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Abstract. In this study, we provide the notion of rough deferred statistical convergence for sequences
within the framework of the neutrosophic normed space (INS). We also study the notion of rough
deferred statistical cluster points for sequences in NS and discuss how this cluster points set and the set
of rough deferred statistical limit points related to the aforesaid convergence relate to each other.

1. Introduction

The notion of convergence of sequences has undergone several extensions as a result of the advent of
distinct summability techniques. Statistical convergence, independently introduced by Steinhaus [28] and
Fast [8], is a notion that extends the ordinary convergence of sequences of real and complex numbers.
Another innovative approach to convergence, termed deferred statistical convergence of sequences, was
investigated in [17]. This approach incorporates deferred density into the statistical convergence. Expand-
ing on this, Et et al. [7] introduced the u-deferred statistical convergence for real-valued functions, therefore
significantly extending the notion. See [10, 15, 21, 24-26] for the fundamental characteristics and details of
these novel ideas.

The concepts of roughness degree and rough convergence for sequences in a finite-dimensional normed
linear space were first presented by Phu [22] who later extended this idea to an infinite-dimensional
normed linear space [23]. Beyond investigating rough convergence, Phu delved into analytical properties
like convexity and the proximity of the set of rough limits. Rough statistical convergence, which includes
natural density, is a concept that Aytar [5] expanded upon. They also investigated the connection between
the set of rough statistical limit points and the set of statistical cluster points. Expanding on the idea of rough
convergence, several authors explored rough convergence and statistical rough convergence for sequences
in different contexts. This exploration extended to the study of rough convergence and rough statistical
convergence for double sequences in [18, 19].
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Zadeh [29] introduced the Theory of Fuzzy Sets (¥ &), which has significantly influenced various scien-
tific fields. However, §S encounters challenges in handling uncertain membership degrees. To address this
issue, Atanassov [4] extended the theory to Intuitionistic Fuzzy Sets (3§S). Kramosil and Michalek [16]
explored Fuzzy Metric Spaces (FMS) using concepts from fuzzy and probabilistic metric spaces. Kaleva
and Seikkala [11] examined FMES by considering the distance between two points as a non-negative fuzzy
number. There are requirements for WS that George and Veeramani [9] listed. FMS has garnered
attention for its practical applications in fixed-point theory, medical imaging, and decision-making.

Smarandache [27] conducted an investigation into "Neutrosophic set’ (9tS) as a generalization of FS
and 3F S, aiming to address uncertainty in practical problem-solving. The )& incorporates membership
functions for falsehood (&), indeterminacy (3), and truth (). Neutrosophy, reflecting impartial knowledge
of thought, distinguishes & from fuzzy, neutral, logic, and intuitive fuzzy sets.

In NS, uncertainty is distinct from the values of T and §, making G more encompassing than IFS
as there are no constraints among the degrees of T, &, and 3. The term neutrosophy signifies impartial
knowledge, and the notion of neutrality highlights the fundamental distinction from fuzzy, neutral, logic
and intuitive fuzzy sets.

Menger [20] introduced triangular norms (f-norms) (IMN) as a generalization of probability distributions,
incorporating the triangle inequality in terms of metric spaces. Triangular conorms (f-conorms) (TC),
identified as dual operations to IN, play a pivotal role in fuzzy operations, including intersections and
unions. I and TC serve as vital components for managing fuzzy operations within the framework of
metric spaces.

The concept of a neutrosophic metric space, characterized by continuous f-norms and continuous #-
conorms, was initially introduced by Kirisci and $imsek [13]. Expanding on their work, Kirisci and Simsek
[14] further investigated neutrosophic normed spaces (9t9tS) and explored statistical convergence within
the NS framework.

Antal et al. [2] introduced the notion of rough statistical convergence for sequences. Rahaman and Mur-
saleen [3] presented rough deferred statistical convergence for difference sequences in £-fuzzy normed
space. In another study [12], the authors proposed a modification to the definition of neutrosophic normed
space, originally presented in [13]. Debnath et al. [6] presented the concept of deferred statistical conver-
gence in the N S. This study introduces the concept of rough deferred statistical convergence of sequences
within this adapted space.

In certain instances, determining the exact values of terms in a convergent sequence (s,) becomes
challenging, particularly for large values of u. To address this challenge, an alternative sequence (v,)
is employed for approximation, introducing approximation errors. The concept of rough convergence
emerged as a solution in such scenarios.

Our research aims to extend the concept of convergence to sequences within 99tS and explore various
algebraic and topological properties. This unique convergence allows the limit to manifest as a set rather
than a single point, prompting a thorough investigation into the topological (closedness) and geometric
properties of the limit set. Additionally, we provided examples, for a given roughness degree r > 0,
demonstrating that the set of all rough deferred statistical convergent sequences does not form a linear
space. A rough deferred statistical cluster point in :tNS was also introduced, and a relationship between
the cluster point set and the limit set under rough deferred statistical convergence was developed.

This study is driven by the need to enhance the analytical frameworks used to address sequences with
uncertain behavior, which are commonly encountered in various real-life applications, including data sci-
ence, engineering, and decision-making processes. By incorporating the principles of neutrosophy, the
research broadens existing convergence theories to account for indeterminacy alongside truth and false-
hood, offering a more comprehensive approach to sequence analysis. The introduction of rough deferred
statistical cluster points and limit points in 9t9N & further enriches the theoretical foundation, providing new
insights that have the potential to be applied across a wide range of disciplines where uncertainty is a critical
factor. This work not only advances the theoretical understanding of sequence behavior in complex systems
but also lays the groundwork for practical applications in areas such as artificial intelligence, economics,
and environmental science, where precise decision-making under uncertain conditions is essential.



M. Mursaleen et al. / Filomat 38:31 (2024), 11171-11192 11173

2. Auxiliary definitions and notations

A few necessary definitions are provided in this section.

Assuming ¥ is a linear space over the field V and ¢ and * are TN and TC, respectively. Let ©, Q) and
W be single valued fuzzy sets on ¥ X (0, o). We designate the 6-tuple (F,0,Q, WV, O, *) as a "N S if, for all
w,y € F and 1,k > 0, the following conditions are satisfied:

(A1) O(w, 1) + Qw, 7) + Y(w,T) < 3,

(A2) O(w, 1) =1, XUw,7) =0and Y(w, 1) =0iffw =0,

(A3) O(fw, ) = O (w, Iﬁll) , QBw, 1) =Q (a), IF%I) and Y(fw, ) = ¥ (a), If%l) forany0O#p € ¥,

(Ad) O(w + 7, T+ k) 2 O(w,7)00(Y, k), UAw +y,T+ k) < Qw,7) * Ay, k) and Y(w + 7,7 + k) <
W(w,7) « W(y, ),

(A5) O(w, .), Qw, .) and ¥Y(w, .) are continuous on (0, o),

(A6) lim; o O(w, T) = 1, lim;—,e Qw, 7) = 0 and lim;, . V(w, 7) = 0,

(A7) lim; 0 O(w, 7) = 0, lim, 0 Q(w, 7) = 1 and lim, 0 V(w, 7) = 1.

