))qdτ. (138)

Add (138) and (136), we have

(1 − ϖ)ϱκϱ−1

AB(ϖ)
νq(κ) +

∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
µp(τ)dτ

≤

( 1
ϖ + 1

)q (1 − ϖ)ϱκϱ−1

AB(ϖ)
(ν(κ) + ν(κ))q

+
( 1
ϖ + 1

)q ∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
(µ(τ) + ν(τ))qdτ. (139)

This implies

FFMJϖ0,κν
q(κ) ≤

( 1
ϖ + 1

)q
FFMJϖ0,κ(µ(κ) + ν(κ))q. (140)

Multiplying 1
q

on both sides (140), we have

1
q

(
FFMJϖ0,κν

p(κ)
)
≤

1
q

( 1
ϖ + 1

)q (
FFMJϖ0,κ(µ(κ) + ν(κ))q

)
. (141)

By (133) and (141), we have the required inequality

1
p

(
FFMJϖ0,κµ

q(κ)
)
+

1
q

(
FFMJϖ0,κν

p(κ)
)
≤

1
p

(
θ
θ + 1

)p (
FFMJϖ0,κ(µ(κ) + ν(κ))p

)
+

1
q

( 1
ϖ + 1

)q (
FFMJϖ0,κ(µ(κ) + ν(κ))q

)
. (142)

To complete our proof, we have to use Young’s inequality

µ(κ))ν(κ)) ≤
µp(κ))
p
+
νq(κ))
q

(143)

Multiplying (143) on both sides by (1−ϖ)ϱκϱ−1

AB(ϖ) , we have

(1 − ϖ)ϱκϱ−1

AB(ϖ)
µ(κ)ν(κ) ≤

(1 − ϖ)ϱκϱ−1

AB(ϖ)

[
µp(κ)
p
+
νq(κ)
q

]
. (144)

Replace κ = τ in (143) and multiply by ϖϱ[κ−τ]
ϖ−1τϱ−1

AB(ϖ) , we have

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
µ(τ)ν(τ) ≤

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)

[
µp(τ)
p
+
νq(τ)
q

]
. (145)
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Integrating both sides of (145) with respect to τ, we have∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
µ(τ)ν(τ)dτ ≤

∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)

[
µp(τ)
p
+
νq(τ)
q

]
dτ. (146)

Add (146) and (144), we have

(1 − ϖ)ϱκϱ−1

AB(ϖ)
µ(κ)ν(κ) +

∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
µ(τ)ν(τ)dτ

≤
(1 − ϖ)ϱκϱ−1

AB(ϖ)

[
µp(κ)
p
+
νq(κ)
q

]
+

∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)

[
µp(τ)
p
+
νq(τ)
q

]
dτ.

This implies

FFMJϖ0,κµ(κ)ν(κ) ≤
1
p

FFMJϖ0,κµ
p(κ) +

1
q

FFMJϖ0,κν
q(κ). (147)

Using (142) and (147), we have

FFMJϖ0,κµ(κ)ν(κ) ≤
1
p

(
θ
θ + 1

)p (
FFMJϖ0,κ(µ(κ) + ν(κ))p

)
+

1
q

( 1
ϖ + 1

)q (
FFMJϖ0,κ(µ(κ) + ν(κ))q

)
. (148)

Using the inequality

(µ(κ) + ν(κ))r ≤ 2r−1(µr(κ) + νr(κ)), µ, ν ≥ 0, r > 0. (149)

With r = p and multiplying (149) on both sides by (1−ϖ)ϱκϱ−1

AB(ϖ) , we have

(1 − ϖ)ϱκϱ−1

AB(ϖ)
(µ(κ) + ν(κ))p ≤ 2p−1 (1 − ϖ)ϱκϱ−1

AB(ϖ)
(µp(κ) + νp(κ)). (150)

Replace κ = τwith r = p in (149) and multiply by ϖϱ[κ−τ]
ϖ−1τϱ−1

AB(ϖ) , we have

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
(µ(τ) + ν(τ))p ≤ 2p−1ϖϱ[κ − τ]

ϖ−1τϱ−1

AB(ϖ)
(µp(τ) + νp(τ)). (151)

Integrating both sides of (151) with respect to τ, we have∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
(µ(τ) + ν(τ))pdτ ≤ 2p−1

∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
(µp(τ) + νp(τ))dτ. (152)

Add (152) and (150), we have

(1 − ϖ)ϱκϱ−1

AB(ϖ)
(µ(κ) + ν(κ))p +

∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
(µ(τ) + ν(τ))pdτ

≤ 2p−1 (1 − ϖ)ϱκϱ−1

AB(ϖ)
(µp(κ) + νp(κ)) + 2p−1

∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
(µp(τ) + νp(τ))dτ.

