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Abstract. The main goal of this research is to obtain several approximation properties of Kantorovich
variant Szász-Chlodowsky operators based on 2D Appell Polynomials. We provide a connection between
weighted B-statistical convergence (WBSC) and the rate of WBSC concepts and approximation theory. We
also prove a Voronovskaja theorem related to WBSC. Finally, we consider certain examples and discuss the
advantages of proposed operators via certain numerical results.

1. Introduction

From the 19th century until today, many mathematicians who have been researching, especially on the
theory of approximations, have the following question in mind. Can we approximate the functions that
are difficult to work on, that is, functions difficult in terms of applying mathematical operations, with the
easier and simpler sequence of polynomials, and how can we provide this approximate in the best way?
From this point of view, Bernstein [19] gave the simplest proof of Weierstrass’s famous approximation
theorem via a sequence of polynomials and this proof has been a source of light for many researchers (see
[3–5, 8–16, 23–25, 29, 33, 35, 40–42, 45–53, 58] and references therein).

In [6], Appell proposed and characterised a polynomial sequence that appears various application areas,
such as engineering, probability theory, and statistics, analytic number theory and approximation theory
in pure mathematics and also provide certain solutions for specified problems for fluid mechanics and heat
equation in physics.

Around two decades ago, Bretti [21] established for any ρ ≥ 2, the bivariate Appell polynomials (called
2D Appell Polynomials) Γ(ρ)

d (x; a) concerning the following generating function

A(t)ext+atρ =

∞∑
d=0

Γ
(ρ)
d (x; a)

td

d!
, x, a ≥ 0; t , 0
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where an analytic functionA(t) has the formal power series of the following version:

A(t) =
∞∑

h=0

Ωh

h!
th, A(0) , 0.

Based on the generating function expansion of Appell polynomials, Jakimovski and Leviatan [32]
proposed a new version of linear positive operators on an unbounded interval as:

Uc(η; x) =
1

ecxγ(1)

∞∑
b=0

pb(cx)η(
b
c

), (1)

where, γ(t)ect =
∞∑

b=0
pb(t)cb is generating function with Appell polynomials pb(t) ≥ 0 and γ(v) =

∞∑
c=0

acvc,

|v| < U, U > 1 and γ(1) , 0.
In [60], Wood established some variation-diminishing properties and also the state of convergence of

operators (1) in the complex domain. Asymptotic expansion for the derivatives of the operators (1) were
obtained by Abel and Ivan [1]. A modification of the operators (1) is constructed by Ciupa [27], and
estimation of the degree of approximation and also proof of Voronovskaya type theorem are given by him.
Further, in 2014, Büyükyazıcı et al. [22] considered a generalization of the operators (1) and studied some
direct theorems also convergence in a weighted space of functions on [0,∞) for these operators. Ari and
Serenbay [7] considered Kantorovich-type generalization of Chlodowsky [26] version of operators (1) and
showed the convergence of these operators in a weighted space of functions on [0,∞). In special case for
γ(1) = 1 in (1), one has pb(nx) = (nx)b

b! and it turns out to the following well-known Szász [57] operators,
which is associated with the poisson distribution:

Lc(η; x) =
∞∑

b=0

e−cx (cx)b

b!
η(

b
c

). (2)

In the literature, to estimate better approximation results, one may get with the aid of generating function of
Brenke type polnomials [59], Boas-Buck polynomials [28, 31, 55], Charlier polynomials [36], Gould-Hopper
polynomials [17, 43] and Sheffer polynomials [20, 56].

Very recently, Ali and Kadak [2] constructed and studied the following Chlodowsky type of linear
positive operators (2) including 2D Appell polynomials

Lc,Γ(η; x) =
e−

c
qc

x−a

A(1)

∞∑
b=0

Γ
(ρ)
b ( c

qc
x, a)

b!
η(

b
c

qc), x ∈ [0,∞), (3)

where, a ≥ 0 and qc is a positive increasing sequence with the assumptions:

lim
c→∞

qc = ∞, lim
c→∞

qc

c
= 0. (4)

They obtained the order of approximation in respect of the ordinary modulus of continuity, examined
weighted B-statistical and summability properties. Also, they presented several numerical and graphical
convergence results in order to show the accuracy of operators (3).