In this scenario, we denote the 3-tuple (®, Q), W) as a neutrosophic norm (shortly, %9t) on 7.

Example 2.1. Let (F, ||l|.) be a normed space. Consider y10y2 = v1 - Y2 and y1# Y, = min{yy + v2, 1}, Yy1, 72 €
[0, 1]. Additionally, define ®,Q, and \V as follows:

and W(w, ) = —ll

R __lwll Aol
O, 1) = —— il P, 1) — o+ 2wl

" T ol
forallw € F and © > 0. Then (¥,0,Q, ¥, O, %) is a NNES.
Consider a NS (7,0,Q, ¥, ©,+) and let w € . For a givenr > 0 and 7 € (0, 1), the set
B(a(?’g’w)(r, )=fvefF :0w-v,nN>1-17, Aw-v,r) <tand V(v —v,r) < 1}
defines an open ball with centered at w and radius r w.r.t 7 € (0,1). Define
Jeaw)(F) = {.?( CF:foralweA Ir>0andt€(0,1): Bf’u’w)(r, T) C ?(}.

Then Jg,0,w)(F) defines a topology on #, which is induced by NN (©, Q, W). Since

{ve?’:@(a)—v,l)> 1- 1, Q(w—v,1)< 1and\I/(a)—v,l)< 1}
s s S s s s
is a local base at w € 7, the topology Je,q,w)(F) on F is first countable.
Definition 2.2. Let (¥,0,Q, W, O, *) be a MNS. A sequence (s,) in F then, if
O(s, —50,7) =1, Q(s, —sg,7) = 0and W (s, —sg,7) = 0asu — oo,

converges to sy w.r.t NN (O, Q, V) for each t > 0. We write the limit by (©,Q, V) — lims, = so.

We refer to the collections of all natural numbers and real numbers by IN and IR, respectively, throughout
this research. Assume that A C IN. The natural or asymptotic density of the set W, represented by 6 (W),
may be expressed as follows:

1
6(W) = lim |t <u:te W),

given the existence of the limit. Here the cardinality of the set {-- -} is shown by [{-- - }|. If, for any € > 0, we
have

O0(fuelN:|s, —w|>¢}) =0,

then a sequence (s,) of numbers is said to be statistically convergent to w (see [8], [28]).
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Definition 2.3. A sequence (s,) in ¥ is statistically convergent to sy € ¥ w.r.t NN (O, Q, W), if for all y € (0,1)
and T > 0,

tlim%|{ust:®(su—so,’c)S1—7/01’0(51,—50,’[)Zyor\P(su—so,T)ZyH =0.

We represent the limit as (©,Q, W)y — lims, = sp.

Example 2.4. Let (7, |.l) be a normed space. Suppose that y1Oya = y1 - Y2 and y1 = y2 = min{y; + 2,1},
Vy1, 72 € [0,1]. We select ®,Q, and \V as given in Example 2.1. Then, (F,0,Q, WV, O, ) forms a "NS. Define the
sequence (s,) as follows:

1, fu=m?,meN
u = 0, otherwise.

Now, consider the set
Ki(y,1)={u<t:0(s,1)<1-yorQ(s, ) =yorW¥(s,rt) =y}
for every v € (0,1) and for any © > 0. Then, we can express this set as

llsull

Ki(y,1) =qust: g s 1 yor dod >y Il > o))
={u<t:llsull > 2 or llsull > 7y
={u<t:s, =1} = {ust.u—m andme]N}.
Therefore,

|Kt(%’f)| |{u<t u=m andme]N}‘ g
This implies that as t becomes sufficiently large, the quantity © (s,, T) becomes less than 1 — y and similarly the

quantities (s, ), W (sy, T) become larger than y. Hence, we have lim;_,c % |Kt (. ’c)( = 0 for every y € (0,1) and
forany T > 0.

Definition 2.5. We define a sequence (s,) in ¥ as rough convergent to sy € F w.r.t NN (O, Q, W) for some r > 0 if,
forany y € (0,1) and t > 0, there exist uy € IN such that

O(sy—s0,r+7)>1—79,Q(s, —50, 7 +7) <yand W(s, —so, ¥ +7) <y,

forall u > uy.
The convergence of the sequence (s,) is characterized by the limit expressed as (©,Q, V)" — lims, = so.

Agnew [1] defined postponed Cesaro mean as follows in 1932, expanding on the idea of Cesaro mean
of real (or complex) sequences:
Let (ay), (by) be sequences of non-negative integers satisfying the conditions

Ay < by
lim by, = . (1)

w—00

The postponed Cesaro mean of a real (or complex) valued sequence (s,) is defined by

hw
Z Sy, w=1,2,---.

w u=a,+1

1
=5

(Da,b (Su))w
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If the limit is present,

D, (U) := lim

w—oo by, — dy,

{ueN:a, <u<by,, uel},

defines the deferred density of U for U € IN. If, for any ¢ > 0, we have

lim fueN:1+a, <u<by, |s,—w| >¢€}| =0,
w—e Oy — Ay

then a sequence (s,) of numbers is said to be deferred statistically convergent to w (see [17]).
The aforementioned definition aligns with the statistical convergence of (s,) as shown in [8] for a,, = 0
and b, = w.

3. Main Results

Within the context of MNS (F,0,Q, V¥, O, ), we introduce the concept of rough deferred statistical
convergence for sequences in this section. (a,) and (b,) represent the sequences of non-negative integers
that fulfill (1) throughout this investigation. Any more limitations on (a,,) and (by,) (if any) will be provided
in the instances and theorems that correspond to them.

Definition 3.1. We say that a sequence (s,) in F is rough deferred statistically convergent to sy € F w.r.t. NN
(©,Q,Y) for somer > 0, if

liquwﬁ|{uell\1:1+awsysbw, Osy—so,r+1)>1-1y,
Q(su—so,r+’c)<yand‘1’(su—so,r+1:)<y}|=1

)

supplies for each y € (0,1) and © > 0. We demonstrate the limit as DS! ,(®,Q, W) - lims, = so.

In the subsequent remark, we elaborate on how the DS’ (®,Q, W)-convergence encompasses certain
regular convergence methods within tNGS.

Remark 3.2. Let (F,0,Q, WV, O, +) be an "NG and (s,) € F. Then

(i) We term the DS, (©,Q, W)-convergence of (s,) as the deferred statistical convergence w.r.t. NN, provided that
(2) holds true for r = 0.

