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Abstract. In this paper, we introduce the notion of higher coderivations on coalgebras as an important
generalization of coderivations, and show that there exists a one to one correspondence between the set of
all higher coderivations {Dn} with D0 = idC and the set of all sequences of coderivations { fn} with f0 = 0.

Then we characterize the higher coderivations on the formal triangular matrix coalgebra Γ =
(

C M
0 D

)
,

and it is shown that the higher coderivations on Γ could be described by the higher coderivations on C and
D, generalized higher coderivations on M, and two other related families of maps.

1. Introduction

Let A be an k-algebra. A linear map d : A → A is called a derivation on A if d satisfies the Leibniz
rule d(ab) = d(a)b + ad(b) for all a, b ∈ A. Derivation is a very important tool in algebra. It originates from
analytical theory. In the mid-20th century, derivations began to be applied to algebras and introduced into
algebraic systems to study the structure and properties of algebraic systems. In 1955, Singer and Wermer [20]
applied derivations to normed algebras. In 1957, Posner [18] studied derivations on prime rings. Since
then, the theory of derivation has been made great development, and many kinds of derivations such as
Lie derivations, Jordan derivations and so on, have been introduced and developed [8, 9]. Derivations
are useful to construct deformation formulas [2], homotopy Lie algebras [22] and they have applications
in differential Galois theory [11]. Algebras with derivations are studied from an operadic point of view
in [10]. In particularly, derivations of polynomial rings and their kernels have been the objects of great
interest for a long time because of their connections with several conjunctures and popular problems in
Commutative Algebra and Algebraic Geometry, such as the Jacobian conjecture and the Zariski cancellation
problem [1, 4, 12].

There are many interesting generalizations of derivations, one of them being higher derivations. Hasse
and Schmidt [5] considered a sequence D = {Dn}

∞

n=0 of k-linear map on an algebra A satisfying the following
conditions: D0 = idA and Dn(ab) =

∑
i+ j=n Di(a)D j(b) for all a, b ∈ A and any n ≥ 0. Such a sequence
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D = {Dn}
∞

n=0 is called a higher derivation of A, and is also known as a Hasse-Schmidt derivation of A. A
basic example of higher derivations is the sequence of divided power differential operators { d

n

n! }
∞

n=0, where
d is a derivation of an algebra A over a field of characteristic zero. A higher derivation D = {Dn}

∞

n=0 on A
is said to be locally finite (resp., iterative) if D satisfies for any a ∈ A, there exists an integer n ≥ 0 such
that Dm(a) = 0 for any integer m ≥ n (resp., for any integers i, j ≥ 0, Di ◦ D j =

(i+ j
i

)
Di+ j). If D = {Dn}

∞

n=0
is a higher k-derivation on A, then D1 is an k-derivation on A. The concept of higher derivations was
originally introduced in order to remove some of the anomalies in the calculus of derivations on fields
of characteristic p , 0. Nevertheless, higher derivations have important applications in characteristic
zero situations. Heerema [6] showed a review of the theory of higher derivations on fields which form a
background for the study of the uses of higher derivations in automorphism theory of complete local rings.
Mirzavaziri [13] and Saymeh [19] proved that each higher derivation on an algebra A is a combination
of compositions of derivations, hence, characterize all higher derivations in terms of derivations on A.
Triangular matrix rings represent a very important construction and tool in classical ring theory and non-
commutative algebra. Higher derivations on triangular algebras are considered in [26]. Higher derivations
are useful in the theory of automorphisms of complete local rings. In fact, higher derivations can be applied
to Galois theory of fields, to universal higher derivations and to separability criteria [27].

Higher derivations can be interpreted as coalgebra measurings. For each 1 ≤ N ≤ ∞, we define a
coalgebra CN = ⊕N

n=0kxn with structure maps ∆ and ε given by ∆(xn) =
∑n

i=0 xi ⊗ xn−i and ε(xn) = δn0. Then
a higher derivation {Dn}

N
n=0 on A defines a measuring CN

⊗ A → A by xn · a = Dn(a) for all 1 ≤ n ≤ N
and a ∈ A [21, P.139-140]. We call a higher derivation {Dn}

N
n=0 inner if the associated measuring is inner,

i.e. implemented by an invertible κ ∈ Homk(CN,A) such that c · a =
∑

(c) κ(c1)aκ−1(c2) for all c ∈ CN and
a ∈ A, note that we can assume κ(x0) = κ−1(x0) = 1. Writing κ(xn) = an and κ−1(xn) = bn, we have that the
higher derivation is inner if and only if Dn(a) =

∑n
i=0 aiabn−i for all n and a ∈ A, where {an}

N
n=0 and {bn}

N
n=0 are

sequences in A such that a0 = b0 = 1 and
∑n

i=0 aibn−i = δn0 =
∑n

i=0 bian−i. This is equivalent with that given by
Nowicki [17]. See [16, 26] for more results about higher derivations.