Taking courage from the all above-mentioned papers, in this work, we aim to investigate several
approximation properties of the following Kantorovich [37] type of operators (3)

Fc,Γ(η; x) =
c
qc

e−
c

qc
x−a

A(1)

∞∑
b=0

Γ
(ρ)
b ( c

qc
x, a)

b!

(b+1)
c qc∫

b
c qc

η(u)du, x ∈ [0,∞), (5)
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where, a ≥ 0, Γ(ρ)
b are the 2D Appell polynomials and the sequences qc is defined as in (4). It is easy to

check that operators Fc,Γ is linear and positive. Note that, in case a = 0, operators given by (5) reduce to the
Kantorovich type generalization of Jakimovski-Leviatan operators constructed by Ari and Serenbay [7].

Outline of the work is as follows: In section 2, we evaluate needed moments and give the main Bohman-
Korovkin theorem for operators (5). In section 3, we provide a connection between WBSC, rate of WBSC,
and approximation of (5). We also proof a Voronovskaja theorem related to WBSC in this section. In the
last section, we consider certain examples and discuss advantages of (5) via the numerical results.

2. Preliminaries

In this section, firstly we compute some moments and central moments of (5). Let eu(t) = tu be the test
functions for u = 0, · · · , 4. Then, we give the main Bohman-Korovkin theorem for operators Fc,Γ.

Lemma 2.1. The operators Fc,Γ defined by (5) satisfy

Fc,Γ(e0; x) = 1, (6)

Fc,Γ(e1; x) = x +
qc

c

(
aρ +

1
2
+
A
′(1)
A(1)

)
. (7)

Fc,Γ(e2; x) = x2 +
qc

c
x
(
2 + 2aρ +

2A′(1)
A(1)

)
+

q2
c

c2

(
1
3
+ a2ρ2 + aρ2 + aρ +

2A′(1) +A′′(1) + 2aρA′(1)
A(1)

)
, (8)

Fc,Γ(e3; x) = x3 +
qc

c
x2

(
9
2
+ 3aρ +

3A′(1)
A(1)

)
+

q2
c

c2 x
(

7
2
+ 9aρ + 3a2ρ2 + 3aρ(ρ − 1) +

9A′(1) + 6aρA′(1) + 3A′′(1)
A(1)

)
+

q3
c

c3

(
ν(1)

a,r +
A
′′′(1) + 4A′′(1) + 3A′(1) + 3aρA′′(1)

A(1)

+
8aρA′(1) + 3aρ(ρ − 1)A′(1) + 3a2ρ2

A
′(1)

A(1)

)
, (9)

Fc,Γ(e4; x) = x4 +
qc

c
x3

(
8 + 4aρ +

4A′(1)
A(1)

)
+

q2
c

c2 x2

(
ν(2)

a,r +
24A′(1) + 12aρA′(1) + 6A′′(1)

A(1)

)
+

q3
c

c3 x
(
ν(3)

a,r +
4A′′′(1) + 24A′′(1) + 30A′(1) + 12aρA′′(1)

A(1)

+
12a2ρ2

A
′(1) + 48aρA′(1) + 12aρ(ρ − 1)A′(1)

A(1)

)
+

q4
c

c4

(
ν(4)

a,r +
A(iv)(1) + 8A′′′(1) + 15A′′(1) + 6A′(1)

A(1)

+
4aρA′′′(1) + 6a2ρ2

A
′′(1) + 6aρ(ρ − 1)A′′(1)
A(1)

+
+24aρA′′(1) + 4a3ρ3

A
′(1) + 24aρ(ρ − 1)A′(1)
A(1)

+
4aρ(ρ − 1)(ρ − 2)A′(1) + 12a2ρ2(ρ − 1)A′(1)

A(1)

+
24a2ρ2

A
′(1) + 24aρ(ρ − 1)A′(1) + 24aρA′(1)

A(1)

)
, (10)
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where

ν(1)
a,r =

1
4
+ 3aρ + 4aρ(ρ − 1) + 4a2ρ2 + 3a2ρ2(ρ − 1) + aρ(ρ − 1)(ρ − 2) + a3ρ3,

ν(2)
a,r = 15 + 18aρ + 6a2ρ2 + 6aρ2,

ν(3)
a,r = 6 + 30aρ + 12a2ρ2(ρ − 1) + 24aρ(ρ − 1) + 4aρ(ρ − 1)(ρ − 2) + 24a2ρ2 + 4a3ρ3,

ν(4)
a,r =

1
5
+ 6aρ + 15a2ρ2 + 13aρ(ρ − 1) + 8a3ρ3 + 2r(ρ − 1) + 8aρ(ρ − 1)(ρ − 2)

+24a2ρ2(ρ − 1) + 6a3ρ3(ρ − 1) + aρ(ρ − 1)(ρ − 2)(ρ − 3) + 3a2ρ2(ρ − 1)(2ρ − 3)

+ + a2ρ2(ρ − 1)(ρ − 2) + a4ρ4.