(ii) For a,, = 0 and by, = w in (2), we term the DS;/b(G), Q, W)-convergence of (s,) as the rough statistical convergence
w.r.t. NN.

(iii) Assume ay, = Ugp—1 and by, = uy, in (2), where 0 = (uy,) is an increasing sequence of integers such that uy = 0 and
Uy — U1 — 00 as w — oo, Then, we term the DS;b(@, Q, W)-convergence of (s,) as the rough lacunary statistical
convergence w.r.t. NN.

(iv) Assume a,, = w — Ay and by, = w in (2), where (Ay,) is an increasing sequence of positive integers tending to oo
such that A1y = Land Ay +1 > Ayyq for all w € IN. Then, we term the DSZ,b(G)' Q, W)-convergence of (s,) as the
rough A-statistical convergence w.r.t. MN.

Notation 3.3. Let (F,0,Q, WV, O, =) be an MNGS and (s,) € F. In this context, both (©,Q, V)" — lims, and
DS; b(@, Q, W) - lim s, may not be unique. Therefore, we use

©,Q,¥V)-LIM (s,) ={sg € F : (©,Q, V) —lims, = so},
and

DS,4(©,Q, W) — LIM' (s,) = {so € F : DS],,(©,Q, W) — lims, = 5o
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to demonstrate the set of all (©,Q, W) — lims, and the set of all DS, (©,Q,W) - lims, of the sequence (s,),

respectively. We define the sequence (s,) as rough convergent w.r.t. NN if (©,Q, W) — LIM' (s,) # 0 and as rough
deferred statistically convergent w.r.t. NN if DS, (O, Q2, V) — LIM' (s,,) # 0 for some r > 0. Certainly, it is evident
from the definitions that 0 < ry < ry, then

(©,Q,¥) - LIM" (s,) € (©,Q,¥) - LIM" (s,,),
and

DS,;(®,Q,¥) - LIM" (s,) C DS,;(©, Q, W) — LIM" (s,,)
for a sequence (s,) in F.

Example 3.4. Take NG (R,0,Q, V¥, O, ), where (R, ||.[) is the usual normed space. Consider y10y2 = Y1072
and yq * y, = min{y, + y2,1}, Vy1,y2 € [0,1]. Furthermore, We,qw) represents the neutrosophic fuzzy set on
R X (0, 00) characterized by

T lloll 2wl )

Renm =
©LW =\ F ol T+ lloll’ T + 2|

forallw € F and © > 0. The sequence (s,,) in R is defined as follows:

(1, dfu=2t-1
S”_{—l, if not (tEN.

Let sy € (©,Q,¥) — LIM' (s,) for some r > 0. Then ©(s, —so, v +71) > 1 -y, Q(sy —so, v +7) < y and
W (s, —so, 7+ T) <. So, we obtain

(t+7) > sy —sol, Yy € (0,1) and T > 0.

_r
(1-7)
Consider x = % as infinitesimal small and v’ = % Then

' +x> s, —Sol = s €sy—7,s,+7].
Foru=2t-1,wegetsy€[l—7r,1+7r]. Whenu #2t—1, thensy € [-1—-7r,=1+1']. Now

0 ifr <1

[1—r,1+r]ﬂ[—1—r,—1+r]:{ [1—r,r-11, ifr>1.

Hence

[1-rr-1], ifr>1

(©,Q,W) - LIM’ (s,) = { 0, ot

Establish the sequence (v,) in R

fu, ifu=2
v”_{—l, if not ,t€NN.

Take a,, = w and by, = w? + 1, Vw € N. Then

#|{ue]N:1+au,Susbw,@(su—so,r+r)>1—y,

by—ay
Q(sy —so, 7+ 1) <yand W (s, —so, 7+ 1) < y}|
1
bw_ﬂw

1

bw —ly

{ue]N:1+aw§u§bw, (T+F)ﬁ>|vu—50|}‘

fueN:1+4+a, <u<by,, r+x>|v, —sl}.
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Since r > 0, we have ' > 0. So, for each v’ > 0, we obtain
v+ x> |v, —so| implies v" + 1 > |1 + s 3)

whenever 1 + a,, < u < by, and u # 2. Since

|{u€]N:1+awSu§bw,u¢2t}|—>1uss—>oo
by — ay

from (3), we write

lim HueN:1+a,<u<by, soe[-1-7,r=1]} =1, ¥ > 0.
s—00 by, — Ay

As a result

[-1-rr-1], ifr>0

DS,4(©, 9, %) - LIM' (v,) ={ 0 if not.

In relation to MN (©,Q, V), none of the sequences (s,) nor (vy) converge in the ordinary sense. Furthermore, the
limit (©,Q, V)" — lim v, does not valid for r > 0.

Notation 3.5. Unlike the ordinary convergence observed in an NS, the rough convergence of a sequence (s,) w.r.t.
NN does not generally imply the rough convergence of a subsequence of (s,) w.r.t. the same. Considering (s,) = (u) in
the RN G defined in (3.4), it is evident that (©, Q, W) -LIM’ (s,) = [1 —r,1 + r] forr > 0. However, when examining

the subsequence (s,2) = (uz) of (su), the (©,Q, W) — LIM’ (s,2) does not exist for any r > 0. This reasoning similarly
applies to the DS’ (©, €, W)-convergence of a sequence (s,) in NNS.

Example 3.6. Take NG (R, 0, Q, W, O, ), where (R, ||.|[) is the usual normed space. Consider y1<Oy2 = y1 - Va2
and y1 * Y2 = min{y1 + v2,1}, Yy1,y2 € [0,1] and ©, Q, WV is defined in Example 3.4. Define the sequence (s,) in
R as follows:

fou, ifu=+t,
(SL{) _{ 0[ l:fnot ,tEIN

Then (su].) =(1,4,9,16,...). Take a,, = 0 and b, = w, Yw € IN. Then, we have
DS, 4(©,Q, W) - LIM' (s,) = [-r,7], Vr > 0.

and
DS,4(©,Q, W) - LIM (s,) = 0.

We can now give our auxiliary theorem, which plays an important role in the proofs of the following
results.

Lemma 3.7. Assume that (,0,Q, W, <, *) is a MNS and that (s,) is a sequence in F. For any y € (0,1) and
T > 0, the following statements are interchangeable:
(i) DS;,b(®, Q,¥) —lims, = s.
(ii)
limy oo 72 [ € Nt 14+ ay Su < by, O, —so,r+7) <1-y,
Q(sy—sp,r+1)=yorW¥(s,—so,r+1)= )/}| =0.