This implies
FFMJϖ0,κ(µ(κ) + ν(κ))p ≤ 2p−1FFMJϖ0,κ(µ

p(κ) + νp(κ)). (153)

Repeating the same process with r = q, we get
FFMJϖ0,κ(µ(κ) + ν(κ))q ≤ 2q−1FFMJϖ0,κ(µ

q(κ) + νq(κ)). (154)

Substituting by (153) and (154) into (148), this completes the proof.



B. Bin-Mohsin / Filomat 38:31 (2024), 11137–11158 11156

Remark 4.4. If we set ϱ = 1 in Theorem 4.3, then we get
AB
0 Iϖκ (µ(κ) + ν(κ)) ≤ Φ AB

0 Iϖκ (µp(κ) + νp(κ)) +Ψ AB
0 Iϖκ (µq(κ) + νq(κ)), (155)

which is proved by Khan et al. in [25], when ϑ1 → 0.

Theorem 4.5. Let ν > 0 and p ≥ 1. Let µ, ν ∈ Cν[ϑ1, ϑ2] be two positive functions in [0,∞) such that FFMJϖ0,κµ(κ) <

∞ and FFMJϖ0,κν(κ) < ∞ for all κ > ϑ1. If 0 < ϖ ≤ µ(κ)
ν(κ) ≤ θ for some ϖ, θ ∈ R∗+ and all κ ∈ [ϑ1, ϑ2], then

1
θ

(
FFMJϖ0,κ(µ(κ)ν(κ))

)
≤

FFM Jϖ0,κ(µ(κ) + ν(κ))2
≤

1
ϖ

(
FFMJϖ0,κ(µ(κ)ν(κ))

)
. (156)

Proof. Using the condition, we have

0 < ϖ ≤
µ(κ)
ν(κ)

≤ θ, (157)

we conclude that

(1 + ϖ)ν(κ) ≤ (µ(κ) + ν(κ)) ≤ (1 + θ)ν(κ) (158)

and
1 + θ
θ
µ(κ) ≤ (µ(κ) + ν(κ)) ≤

1 + ϖ
ϖ
µ(κ). (159)

By (158) and (159), we have

1
θ

(µ(κ)ν(κ)) ≤
(µ(κ) + ν(κ))2

(1 + ϖ)(1 + θ)
≤

1
ϖ

(µ(κ)ν(κ)). (160)

Multiplying (160) on both sides by (1−ϖ)ϱκϱ−1

AB(ϖ) , we have

1
θ

(1 − ϖ)ϱκϱ−1

AB(ϖ)
µ(κ)ν(κ) ≤

(1 − ϖ)ϱκϱ−1

AB(ϖ)
(µ(κ) + ν(κ))2

(1 + ϖ)(1 + θ)
≤

1
ϖ

(1 − ϖ)ϱκϱ−1

AB(ϖ)
µ(κ)ν(κ). (161)

Replace κ = τ in (160) and multiply by ϖϱ[κ−τ]
ϖ−1τϱ−1

AB(ϖ) , we have

1
θ

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
µ(τ)ν(τ) ≤

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
(µ(τ) + ν(τ))2

(1 + ϖ)(1 + θ)

≤
1
ϖ

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
µ(τ)ν(τ). (162)

Integrating both sides of (162) with respect to τ, we have

1
θ

∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
µ(τ)ν(τ)dτ ≤

∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
(µ(τ) + ν(τ))2

(1 + ϖ)(1 + θ)
dτ

≤
1
ϖ

∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
µ(τ)ν(τ)dτ. (163)

Add (146) and (161), we have

1
θ

(1 − ϖ)ϱκϱ−1

AB(ϖ)
µ(κ)ν(κ) +

1
θ

∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
µ(τ)ν(τ)dτ

≤
(1 − ϖ)ϱκϱ−1

AB(ϖ)
(µ(κ) + ν(κ))2

(1 + ϖ)(1 + θ)
+

∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
(µ(τ) + ν(τ))2

(1 + ϖ)(1 + θ)
dτ

+
1
ϖ

(1 − ϖ)ϱκϱ−1

AB(ϖ)
µ(κ)ν(κ) +

1
θ

∫ κ

0

ϖϱ[κ − τ]ϖ−1τϱ−1

AB(ϖ)
µ(τ)ν(τ)dτ.
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This implies

1
θ

(
FFMJϖ0,κ(µ(κ)ν(κ))

)
≤

FFM Jϖ0,κ(µ(κ) + ν(κ))2
≤

1
ϖ

(
FFMJϖ0,κ(µ(κ)ν(κ))

)
.

Therefore, the proof is completed.