The following results are obtained by the linearity of (5) and Lemma 2.1:

Fc,Γ((e1 − x); x) =
qc

c

(
aρ +

1
2
+
A
′(1)
A(1)

)
. (11)

Fc,Γ((e1 − x)2; x) =
qc

c
x +

q2
c

c2

(
1
3
+ a2ρ2 + aρ2 + aρ +

2A′(1) +A′′(1) + 2aρA′(1)
A(1)

)
.

(12)

Fc,Γ((e1 − x)4; x) = 3
q2

c

c2 x2 +
q3

c

c3 x
(
5 − 10aρ + 18aρ2

− 16a2ρ2 +
8A′′(1) + 18A′(1) + 16aρA′(1)

A(1)

)
+

q4
c

c4

(
ν(4)

a,r +
A(iv)(1) + 8A′′′(1) + 15A′′(1) + 6A′(1)

A(1)

+
4aρA′′′(1) + 6a2ρ2

A
′′(1) + 6aρ(ρ − 1)A′′(1)
A(1)

+
24aρA′′(1) + 4a3ρ3

A
′(1) + 24aρ(ρ − 1)A′(1)
A(1)

+
4aρ(ρ − 1)(ρ − 2)A′(1) + 12a2ρ2(ρ − 1)A′(1)

A(1)

+
24a2ρ2

A
′(1) + 24aρ(ρ − 1)A′(1) + 24aρA′(1)

A(1)

)
. (13)

Next, we introduce the Korovkin type approximation theorem. As it is known, the space CB[0,∞)
denotes the all continuous and bounded functions on [0,∞) and it is endowed with the sup-norm for a
function η as below:∥∥∥η∥∥∥

[0,∞)
= sup

x∈[0,∞)

∣∣∣η(x)
∣∣∣ .

Theorem 2.2. If η ∈ CB[0,∞) then

lim
c→∞
Fc,Γ(η; x) = η(x),

uniformly on [0,∞).

Proof. According to the Bohman-Korovkin theorem [39], we have to show that

lim
c→∞

sup
x∈[0,∞)

∣∣∣Fc,Γ(es; x) − xs
∣∣∣ = 0, for s = 0, 1, 2.

One can get the above expression immediately with the help of Lemma 2.1, hence we omit the details.
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3. A Connection with a summability method

Here, we provide a connection between summability methods and the approximation of the proposed
operators.

The B-summability was defined in [38]. Suppose that B = (Bϑ) is a sequence of infinite matrices with
Bϑ = (τcm(ϑ)). Then x ∈ ℓ∞ is said to be B-summable to the value B− lim x, if limc→∞(Bϑx)c = B− lim x
uniformly for ϑ = 0, 1, 2, · · · .

Definition 3.1 ([54] and [18]). The method B = (Bϑ) is regular if and only if

(a) ∥B∥ = supc,ϑ
∑

m |τcm(ϑ)| < ∞;

(b) limc→∞ τcm(ϑ) = 0 uniformly in ϑ for each m ∈N;

(c) limc→∞
∑

m τcm(ϑ) = 1 uniformly in ϑ.

Definition 3.2. By R+ we denote the set of all regular methods B with τcm(ϑ) ≧ 0 for all c, m and ϑ. For a given
B ∈ R

+ regular non-negative summability matrix, x = (xm) is said to be B-statistically convergent to the number ℓ,
if for every ϵ > 0,

lim
c→∞

∑
m:|xm−ℓ|≧ϵ

τcm(ϑ)→ 0

uniformly in ϑ as c→∞.