Proof. The results are self-evident, and therefore, the proof is omitted. [
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Theorem 3.8. Suppose that (¥,0,Q, ¥, O, +) be a "NS. Then
(0,Q,¥) - LIM' (s,) € DS,4(0,Q, W) — LIM' (s,,) .
supplies for each sequence (s,) in F and r > 0.
Proof. Letsy € (©,Q, W) —LIM’ (s,). Forall y € (0,1) and 7 > 0, Juy € IN such that
O(sy—s0,r+7)>1—7y, Q(sy —so,r+7) <yand W (s, —so, 7+ 7) <y, Yu > u.
Thus

{ueN:O(s,—so,r+17)<1—v,Q(s, — 0,7+ 7) =yorW¥(s, —so,t+1) =7}
ci1,2,...u—11.

Since

lim fueIN:1+4+a, <u<b, uef{l,?2,.,ug—1}} =0,
wW—00 Oy —aw
we obtain

limy, e i {4 € Nt 142y S < by, O (s, —so,r+17) <1-7,
Q(su—so,r+7)Zyor‘P(su—so,r+T)2y}| =0.

Therefore, sy € DS, (0, Q, V) — LIM’ (s,). As a result, we obtain
(©,Q,¥) - LIM" (wyp) € DS,5(0,Q, W) — LIM' (s,,) .
|
The inclusion connection indicated above is in fact rigorous, as Example 3.4 shows.

Theorem 3.9. Let (F,0,Q, W, O, *) bea MRS and (s,) be a sequence in F. It follows that forallr > 0and y € (0,1),
there is no pair of elements s1,s, € DS, ,(©,Q, V) — LIM' (s,,) such that ©(s; — sy, qr) <1 —y or Q(s1 —s2,q1) = y
or W(sy — s, qr) 2y for g > 2.

Proof. Giveny € (0,1), there exists 1 € (0,1) such that (1 — 1) (1 —y1) > 1 -y and y1 *y1 < y. We derive
this outcome through a contradiction. Subsequently, there are elements s1,s2 € DS,,(0, Q, ¥) — LIM" such
that

O(s1 —S2,qr) <1 =y or Qsy —s2,9t) = y or W(s; —s2,qt) = 7, 4)

for g > 2. For each 7 > 0 and establish the following sets

K :{ueN:G(su—sl,r+§)§1—y1,
Q(su—s1,r+§) >y or‘P(sM—sl,r+§)2yl},

and

L= {ueN:@(su—sz,r+§)§1—y1,
Q(su—sz,r+§) > or\P(su—sz,r+§)2yl},

Hence, based on Lemma 3.7, we get

lim fue N:1+4+a, <u<by,,ueK}=0,
w—oo by, — dy,
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and
lim fue N:1+4+a, <u<b,,uecl}=0.
w—o0 by, — Ay

Now
limeyeo 7 [ € N : 1+ ay, <u < by, u€ KULY|
< LMy = {1 € N2 1+ a4 < u < by, u €K
+limy e g {1 € N : 1 +ay, < u < by, u €LY
=0.

Hence

M={uelN:1+a, <u<b, u¢g KUL} #0.

Since q > 2, take gr = 2r + 7 for some 7 > 0. Let u € M = K° N L*. Take ©(s1 —52,q7) <1 -7y for g > 2. Then,
we write

1-y20(s1 —5s2;2r +17) 2@(51,—51,r+ %)O@(su — 5,7+ %)
>I-y)0A=-y1)>1-vy,

which is absurd. If Q(s; — s;,gr) = y for g > 2, then we have

Y <Q(s1—52;2r + 1) SQ(su—sl,r+§)*Q(su—sz,§)
<Y1*Y1 <Y,

which is absurd. If W(s; — s, 47) > y for g > 2, then

y S V(ww —w,r+1) S\I](Su — 51,7+ %)*\I/(su _52’%)
<y1 * Y1 <V'

which is absurd. Hence,

O(s1 —s2;2r+ 1) >1—yand Q(s; —s;2r + 1) <y, W(s1 —s,2r + 1) < y. (5)
Then, from (5) we get

O(s1 —s2;qr) > 1 —yand W(s; —sp;97) <y, Q(s1 —s2;qr) <y forg > 2

which is a contradiction to (4). Therefore, there does not exists elements s1, s, € DS, ,(®, Q, W) — LIM" such
that O(s; —s2;97) <1 —y or W(s1 —sp;9t) 2 ¥, Q(s1 —52;qr) = y forg > 2. O

Proposition 3.10. Let (F,0,Q, W, O, %) be a MRS and (s,,), (vy) be sequences in F. If DS;lb(®, Q,W¥)-lims, = s
and DSZ}(@, Q,V¥) —limv, = vy for some 1,12 > 0, then

DS"1*2/(@,Q, W) - lim (s, +v,,) = 5o + vo.

Proof. Given y € (0, 1), there exists y1 € (0,1) such that (1 — 1) (1 —y1) > 1 -y and y1 *y1 < ). Suppose
DS".(©,Q,¥) - lims, = sp and DS”,(©,Q, W) — lim v, = vy for a certain ry,7, > 0. For any 7 > 0, take into

P:{ueN:@(su—so,r1+§)>1—V1,
Q(Su — 50,11 + %) <Y1 and\I/(su —So, 1t %) <7/1}/
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and
Q={ue]N:G)(vu—vo,rz+%)>1—y1,
Q(vu — 0o, T2 + %) <" and‘I/(vu — Vo, 12 + %) <y1}_

Then, we deduce

lim HfueN:1+a,<u<b, uePl=1,
wW—00 Oy — Ay

and
lim fueIN:1+a, <u<b, ueQl=1.
w—0o0 w —aw

Determine

R={uelN:uePnqj.
Then, we get

lim

w—00

HlueN:1+a, <u<b, ueck) =1

w — Aw

This yields that R # 0. Let u € R. Then

O ((sy +vu) = (80 + v0), 71 + 12 +17T)
> @(su — S, 11 + %)O@(vu — 0o, T2 + %)
>(1-y1)o(l-»)
>1-y,
Q((sy +vy) = (50 + v0), 11 + 12+ 7T)
< Q(su —Sp, 171 + %)*Q(Uu — Vo, 12 + %)
< ')/1 *7/1
<y,
and
W ((sy +vy) — (S0 + Vo), 71 + 72+ T)
< ‘I’(su —5So, 71 + %)*\I’(vu — U, T2 + %)
<V1*)1
<y.
Hence
PNQC{ueN:O((sy+0vy)—(so+vg),n+r+1)>1-1y,
Q((su +vu) = (50 +00), 11 +12+T) <7y
and W ((s, + vy) — (S0 + vo), 1 + 12+ T) < y}.
This means that
limgy—yeo ——{t e N : 1+ a, <u <by, ucPNQJ

by—ay

< limgyeo ﬁ |{u EN:1+ay, <u<by, Osy+vy)—(so+v0),r1+r2+7)>1-1y,
Q(sy +vu) = (50 +v0),r1+12+7) <yand W ((s, +vy) — (S0 + v0), 711 + 12+ T) < )/}|

Thus, we obtain

liquwﬁ|{uell\1:1+awsysbw, O((sy +vu) — (S0 + o), 11 + 12 +1) >1—7,

Q ((Su + vu) - (SO + UO)/rl +71+ T) <y
and W ((s,, + v,) — (So + vg), 11 + 12+ T) < )/}l =1,

As a result, DS;’ZW)(@, Q,¥) - lim (s, +v,) =50 +vp. O

11180
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Remark 3.11. Proposition 3.10 is not valid for 0 < r < ry + 1, when at least one of r1 and r, is non-zero, namely,
forry # 0orry # 0 when DS;b((@, Q, W) —lims, = sy and DS;fb(G), Q,¥) —limv, = vy, then DSZZ”Z)(@, QW) -
lim (s, + v,,) need not to be equal to sy + vy for 0 <r <1 + 13.