As a dual concept of derivation, in 1981, Doi [3] introduced the notion of coderivation in the study of
cohomology of coalgebra, which paved the way for further research on coderivation. In 2012, Nakajima [15]
introduced the concept of generalized coderivations and inner coderivations, and in 2015, as a generaliza-
tion, Nakajima [7] introduced the concept of triple coderivations. In 2016, the first author with coauthors
in [25] introduced cohomological invariants derived from the coalgebraic structure of Hopf algebras and
to use them to study (mostly) infinite dimensional Hopf algebras. formal triangular matrix coalgebra also
represent a very important construction and tool in coalgebra theory. In 2021, the coderivation on formal
triangular matrix coalgebra was described in [24].

Motivated by these ideas and as a continuation of the work in [24], in this paper, we firstly introduce
the notion of higher coderivations on coalgebras as an essential generalization of coderivations. Then we
show that there exists a one to one correspondence between the set of all higher coderivations {Dn} with
D0 = idC and the set of all sequences { fn} with f0 = 0. Finally we characterize the higher coderivations on

the formal triangular matrix coalgebra Γ =
(

C M
0 D

)
.

This paper is organized as follows. In section 1, we will recall the definitions and results on formal trian-
gular matrix coalgebra and coderivations. In section 2, we will introduce the notion of higher coderivations
{Dn} on coalgebra C, and give some examples of higher coderivations. We also prove that {Dn}with D0 = idC
could be determined by a sequence of coderivations { fn}. Thus we establish the one to one correspondence
between the set of all higher coderivations {Dn} with D0 = idC and the set of all sequences of coderivations
{ fn} with f0 = 0. In section 3, we characterize the higher coderivations on formal triangular matrix coalge-

bra Γ =
(

C M
0 D

)
, where C and D are both coalgebras and M is a C-D-bicomodule. It is shown that the

higher coderivations on Γ could be described by the higher coderivations on C and D, generalized higher
coderivations on M, and two other related families of maps.

Throughout this paper, let k be a fixed field. Unless otherwise specified, all vector space, tensor product
and homomorphisms are all over k. We put ⊗ shorthand for ⊗k. For a coalgebra C, the structure maps of
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C are denoted by ∆ = ∆C : C → C ⊗k C and ϵ = ϵC : C → k, and for c ∈ C, we use Sweedler’s notation
∆(c) =

∑
(c)

c1 ⊗ c2. For convenience, we usually omit the summation and write ∆(c) = c1 ⊗ c2. We refer to the

books of Sweedler [21] and Montgomery [14] for more details on coalgebras and comodules.

2. Preliminaries

In this section, we will recall the definitions of coderivations on coalgebras and formal triangular matrix
coalgebras.

Let A be a k-algebra, and (C,∆, ε) be a coalgebra. The space Homk(C,A) ia an associative algebra with
respect to the convolution product ∗ defined by ( f ∗ 1)(c) =

∑
(c) f (c1)1(c2), and the identity element is

ηε : c → ε(c)1A. In particularly, when A = k the algebra structure (Homk(C, k), ∗, ε) is the same as the dual
algebra C∗ of C.

Recall from [15], a coderivation of a coalgebra (C,∆, ε) is a linear map δ : C→ C satisfying

∆δ = (δ ⊗ 1 + 1 ⊗ δ)∆.

Let (C,∆, ε) be a k-coalgebra, recall that M is a left C-comodule via left comodule structure map ρl : M→
C ⊗M means that the following conditions hold:

(id ⊗ ρl)ρl = (∆ ⊗ id)ρl, (ε ⊗ id)ρM = id.

If M and N are two left C-comodules, a k-linear map f : M→ N is called a left C-comodule map if

(id ⊗ f )ρM = ρN f .