Definition 3.3 ([44]). Let B = (Bϑ)ϑ∈N ∈ R+. Further, let w = (wm) be a sequence of nonnegative numbers
with w0 > 0 and Wc =

∑c
m=0 wm → ∞ as c→ ∞. A sequence x = (xc) is said to be WBSC to the number ℓ if,

for every ϵ > 0,

lim
j→∞

1
W j

j∑
c=0

wc

∑
m:|xm−ℓ|≧ϵ

τcm(ϑ) = 0 uniformly in ϑ.

It is denoted by
[
statB,wc

]
− lim x = ℓ.

Theorem 3.4. Assuming η ∈ C[0,∆] and B ∈ R+ we have

[statB,wc] − lim
c→∞
∥Fc,Γ(η, x) − η∥C[0,∆] = 0.

Proof. Assume that η ∈ C[0,∆] and x ∈ [0,∆] be fixed. Considering Korovkin theorem, it is sufficient to
verify the following relation:

[statB,wc] − lim
c→∞
∥Fc,Γ(es; x) − es∥C[0,∆] = 0,

where es(x) = zs, x ∈ [0,∆] and s = 0, 1, 2. Using the moments results, we get the following relation

[statB,wc] − lim
c→∞
∥Fc,Γ(e0; x) − e0∥C[0,∆] = 0. (14)

Again, by the moments of proposed operators for s = 1, one has

sup
x∈[0,∆]

∣∣∣∣∣Fc,Γ(e1; x) − e1(x)
∣∣∣∣∣ = sup

x∈[0,∆]

∣∣∣∣∣∣x + qc

c

(
aρ +

1
2
+
A
′(1)
A(1)

)
− x

∣∣∣∣∣∣ = qc

c

(
aρ +

1
2
+
A
′(1)
A(1)

)
.

Selecting a number ε > 0 for a given ε′ > 0 so that ε < ε′ we define the sets

J :=
{
c ∈N :

∥∥∥Fc,Γ(e1; x) − e1

∥∥∥ ≧ ε′} ,
J1 :=

{
c ∈N :

qc

c

(
aρ +

1
2
+
A
′(1)
A(1)

)
≧ ε′ − ε

}
.
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So we get

1
W j

j∑
c=0

wc

∑
m∈J

τcm(ϑ) ≤
1

W j

j∑
c=0

wc

∑
m∈J1

τcm(ϑ).

Taking limit to the last inequality when j→∞we attain

[statB,wc] − lim
c→∞
∥Fc,Γ(e1; x) − e1∥C[0,∆] = 0. (15)

Now for s = 2, let a ≥ 0, ρ ≥ 2 and 1(a, ρ) = 1/3 + a2ρ2 + aρ2 + aρ. By definition of proposed operators and
Lemma 2.1 one obtains

sup
x∈[0,∆]

∣∣∣Fc,Γ(e2; x) − e2(x)
∣∣∣ ≤ ∣∣∣∣∣qc

c
x
(
2 + 2aρ +

2A′(1)
A(1)

)
+

q2
c

c2

(
1(a, ρ) +

2A′(1) +A′′(1) + 2aρA′(1)
A(1)

) ∣∣∣∣∣.
Selecting a number ε > 0 for a given ε′ > 0 so that ε < ε′ we define the sets

P :=
{
c ∈N :

∥∥∥Fc,Γ(e2; x) − e2

∥∥∥ ≧ ε′} ,
P1 :=

{
c ∈N :

qc

c
x
(
2 + 2aρ +

2A′(1)
A(1)

)
≧
ε′ − ε

2

}
,

P2 :=
{

c ∈N :
q2

c

c2

(
1(a, ρ) +

2A′(1) +A′′(1) + 2aρA′(1)
A(1)

)
≧
ε′ − ε

2

}
.

Then the inclusion P ⊂ P1 ∪ P2 holds true and implies

1
W j

j∑
c=0

wc

∑
m∈P

τcm(ϑ) ≤
1

W j

j∑
c=0

wc

∑
m∈P1

τcm(ϑ) +
1

W j

j∑
c=0

wc

∑
m∈P2

τcm(ϑ).

In conclusion, using the same technique as above,

[statB,wc] − lim
c→∞
∥Fc,Γ(e2; x) − e2∥C[0,∆] = 0. (16)

We attain the desired result by considering (14), (15) and (16) together.