Example 3.12. Take into consideration the NS (R, ®, Q, WV, O, *) as defined in Example 3.4. Establish

o, ifu=>5,
5“‘{(—1)2 ifnot ~ + TEN

and

0, ifu=>5,
oy = { (—Z)t, Zfl’lOt , teIN.

Let ay, = w and by, = 3w, Yw € IN. Following the approach seen in Example 3.4, we obtain

Dsu,b(®/ Q, \Ij) _ LIMr1 (su) — { [1 —Tr,r - 1] 7 lf?"l > 1

0, if not,
and
. _J 2-1rrn-2], ifrn22

DS(0,0,W) - LIM” (,) = { 0 if not.

Now
_[w  ifu=5,

(Su + Uu) = { (_3)t, anOt ,teN.

Then

[3-rr=3], ifr=3

Dsa,b(®, Q, \I/) - LIM" (Su + Uu) = { 0 ifnot,

DS", (©,Q, W) ~lims, and DS”,(©,Q, W) - lim v, are equal to 0 if ry = 1 and r, = 2. We obtain DS, ;(©,Q, ¥) -
LIM (sy +v,) =0forO<r<r +r,=3.

Proposition 3.13. Suppose that (F,0,Q, WV, <, *) be a NS and (s,) be a sequence in F. If DS;b((@, Q,v) -
lims, = sg for some r > 0, then DSLCZ(G, Q, W) —limcs, = csg forany c € R.

Proof. When 0 = c € R, the outcome is clear. Let 0 # ¢ € R. For given y € (0, 1), one has y, € (0,1) such that
1—9y2 >1-1y. Since DS;,IL]((B, Q,¥) —lims, = sy, we can consider the set

U={ue]N:@(su—so,r+ﬁ)>1—)/z,

Q(su—so,r+ ﬁ) <72 and\I/(su —So, 7+ ﬁ) <7/2}

with

lim HueIN:1+a, <u<b, uell=1.
wW—00 w—aw

Consider u € U. Then

O (cs, —csg,lclr +1) = @(su — 8o, 7+ 1)

[e]

T
2®(su—so,r+ m)

>1-y2>1-vy,
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Q(cs, —csp, lclr+ 1) = Q(su —So, 7+ %)

SQ(su —So, 7+ i)

2|
< V2 < Y,
and
W (cs, —cso, lclr+1) = \I’(su — 80,7+ ﬁ)
< ‘I’(su —So, 7+ ﬁ)
<Y2<Y.
Consequently,
U c{uelN:0O(csy —cso,lclr+1)>1-1y,
Q (csy — cso, lclr + 1) <y and W (cs,, — cso, Iclr + T) < y}.
Therefore,

limw_mﬁHu EN:1+4ay, <u<by:0O(cs, —cso,lclr+7)>1—-y
Q(cs, —csp, lclr + t) <y and W (cs,, — cso, lclr + 7) < y}| =1.

Consequently, DSLC';(@, Q,¥) —limcs, =csg. O

Remark 3.14. When 0 < t < |c|r, Proposition 3.13 is invalid for r > 0, namely, for some r > 0 if DS’ | (©,Q, V) —
lims, = sg, then DSZ b(@, Q, W) — lim cs,, need not to be equal csy for 0 <t < |clrand 0 # c € R.

Example 3.15. Take a look at Example 3.12 and assume ¢ = 2. It is obvious that

| 2u, ifu=>5"
25 = { (-1)"2, ifnot rmeN,

and

2-tt-2], ift>2
0, if not.

DS,4(®,Q, W) - LIM' (2s,) = {
Let ry = 2. Then

DS,4(©,Q, W) - LIM? (s,) = [-1,1]
and

DS, ;(©,Q, W) — LIM* (cs,) = [-2,2] = c[-1,1].
Conversely, DS, ,(©,Q, V) — LIM' (cs,) = [2 — t,t — 2] # c[-1, 1] is obtained if2<t<4
Theorem 3.16. Let (F,0,Q, WV, O, ) be a MRS and (s,) be a sequence in F. If there is a sequence (v,) in F with
DS,,(©,Q, V) — limv, = sy such that for each y € (0,1) we have © (s, —v,,7) > 1 -y, Q(s, —v,,¥) < y and
W (s, — vy, 1) <y forallu € N, then DSZ,b(G, Q,V¥) —lims, = s for some r > 0.

Proof. For given y € (0,1), choose y1 € (0,1) such that (1 —y1) 0 (1 —y1) >1 -y and y1 *y1 < ). Assume
DS,5(©,Q, V) - limv, =5y and

G)(Su_vuzr) > 1_VIQ(SM —Z)u,l") <7/and\1’(5u —Uu,l’) <7/
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for each y € (0,1) and for every u € IN. For all 7 > 0 and the sets

U={ueN:0 (@, —5s0,7)<1-7y1,
Q (v, —so,7) = y1or W (v, —s0,7) = 71},

and

V={ueN:0(s, —0v,,7)<1-y,
Q(sy —UM,F) > y10r \P(Su —ZJM,T) 27/1}

we get

limeeo = l{ € N : 1 +ay < 1 < by, u € U
= limy o0 = {1 € N : 1+ 04y, <u < by, u € V)| =0.