Similarly, one can define a right C-comodule M via right comodule structure map ρr : M→M ⊗ C.
Let C and D be coalgebras, and recall that a C-D-bicomodule M means that M is a left C-comodule and

a right D-comodule via left and right comodule structure maps ρl : M → C ⊗M and ρr : M → M ⊗ D
respectively, such that the following diagram commutes:

M
ρr

//

ρl

��

M ⊗D

ρl
⊗1
��

C ⊗M
1⊗ρr
// C ⊗M ⊗D

Thus the relations of ρl, ρr and ∆ are as follows:

(∆ ⊗ 1)ρl = (1 ⊗ ρl)ρl, (1 ⊗ ∆)ρr = (ρr
⊗ 1)ρr, (1 ⊗ ρr)ρl = (ρl

⊗ 1)ρr.

Similar to the Sweedler notation, if M is a C-D-bicomodule, for all m ∈ M, for convenience, we usually
omit the summation and write

ρl(m) = m<−1> ⊗m<0>, ρ
r(m) = m(0) ⊗m(1).

Let C and D be coalgebras, M be a C-D-bicomodule, and

Γ =

(
C M
0 D

)
=

{(
c m
0 d

)
| ∀c ∈ C, d ∈ D,m ∈M

}
,

then, recall from [23], Γmakes a coalgebra with the following comultiplication and counit:

∆

(
c 0
0 0

)
=

(
c1 0
0 0

)
⊗

(
c2 0
0 0

)
, ∆

(
0 0
0 d

)
=

(
0 0
0 d1

)
⊗

(
0 0
0 d2

)
,
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∆

(
0 m
0 0

)
=

(
m<−1> 0

0 0

)
⊗

(
0 m<0>
0 0

)
+

(
0 m(0)
0 0

)
⊗

(
0 0
0 m(1)

)
,

ε

(
c m
0 d

)
= εC(c) + εD(d),

for all c ∈ C, d ∈ D,m ∈M. We call Γ a formal triangular matrix coalgebra.

Lemma 2.1. [24] Let Γ =
(

C M
0 D

)
be a formal triangular matrix coalgebra. For all c ∈ C, d ∈ D,m ∈ M, define

linear maps ε1, ε2 : T→ k as follows:

ε1

(
c m
0 d

)
= εC(c), ε2

(
c m
0 d

)
= εD(d).

Then we have

(id ⊗ ε1)∆
(

c m
0 d

)
=

(
c 0
0 0

)
, (1.1)

(id ⊗ ε2)∆
(

c m
0 d

)
=

(
0 m
0 d

)
, (1.2)

(ε1 ⊗ id)∆
(

c m
0 d

)
=

(
c m
0 0

)
, (1.3)

(ε2 ⊗ id)∆
(

c m
0 d

)
=

(
0 0
0 d

)
. (1.4)

First of all, we need to recall the following result on the coderivation on Γ.

Proposition 2.2. [24] Let Γ =
(

C M
0 D

)
be a formal triangular matrix coalgebra, and δ a coderivation on Γ. For

all
(

c m
0 d

)
∈ Γ, denote

δ

(
c m
0 d

)
=

(
φ(c,m, d) γ(c,m, d)

0 ψ(c,m, d)

)
.

Then there exist coderivations δC on C and δD on D, and linear maps

ξ : M→ C, τ : M→ D, f : M→M,

satisfying

(1) φ(c,m, d) = δC(c) + ξ(m), γ(c,m, d) = f (m), ψ(c,m, d) = δD(d) + τ(m).

(2) ξ is a left C-comodule map, and τ is a right D-comodule map.

(3) ρl
◦ f = (δC ⊗ idM + idC ⊗ f ) ◦ ρl, ρr

◦ f = (idM ⊗ δD + f ⊗ idD) ◦ ρr.

3. Higher Coderivations

In this section, we will introduce the concept of higher coderivations on coalgebras, and give some
recurrence relations on higher coderivations.
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Definition 3.1. Let C be a coalgebra and {Dn : C → C | n ∈ N} a family of linear maps with D0 = idC, then
D =

{
Dn

}∞
n=0

is called a higher coderivation on C if

∆Dn =

n∑
i=0

(Di ⊗Dn−i)∆. (2.1)

Note that in the above relation, ∆D1 = (idC ⊗D1 +D1 ⊗ idC)∆, that is, D1 is a coderivations on C.
We denote by HCD(C) the set of all higher coderivations on the coalgebra (C,∆, ε). Let us define an

operation on HCD(C) as follows. For any D =
{
dn

}∞
n=0

, D′ =
{
d′n

}∞
n=0
∈ HCD(C), the product D∗D′ = {dn∗d′n}∞n=0

is defined by
dn ∗ d′n ≜

∑
i+ j=n

di ◦ d′j

for all non-negative integer n. In particular, d1 ∗ d′1 = d1 + d′1. Notice that HCD(C) forms a monoid with
respect to ∗.