Definition 3.5 ([34]). Let B ∈ R+w. A sequence x = (xc) is statistically weighted B-summable to ℓ if, for each
ϵ > 0,

lim
s

1
s

∣∣∣∣∣∣∣
{

j ≦ s :
∣∣∣ 1
W j

j∑
c=0

wc

∞∑
m=1

xcτcm(ϑ) − ℓ
∣∣∣ ≧ ϵ}∣∣∣∣∣∣∣ = 0 uniformly in ϑ.

It is denoted as NB(stat) − lim x = ℓ for this case.

Corollary 3.6. Assuming B in R+ and η in C[0,∆] we have

NB(stat) − lim ∥Fc,Γ(η, x) − η∥C[0,∆] = 0.

Proof. The proof is based on Theorem 3.4 and [34, Theorem 7].
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Definition 3.7 ([34]). Let B ∈ R+. Suppose that (ϕm) is a positive non-decreasing sequence. A sequence
x = (xm) is said to be WBSC to ℓ with the rate o

(
ϕm

)
if, for any ϵ > 0,

lim
j→∞

1
ϕ jW j

j∑
c=0

wc

∑
m:|xm−ℓ|≧ϵ

τcm(ϑ) = 0 uniformly in ϑ.

In this case, we denote it by xm − ℓ =
[
statB,wc

]
− o

(
ϕm

)
.

Theorem 3.8. Let (ϕc)c∈N positive non-decreasing sequence and B ∈ R+. Suppose that the condition

ω(η; δc) =
[
statB,wc

]
− o

(
ϕc

)
on [0,∆],

where δc := ∥Fc,Γ(µ; x)∥1/2C[0,∆] with µ(x) = (t − x)2, t ∈ [0,∆], is satisfied. Then

∥Fc,Γ(η) − η∥C[0,∆] =
[
statB,wc

]
− o

(
ϕc

)
,

for every η ∈ C[0,∆].

Proof. Let ∆ ∈ R be fixed and η ∈ C[0,∆] and x ∈ [0,∆]. Since Fc,Γ is monotone and linear, we get

|Fc,Γ(η(t); x) − η(x)| ≤ |Fc,Γ

(
|η(t) − η(x)|; x

)
+ T |Fc,Γ(e0; x) − e0|

≤ ω(η, y)Fc,Γ

(
|t − x|

y
+ 1; x

)
= ω(η, y)

{
Fc,Γ(e0; x) +

1
y2Fc,Γ(µ; x)

}
, (17)

where T = supx∈[0,∆] |η(x)|. Implementing supremum over x ∈ [0,∆] on each sides of (17) and selecting
y = δc = ∥Fc,Γ(µ; x)∥1/2C[0,∆]y = δc, we get

∥Fc,Γ(η) − η∥C[0,∆] ≤ ω(η, δc)
{
1 +

1
δ2

c
∥Fc,Γ(µ; x)∥C[0,∆]

}
= 2ω(η, δc).

For a given ϵ > 0, we define the sets:

U =
{
c : ∥Fc,Γ(η) − η∥C[0,∆] ≥ ϵ

}
,

U1 =
{
c : ω(η, δc) ≥

ϵ
2

}
.

Subsequently, one can easily verify the relation

1
ϕc

∑
m∈U

τcm(ϑ) ≤
1
ϕc

∑
m∈U1

τcm(ϑ).

This result, combined with the assumption, yields

∥Fc,Γ(η) − η∥C[0,∆] =
[
statB,wc

]
− o

(
ϕc

)
,

which completes the proof.

As a preliminary to the next theorem, we assume that C2[0,∆] is the space of all functions η ∈ C[0,∆]
such that η′, µ′′ ∈ C[0,∆].
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Theorem 3.9. Let B = (Bϑ)ϑ∈N ∈ R+. Let η ∈ C[0,∆], x ∈ [0,∆] and dη(x)
dx ,

d2η(x)
dx2 exist. Then

[statB,wc] − lim
c→∞

{
cFc,Γ(η, x)

qc
−

cη(x)
qc

}
=

{
A
′(1)
A(1)

+ aρ +
1
2

}
dη(x)

dx
+

x
2

d2η(x)
dx2

uniformly in ϑ. If η ∈ C2[0,∆], convergence is still uniform in x ∈ [0,∆].