=limw_,mﬁ|{ue]l\1:1+aw<usbw,u€llc}|

=limw_mﬁ|{u€]N:1+awSusbw,uchH=1.
Evidently, U° NV # 0 and
lim

wW—00 Oy —aw

HueN:1+a, <u<b,uelnVy =1

Consider u € U° N V¢. Then

O(s, —sp,r+1) >0O(s, —v,,7)00O (v, — S0, T)
>(1-y)o(l-y1)>1-y,

Q(sy—so,r+71) <Q(sy—vy,1)*Q(vy = 50,7)
<Y1*y1 <Y,

and
W(s, —so,7+1) <W(s, — 0y, 1) * W (v, —50,T) <y1*xy1 <7y.
So,

unve cluelN:0(s,—so,r+1)>1-19,
Q(sy —so,r+7)<yand W(s, —so, 7+ 1) <y},

follows, implying

liqumﬁHuEN:1+awSusbw,®(su—so,r+’[)>1—y,
Q(su—so,r+’c)<yand\lf(su—so,r+r)<y}):1,

Thus DS}, (©,Q, W) - lims, = so. [

11183

Definition 3.17. We say that a sequence (s,) in F is deferred statistically bounded w.r.t. NN (©,Q, V), if for all

y €(0,1), 3o > 0 such that

limzuﬁmﬁ|{ue]1\1:1+aw Su<by, O@,a)<1-yor
Q(sy,@) 2y, W (s, a) >y} = 0.

Theorem 3.18. Let (wyy) be a sequence in F and (7,0, Q, WV, O, ) be a MNE. In such case, for some r > 0, (s,) is

deferred statistically bounded iff DS, ,(®,Q, W) — LIM"s, # 0 for some r > 0.
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Proof. Assume that (s,) is deferred statistically bounded. For each y € (0, 1),there exists a > 0 such that the
set

K={ueN:0(sy,a)<1-yorQ(sy,a) >y, ¥(s,a) >y}

has

lim
w—00 w aw

fue N:1+4+a, <u<b,uekK}=0.

Thus, we obtain
K={ueN:0(s,a)>1-—yand Q(s,, a) <y, Vs, a) <y}

and

lim
wWw— 00 w aw

Hu € N:1+a, <u<by,ueKy =1

Consider u € K. For each 7 > 0, we have

O, a+17) >0O(s,,a)00(0,1)
> (1-79)01
=1- Y,

Qya+1t) <Q(sy,a)=Q(0,1)
<y=*0,
= )/,
and
W(sy,a+1) <W(s,a)*VY0,1)
<y=*0,

So, we obtain

Kec{lueN:O(s,a+1)>1-vy,
Q@sya+t)<yand ¥ (s, a+ 1) <y}

and

{ueN:1+a, Su<gby, O,a+t)>1-vy,
Qsy,a+1)<yand W (s, a+1) <y}|=1.

: 1
llmzu_) o hll) 7“7,47

Consequently, we have 0 € DS,,(®,Q,¥) — LIM*s,. Consequently, DS,;(0,Q,¥) — LIM*s, # 0. On
the contrary, assume DS,;,(©,Q,¥) — LIM's, # 0 for some r > 0. So, there exist sp € F such that
so € DS,5(©,Q, W) — LIM' s,,.. Therefore, for each y € (0,1) and t > 0, we get

L={ueN:O(,—sy,r+1)>1-7y
Q(sy —so, v+ 1) <yand W (s, —so,t+ 1) < ¥}

with

lim

w—oo

HueN:1+a, <u<b,ucl)=1.
w — Aw
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Select an T > 0 large enough such that W = T — (v + 7) > 0, O(so, W) = 1 and Q(sp, W) = W(so, W) = 0. Let
u € L. Then

O(s,, T) =0O(s, —sp,r+1)00O(s0, W)
>(1-y)01
=1 -,

Q(sy, T) < Q(sy —s0,7+7T)*Q(s0, W)
<y=*0
= ')/_
Likewise, we obtain W (s,, T) < y. Thus,
Lc{ueN:06,T)>1-v,Q(6,T) <y, ¥Y(s,T) <y}

and so, we get

hmw—wo hl_ulaw |{M eIN:1+ Ay <u < bw, ®(Su/ T) >1-— Y,
Q(sy, T) < Y and W(s,, T) < y} |=1.

As a result, the sequence (s,) is deferred statistically bounded. O

Theorem 3.19. Let (F,0,Q, WV, O, ) be a RNS and (s,,) be a sequence in F. Then, DS, ;(©,Q, V) — LIM’ (s,) is
a convex set for each r > 0.

Proof. Assume that y € (0,1) and s1,s, € DS,;(0,Q, W) — LIM’ (s,). Then, there exists y; € (0,1) such that
(1-y1)0(1=y1)>1—-yand y; *y; <y. We show that

Bs1 + (1= P)s2 € DS, 4(©,Q, W) — LIM' (s,,)

for any g € [0, 1]. The proof is straightforward when = 0 and g = 1. Consider g € (0,1). For any 7 > 0, we
define

Tz{ué]l\l:@(su—sl,r+ﬁ)>1_yl

Q(su —-s1,7+ ﬁ) <ypand \I’(su —8,r+ ﬁ) < )/1},
and

V= {ue]N:@(su—sz,r+ 2(1;—@) >1-y,

Q(su — 8,7+ 2(+_ﬁ)) <yiand W(su — 8,7+ 2(+_ﬂ)) < 7/1}.
Since s1,52 € DS,4(0, Q, W) — LIM' (s,), we get

lim fueIN:1+a, <u<b,,ucT}=1,
w—00 w_aw

and
lim fueN:1+4+a, <u<b,,ueVl=1
w—oo by, — dy,

So, TNV #0and

lim

w—oo

fueN:1+4+ay, <u<by,,ueTNVyl=1

w — Aw
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Consider u € TN V. Next,

O (sy = [Bs1 + (1 = P)sa], 7 + 1)
=O((1-P)(su—s2)+P(su—51),A—P)r+pr+1)
>20(1-p)(su—s2),1=P)r+ %)O@(ﬁ(su —s1),pr+ %)
=0O(s, —so, 7+ ﬁ)o@(su s, 7+ ﬁ)
>1-y1)0(1-y1)>1-v,

and
Q(sy—[Bs1 + (1 = P)s2l, r+ 1)
=Q(1=p)(su=92)+B(su—s1),1=P)r+pr+1)
< Q((l —B)(su—52), (1 =B)r+ %)*Q(ﬁ(su —s1),pr+ %)
= Q(su — 5,7+ ﬁ_m)*ﬂ(su —-s1,7+ é)
<Yi*y1<Yy.

In a similar vein

W(s,—[Bs1i+ (1 —PB)sal, v +71)<y.
This indicates that the set

{ueN:O@6, —[Bsi+(1 =Pl r+1)>1~-7y,
Qs —[pwr + (1= P)sal r+1) <y
and W (s, — [Bw; + (1 - B)sz], 7+ 1) < 7}

contains T N V as a subset. Consequently, we have

limgy—e0 ﬁ |{u EN:1+ay <u<by, Oy —[Bs1+(1—PB)s2],v+17)
>1-y, Q(sy - [fwi + (1 = B)sa], v+ T) < )4
and W (s, — [Bw1 + (1 = P)s2], 7+ 7) < 7/}| =1.