Remark 4.6. If we set ϱ = 1 in Theorem 4.5, then we get

1
θ

(
AB
0 Iϖκ (µ(κ)ν(κ))

)
≤

AB
0 Iϖκ (µ(κ) + ν(κ))2

≤
1
ϖ

(
AB
0 Iϖκ (µ(κ)ν(κ))

)
, (164)

which is proved by Khan et al. in [25], when ϑ1 → 0.

5. Conclusion

In this article, we fruitfully formed the development of mathematical inequalities for reverse Minkowski
and associated inequalities utilizing fractal-fractional integral operators. Furthermore, we accomplished
the desired findings by employing the Caputo, Caputo-Fabrizio and Atangana-Baleanu approaches. More-
over, we addressed the previous findings by incorporating various fractional-order derivatives and fractal
dimension values. Several new generalizations are provided in fractal-dimensions when fractional-order is
assumed to be 1. It would be interesting to apply these insights to the fractal-fractional derivative/integral
operators as well as other convexities. Numerous depictions were employed to explain the outcomes in
order to illustrate the significant characteristics of the fractal-fractional inequalities under concern. We truly
think that our addition of new notions and concepts will be the subject of extensive research in the fasci-
nating fields of numerical analysis and inequality theory. The efficacious and constructive implementation
of the approach is examined and acknowledged in order to establish that it can be applied to variety of
other useful fractional operators that originate in fractional calculus, particularly to new fractal-fractional
integral operators.

Acknowledgements

This research is supported by Researcher Supporting Project number (RSP2025R158), King Saud Uni-
versity, Riyadh, Saudi Arabia.

References

[1] T. Abdeljawad, Dual identities in fractional difference calculus within Riemann, Adv. Differ. Equ., 2013(1) (2013), Art: 36.
[2] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66.
[3] T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80(1) (2017),

11–27.
[4] P. Agarwal, S. S. Dragomir, M. Jleli, B. Samet, Advances in mathematical inequalities and applications, Springer Singapore, (2018).
[5] J. F. G. Aguilar, T. C. Fraga, T. Abdeljawad, A. Khan, H. Khan, Analysis of fractal-fractional malaria transmission model, Fractals,

18(8) (2020), 2040041.
[6] A. Anber, Z. Dahmani, B. Bendoukha, New integral inequalities of Feng Qi type via Riemann-Liouville fractional integration, FU. Math.

Inform., 2(27) (2012), 157–166.
[7] A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex

system, Chaos Solitons Fractals, 102 (2017), 396–406.
[8] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer

model, Therm. Sci. 20(2016), 763–769.
[9] D. Baleanu, R. P. Agarwal, Fractional calculus in the sky, Adv. Differ. Equ., 2021(1) (2021), Art: 117.

[10] L. Bougoffa, On Minkowski and Hardy integral inequalities, Journal of Inequalities in Pure and Applied Mathematics, 7(2) (2006),
Art: 60.
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[15] S. I. Butt, J. Pečarić, I. Perić, M. Praljak, Multidimensional reversed Hardy type inequalities for monotone functions, Asian-Eur. J. Math.,

7(4) (2014), Article Id: 1450055.
[16] S. I. Butt, A. Khan, New Fractal-Fractional Parametric Inequalities with Applications, Chaos Solitons Fractals, 172 (2023), 113529.

https://doi.org/10.1016/j.chaos.2023.113529
[17] S.I. Butt, A. Khan, S. T. Spuzevic, New fractal-fractional simpson estimates for twice differentiable functions with applications, Kuwait J.

Sci., 51(2) (2024), Art: 100205.
[18] M. Caputo, Linear Models of Dissipation Whose Q is Almost Frequency Independent-II, Geophys. J. Int., 13(5) (1967), 529–539.
[19] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85.
[20] Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal., 1(1) (2010), 51–58.
[21] S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria

University, (2000).
[22] T. Du, J. Liu, Y. Yu , Certain Error Bounds on the Parametrized Integral Inequalitiues in the Sense of Fractal Sets, Chaos Solitons Fractals,

161 (2022), 112328. https://doi.org/10.1016/j.chaos.2022.112328
[23] R. Gorenflo, Fractional calculus: some numerical methods, Courses and Lectures-International Centre for Mechanical Sciences,

(1997), 277–290.
[24] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., (264) (2014),

65–70.
[25] H. Khan, T. Abdeljawad, C. Tunc, A. Alkhazzan, A. Khan, Minkowski’s inequality for the AB-Fractional integral operator J. Inequal.

Appl., 2019(1) (2019), Art: 96.
[26] B. Meftah, A. Lakhdari, W. Saleh, A. Kiliçman, Some New Fractal Milne-Type Integral Inequalities via Generalized Convexity with

Applications, Fractal Fract., 7(2) (2023), 16.
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