Proof. Let η ∈ C2[0,∆] and x ∈ [0,∆] be fixed. Considering Taylor’s expansion with Peano’s form of
reminder we attain

η(t) − η(x) = (t − x)
dη(x)

dx
+

1
2

(t − x)2 d2η(x)
dx2 + (t − x)2 ξx(t), (18)

where ξx(t) is the remainder term so that ξx(t) ∈ C[0,∆] and ξx(t)→ 0 as t→ x.Applying Fc,Γ to the identity
(18) and multiplying by c/qc, we get

c
qc

{
Fc,Γ(η, x) − η(x)

}
=

c
qc

dη(x)
dx
Fc,Γ(t − x; x)

+
c
qc

d2η(x)
2dx2 Fc,Γ((t − x)2; x) +

c
qc
Fc,Γ((t − x)2ξx(t); x). (19)

The following relations are satisfied by the results in (11), (12) and (13) :

[
statB,wc

]
− lim

c→∞

c
qc
Fc,Γ(t − x, x) = aρ +

1
2
+
A
′(1)
A(1)

; (20)[
statB,wc

]
− lim

c→∞

c
qc
Fc,Γ((t − x)2, x) = x; (21)[

statB,wc

]
− lim

c→∞

c2

q2
c
Fc,Γ((t − x)4, x) = 3x2. (22)

The following inequality is attained if each parts of (19) is multiplied by c/qc and if Cauchy-Schwarz
inequality is used:

c
qc
Fc,Γ((t − x)2ξx(t); x) ≤

√
c2

q2
c
Fc,Γ((t − x)4; x)

√
Fc,Γ(ξx(t); x).

Therefore, this concludes the following result:

[statB,wc] − lim
c
qc
Fc,Γ((t − x)2ξx(t); x) = 0. (23)

Substituting (20), (21), (22) and (23) into (19) concludes the proof.

4. Conclusion with Experiments

In this section, we consider certain examples and discuss the numerical results.

Remark 4.1. On consideration ofA(t) = et, the 2D Appell polynomials Γ(ρ)
d (x; a) reduce to the polynomialsω(ρ)

d (x; a)
with the generating function

etext+atr
=

∞∑
d=0

ω
(ρ)
d (x; a)

td

d!
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and the explicit representation:

ω
(ρ)
d (x; a) =

[d/ρ]∑
e=0

d! (x + 1)d−ρs ae

(d − ρe)! e!
.

Let Fc,ω(η; x) be the Kantorovich operators involving ω(ρ)
d (x; a). Then,

Fc,ω(η; x) =
c
qc

e−
c

qc
x−a

e

∞∑
d=0

ω
(ρ)
d ( c

qc
x, a)

d!

(d+1)qc
c∫

dqc
c

η(u)du. (24)

For the operators Fc,ω(η; x) given by (24) and x ∈ [0,∆], we have:

Fc,ω(η; x)((e1 − x)2; x) =
qc

c
x +

q2
c

c2

(1
3
+ aρ + a2ρ2 + aρ(ρ − 1) + 3 + 2aρ

)
. (25)

Recall the following result of Gavrea and Raşa [30]:

Lemma 4.2 ([30]). Let η ∈ C2[0, a] and (Mc)c≥0 be a sequence of positive linear operators with the property Mc(1; x) =
1. Then,

|Mc(η; x) − η(x)| ≤ ||η′||
√

Mc((e1 − x)2; x) +
1
2
||η′′||Mc((e1 − x)2; x).

Corollary 4.3. Making use of the expression (25) in Lemma 4.2, we find that

|Fc,ω(η; x) − η(x)| ≤ ||η′||

√
qc

c
x +

q2
c

c2

(1
3
+ aρ + a2ρ2 + aρ(ρ − 1) + 3 + 2aρ

)
+

1
2
||η′′||

(
qc

c
x +

q2
c

c2

(1
3
+ aρ + a2ρ2 + aρ(ρ − 1) + 3 + 2aρ

))
.

Example 4.4. We consider following functions in our experiments:

(a) The function
η(x) = sin(x2)

is considered in Table 1. The absolute errors of operators Fc,ω and Lc,b [2] are compared in Table 1. In Figure 3
and Figure 4, approximation of operators Fc,ω to η(x) = sin(x2) and related error of approximation are given.
The parameters ρ = 2 and a = 0.1 are chosen to illustrate the figures. The absolute error of approximation
decreases when the sequence qc decreases.