Thus, Bs1 + (1 — B)s2 € DS, (0, Q, V) — LIM' (s,). O

Theorem 3.20. Let (7,0,Q, WV, O, ) be a MNE and (s,) be a sequence in . Then for eachr > 0, DS,,(0, Q, W) —
LIM" is closed.

Proof. We do not need to establish a proof since DS,;(®,Q, V) — LIM' (s,) is an empty set. Suppose
DS, 5(©,Q,W¥) — LIM' (s,) # 0 for some r > 0. Let sp € DS,,(®,Q, V) —LIM' (s,). Then, we have a

convergent sequence (w,) in DS, ,(©,Q, ¥) — LIM' (s,) w.r.t. %N such that w, ©L%) wp. Select y1 € (0,1)

for y € (0,1) such that (1 - 1) 0 (1 —y1) > (1 —y) and y; * 1 < y. Since wy, ®4%) wo, then, for all T > 0,

y1 € (0,1) and Juy € N such that

@(wu—so,%) > 1—71,Q(wu—so,§) <1 and‘I’(wu —so,§)< T1

for all u > uy. Adjust t > 1y so that wy € DS, ,(©,Q, ¥) — LIM' (s,). Thus, using

lim
w—00 w — aw

HueIN:1+a, <u<b,,ueckKl=1, (6)

we obtain

‘Kz{ué]N:@(su—wt,r+%)>1—T1,
Q(su—wt,r+ %)<T1 and\P(su—wf,r+ %)<T1}.
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If u € K, then we get

O (s, —So, 7+ 1) Z@(su—wt,r+ %)O@(wt—so,g)
>(1-yDo(l-y1)>1-y,

Q(sy—so,r+71) < Q(Su — W, T+ %)*Q(wt_so/%)

<y1*y1 <Y,
and
W (s, — 8o, 7+ T) S\P(su—wt,r+ %)*\P(wt—so,g)
<Y1*y1<Y7.
As a result

K{ueN:O(s, —so,r+1)>1-7,
Q(sy —so, 7+ 1) <yand W (s, — o, + 1) < y}.

According to the (6), we obtain

limw_mﬁ {HeN:1+a, Su<by, Oy, —so,r+17)>1-y,
Q(sy —so, v+ 1) <yand W(s, —so, 7+ 1) < y}) =1,
orsy € DS, ,(©,Q, V) — LIM’ (s,). Consequently, the outcome guarantees. []
Theorem 3.21. In the event that DS,,(®,Q, V) — lim(s,) = so, T € (0,1) occurs such that, for some r > 0,
B (r,1) c DS! (©,Q, ) — lim (s,).

Proof. If y € (0,1) is known, find Jy; € (0,1) such that (1 —y1) O (1 —y1) > 1 -y and y1 *y1 < y. Assume
that DS, ,(©, Q, ¥) — lim (s,) = so. For every t > 0 and consider the set

L={ueN:0(s,—s0,7)>1-1
Q(sy —50,7) <y1and W (s, —so, T) < y1}.

Then, we get

lim

wW—00

fueN:1+a, <u<b,uel}=1

w — Aw

0,Q,%)
0

Select p such that p € Bg (r,71), 7> 0.

O@so—p, 1) =1—y1, Qso —p, 1) < yrand Y(so —p,1) < 1
in such case. Likewise, for u € L, we get

OGyu—pr+1)>1-y, Q(su—p,r+1)<yand ¥ (s, —p,r+1) <.
Consequently,

Lc{ueN:O(,—pr+1)>1-y
Qu—-pr+1)<yand ¥ (s, —p,r+1) <y}

So, we obtain

liqumﬁhueﬂ\l:1+awSusbw,®(su—p,r+’[)>1—y,
Q(su—p,r+’c)<yand\If(su—p,r+T)<;/}| =1

Thus, p € DS (©,Q, W) LIM’ (s,,). This gives that

B (r,7) € DS,,(©,0Q, W) LIM' (s.).
|
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Now, let’s introduce and explore the concept of a rough deferred statistical cluster point in a NS as
stated below:

Definition 3.22. Let (F,0,Q, WV, O, *) be a MNS and consider (s,) as a sequence in F. For each r > 0, we define
p € F as a rough deferred statistical cluster point of (s,) w.r.t. NN (©, Q, W) if

liqumﬁ|{ue]l\1:1+awSusbw,®(su—p,r+’c)>1—y,
Q(su—p,r+7)<yand‘lf(su—p,r+7:)<y}| #0

holds for every T > 0 and y € (0,1). We use I', (OO (su) to represent the collection of all DS’ (©,Q, W)-cluster
points of the sequence (s,,). /

When r equals 0, we refer to the rough deferred statistical cluster point of a sequence (w,,) in F as the
deferred statistical cluster point of (s,) w.r.t 99 (©,Q, W), denoted as DS, ,(©, Q, ¥)-cluster point. In this
scenario, we represent the collection of all DS, ;(®, Q3, W)-cluster points of (s,) by I'ps, ,©,0,w) (S4)-

This is how we now display the set Ihs. @0 (su)’s topological property:

Theorem 3.23. Let (7,0, Q, W, O, *) be a "NS and consider (s,) as a sequence in F. It follows that for any r > 0,
(sy) is a closed set.

rbsa,b(@,g,\ll)
Proof. Assume that y € (0,1). Then, there exists y1 € (0, 1) such that
(1-y1)o(d-y1)>1-yandy;=y1<y.

Supposep € I, 5,4©.0) (su). Then, there is a sequence (p, ) of members in I 5,4©.0) (sy)such that (©,Q, W)-
limp, = p. Thus, for each 7 > 0, Ju € IN such that

G)(pu—p,%)>1—y1, Q(pu—p,%)<y1 and\If(pu—p,é)<y1

for all u > uy. Assign t > uy. Next,

@(pt—p,%) >1-y, Q(pt—p,%) <M and‘lf(pt—p,g)<)/1.
Also, we have

Wz{uE]N:@(su—pt,r+§)>1—y1,
Q(su—pt,r+§) <7 and\I/(su—pt,r+§) <y1}

with

lim

w—00

fueIN:1+a, <u<b, uecW}|#0.

w — Aw
If u € W, then we get
O(u—pr+1) 20(su—p,r+35)00(p—p, )
>(1_V1)0(1—)/1)> ]—)/,
Qu=pr+n) Q(s—por+3)<Q(p—p3)

<VYV1*yY1 <Y,
and

Y (s, —p,r+1) S\P(su —py T+ %)*\P(pt—p,g)
<Yi*yi1<Yy.
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Thus, we get

W c{ueN:O@G,—-pr+1)>1-y
Qu—pr+t)<yand ¥(s,—p,r+1)<y}.

= limw_mﬁﬂueﬂ\l:1+awSusbw,@(su—p,r+f)>1—y
Q(su—p,r+1)<yand\I’(su—p,r+T)<y}|9&0.

pe FBSM ©0) (sy) as aresult,and I’ ;)sn,b ©Qw) (sy)isclosed. O

Theorem 3.24. Let (F,0,Q, WV, O, %) be a NS and let (s,) be a sequence in . Assume x € I'ps,,©,0w) (Su)- If,
foreach y € (0,1),

O—-x1>1-y, Qc-—x,nN<yand ¥(c—-x,1)<y.

hold for some v > 0, then ¢ € T BSM(QQHJ) (su).

Proof. For given y € (0,1), Iy1 € (0,1) such that (1 -y1)0(1-y1) > 1 -y and y; * )1 < y. Suppose that
x € I'ps, ,@,0,w) (51). Then for every 7 > 0, the set

T ={fuelN:0(s,—x,7)>1-y,
Q(sy—x,7)<yrand W (s, — x,7) < y1}

has

lim

W—00

fueIN:1+a, <u<b,,uecT}#0. (7)

w — w

Consider ¢ € ¥ such that
OCc—-x1N>1-y;, Qc—x,1<yrand ¥(c—-x,7) <y

for some r > 0. For any pair u € T, following a similar approach as mentioned above, we derive
OGy—cr+1)>1-y, Qsy—¢r+7)<yand W(s, —¢,r+71) <.

Therefore,

T CluelN:O(@6,—¢,r+1)>1-1y,
Qsy—¢,r+1)<yand ¥(s, —¢,r+1) <y}

— limwawﬁ|{ueN:l+awSusbw,G)(su—g,r+r)>1—y,
Q(su—g,r+’f)<)/and\I/(s,,—g,r+T)<y}(;&0.

T cfluelN:0@6,—¢,r+1)>1-1y,
Qsy—¢,r+1)<yand¥(s, —¢,r+1) <y}

= limye g2 N € N:1+a, <u < by, ueT)
sliqumﬁ|{ueﬂ\l:1+awSuﬁbw,®(su—g,r+7:)>1—y,
Q(su—g,r+r)<yand\11(su—g,r+f)<y}(.

Since the (7) holds, we obtain

liquwﬁhueﬂ\l:1+awSusbw,®(su—g,r+7)>1—y,
Q(su—g,r+’c)<yand\1/(su—g,r+’r)<y}|¢0.

So,ceI”

DS,,(©,Q,W) (su). O
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The aforementioned theorem makes it abundantly evident that there is a corresponding rough deferred
statistical cluster point for each deferred statistical cluster point in a sequence in a 9i9%&. The following
theorem is presented in view of this fact.

Theorem 3.25.

0,0V
D, @0 (5u) = U B(r,y)

s0€I'ps, , @0, (5u)
exists for some r > 0 and y € (0, 1).

Proof. Suppose y € (0,1) is given. So, Jy; € (0,1) such that (1 —y1)O(1—-y1) >1—yand y;1 *y1 < y. For
some v > 0, let

(@S]

s0€l'ps, ,©0,w)(su)

B ).
©,Q9,9) .
Then, Js € I'ps,,@,0,w) (4) such that ¢ € B, (r,71), that s,
O(so—¢, 1) >1-y1, Qso—¢,7r) < y1and W(so — ¢, 7) < 1.
By so € I'ps, ,0,0,w) (5u), for each 7 > 0 and the set

H={uelN:0O(sy, —s0,7)>1-7y1,
(s, = 50,7) < 1 and W(s, — 50,7) < 1},

we get

lim
w—00 w — aw

HueN:1+a, <u<b, uecH} #0.

Consider u € H. In a similar vein, we get
O@y—cr+1)>1-y, Q@sy—¢r+1)<yandW(s, —¢,r+1) <y,
as mentioned earlier. Thus,

H c{lueN:O@,—-c¢cr+1)>1-y,
Q@y—cr+1)<yand W(s, —¢,r+1) <y}

= limye i [ €N 1+, Su<by, O, —c,r+1)>1-7,
Q(su—g,r+'c)<yand\}’(su—g,r+T)<y}|¢0,

thatis, c € I'¢ ). So, we have

s©0w) B
©,0,7)
BSO (r,y1) C rz(f’,llbf])s@z (W) - (8)

s0€l'ps, ,@,0,w)(Su)

Conversely, if ¢ € FESM ©0w) (s4), then let on contrary

0,0,V
ce |J 890
$50€l'ps, ,©0,%)(5u)

So, for all sp € I'ps, ,@,0,v) (54), we obtain ¢ ¢ Bg?’g’w)(r, Y1), ie.,

O(so—¢,r) <1—=y1,Q(s0—¢,7) >y1and WY(sp — ¢, 1) > 1.
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r

Therefore, by Theorem 3.24, we have ¢ ¢ I (©,07) (su),

which goes against what we assumed. Thus

Ihs,,@0w) (5u) C U ng@,o,\m(rl 71) )

s0€I'ps, ,@©.0,w)(5u)
Combining (8) and (9), yields the following outcome. [J

Theorem 3.26. Let (F,0,Q,VW, O, %) be a MNS. Given a sequence (s,) in F, let DS,;(0,Q, W) —lims, = s.
Then T lr)SM(@,Q,\I/) (5u) € DS,(©,Q, W) — LIM’ (s,,) for some r > 0.

Proof. Assume DS,;(©,Q, V) —lims, = sy. Thus sy € I'ps,,0,0,w) (54)- By Theorem 3.25, for some r > 0 and
y€(©0,1),

Is, 0w (u) = Bg?,a,\y)(r’y)_ (10)
Also, by Theorem 3.21,
B, 1) € DS,4(©,Q, W) — LIM' (s,). an

Hence by (10) and (11), we have
nga,b(elo,\y) (su) € DS,14(0,Q, W) — LIM (s,) .

O

4. Conclusion

When dealing with a convergent sequence (s,) where the terms become challenging to estimate for
sufficiently large u, an auxiliary sequence (v,) is employed to approximate these values, introducing
approximation errors. Rough convergence emerged as a solution to address this challenge. Many mathe-
maticians are actively exploring the relationship between statistical convergence and various convergence
concepts within neutrosophic normed space. However, the more general idea in this theory has yet to be
thoroughly investigated with consideration given to the Pringsheim limit. This study, through the exten-
sion of neutrosophic theory, significantly enhances the existing body of literature. Two valuable additions
are introduced by this study in the realm of neutrosophic theory for sequences in iNE: (i) a type of rough
deferred statistical convergence; (ii) rough deferred statistical limit and cluster points. These concepts and
findings can serve as theoretical tools for examining optimal approaches within the framework of turnpike
theory in a fuzzy environment.
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