(b) The function

η(x) =
e

x
3

1 + x2

is considered in Figure 1 and Figure 2. In Figure 1 and Figure 2, approximation of operators Fc,ω to η(x) = e
x
3

1+x2

and related error of approximation are given. The parameters qc = c1/100, ρ = 2 and a = 0.001 are chosen to
illustrate the figures. The error of approximation decreases when the variable c increases.

(c) The function
η(x) = −2xe−3x

is considered in Figure 5 and Figure 6. The approximation of operators Fc,ω to η(x) = −2xe−3x and related error
of approximation are given. The parameters qc = c1/8, ρ = 2 and a = 0.1 are chosen to illustrate the figures.
The error of approximation decreases when the variable c increases.
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As a summary, different selections of the sequence qc, and the parameters ρ and a provide an idea about construction of
the proposed operators. All these numerical results show that the proposed operators provide less error of approximation
and better convergence behavior with the selected parameters.

Table 1: Comparison of operators Fc,ω (24) and Lc,b [2] by absolute errors

Error bound of operators Fc,ω at Error bound of operators Lc,b at
Sequence qc c

x = 0.2 x = 0.5 x = 0.8 x = 0.2 x = 0.5 x = 0.8

20 0.0855 0.1514 0.0947 0.0909 0.2505 0.3768

30 0.0556 0.1076 0.0821 0.0655 0.1947 0.3024qc = c
1
8

50 0.0331 0.0688 0.0604 0.0453 0.1454 0.2321

20 0.1302 0.2097 0.0880 0.1341 0.3351 0.4812

30 0.0932 0.1615 0.0957 0.0975 0.2640 0.3941qc = c
1
4

50 0.0585 0.1121 0.0840 0.0679 0.2004 0.3102

20 0.2877 0.2785 0.0500 0.3365 0.6640 0.8218

30 0.2512 0.2822 0.0058 0.2573 0.5435 0.7063qc = c
1
2

50 0.1851 0.2556 0.0532 0.1873 0.4293 0.5878

Exp(x/3)/(1+x2)

c=20

c=40

c=60

0.0 0.2 0.4 0.6 0.8 1.0

0.70

0.75

0.80

0.85

0.90

0.95

1.00

x

y

Figure 1: Approximation of operators Fc,ω to η(x) = ex/3/(1 + x2)
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c=20

c=40

c=60

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 2: Error of approximation of operators Fc,ω to η(x) = e−3x

sin(x2)
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Figure 3: Approximation of operators Fc,ω to η(x) = sin(x2)
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Figure 4: Error of approximation of operators Fc,ω to η(x) = sin(x2)

- 2xExp(- 3x)
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Figure 5: Approximation of operators Fc,ω to η(x) = −2xe−3x
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Figure 6: Error of approximation of operators Fc,ω to η(x) = −2xe−3x

5. Conclusion

This paper presented a novel construction of Kantorovich type Szász-Chlodowsky operators via 2D
Appell polynomials. Some needed explicit estimates of moments and central moments of operators Fc,Γ
were calculated. Next, the Korovkin-type approximation theorem is proved, and a connection between
weighted B-statistical convergence (WBSC) and the rate of WBSC concepts and its approximation results
are provided. We also studied a Voronovskaja theorem related to WBSC. Finally, to show the approximation
of the operators Fc,Γ to the certain functions, we considered some graphical and numerical examples and
compared the convergence of the proposed operator with a linear positive operators known in the literature
also showed that it provided better approximation results in terms of convergence behavior, calculation
efficiency, and consistency.
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[29] S. Deniz, F. Özger, Z. Ödemiş Özger, S.A. Mohiuddine, M. Temizer Ersoy, Numerical solution of fractional Volterra integral equations

based on rational Chebyshev approximation, Miskolc Mathematical Notes 24 (3) (2023), 1287–1305.
[30] I. Gavrea, I. Rasa, Remarks on some quantitative Korovkin-type results, Rev. Anal. Numér. Théor. Approx. 22 (2) (1993), 173–176.
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[41] S. A. Mohiuddine, Z. Ödemiş Özger, F. Özger, A. Alotaibi, Construction of a new family of modified Bernstein-Schurer operators of

different order for better approximation, J. Nonlinear Convex Anal. (2024), 1–25.
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