Example 3.2. Let δ : C → C be a coderivation, then D =
{
δn

n!

}∞
n=0

is a higher coderivation. This kind of higher
coderivation is called an ordinary higher coderivation.

Indeed we have the following commutative diagram:

C δ //

∆

��

δn

''C δ //

∆

��

· · ·
δ // C

∆

��
C ⊗ C

1⊗δ+δ⊗1
// C ⊗ C

1⊗δ+δ⊗1
// · · ·

1⊗δ+δ⊗1
// C ⊗ C

From the above diagram, we have

∆δn = (1 ⊗ δ + δ ⊗ 1)n∆ =

n∑
i=0

(
n
i

)
(δi
⊗ δn−i)∆ =

n∑
i=0

n!
i! · (n − i)!

(δi
⊗ δn−i)∆.

Therefore

∆Dn = ∆
δn

n!
=

n∑
i=0

1
i! · (n − i)!

(δi
⊗ δn−i)∆ =

n∑
i=0

(
δi

i!
⊗

δn−i

(n − i)!
)∆.

Thus D is a higher coderivation.

Proposition 3.3. Let D = {Dn : C → C}∞n=0 be a family of linear maps. Then D is higher coderivation on C if and
only if {D∗n}∞n=0 is a higher derivation on C∗, where C∗ is the linear dual of C, and D∗n : C∗ → C∗ is given by

D∗n( f ) = f Dn,

for all f ∈ C∗.
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Proof. For all f , 1 ∈ C∗,
D∗n( f ∗ 1) = ( f ∗ 1)Dn = ( f ⊗ 1)∆Dn.

and
n∑

i=0

D∗i ( f ) ∗D∗n−i(1) =
n∑

i=0

( f Di) ∗ (1Dn−i)

=

n∑
i=0

( f Di ⊗ 1Dn−i)∆

=

n∑
i=0

( f ⊗ 1)(Di ⊗Dn−i)∆

= ( f ⊗ 1)
n∑

i=0

(Di ⊗Dn−i)∆,

as claimed.

We will show that not all higher coderivations arise from coderivations in the above way.

Lemma 3.4. Let C be a coalgebra and α ∈ C∗ be any fixed element, δ0 = idC and for n ≥ 1, we define δn : C→ C as
follow: for any c ∈ C,

δn(c) = αn(c1)c2 − α
n−1(c1)c2α(c3) = αn−1(c1)(α(c2)c3 − c2α(c3)).

Then δ = {δn}
∞

n=0 is a higher coderivation on C, where α0 = εC.

Proof. Indeed, we show it by induction on n. For all c ∈ C,

∆δ1(c) = α(c1)c2 ⊗ c3 − c1 ⊗ c2α(c3)
= α(c1)c2 ⊗ c3 − c1α(c2) ⊗ c3 + c1α(c2) ⊗ c3 − c1 ⊗ c2α(c3)
= δ1(c1) ⊗ c2 + c1 ⊗ δ(c2),

that is, ∆δ1 = (δ1 ⊗ id)∆ + (id ⊗ δ1)∆.
Obviously δn(c) = α(c1)δn−1(c2) for all n > 0. Now assume that the sequence {δk}

n−1
k=0 satisfies

∆δk =

k∑
i=0

(δi ⊗ δk−i)∆.

For δn, we have

∆δn(c) = α(c1)∆δn−1(c2)

=

n−1∑
i=0

α(c1)(δi(c2) ⊗ δn−1−i(c3))

=

n−1∑
i=1

δi+1(c1) ⊗ δn−(i+1)(c2) + α(c1)c2 ⊗ δn−1(c3)

=

n∑
i=2

δi(c1) ⊗ δn−i(c2) + α(c1)c2 ⊗ δn−1(c3)

=

n∑
i=2

δi(c1) ⊗ δn−i(c2) + (δ1(c1) ⊗ δn−1(c2) + c1 ⊗ α(c2)δn−1(c3))
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=

n∑
i=2

δi(c1) ⊗ δn−i(c2) + (δ1(c1) ⊗ δn−1(c2) + c1 ⊗ δn(c2))

=

n∑
i=0

δi(c1) ⊗ δn−i(c2)

=

n∑
i=0

(δi ⊗ δn−i)∆(c).

The proof is completed.

Lemma 3.5. Let C be a coalgebra, D = {Dn}
∞

n=0 be a higher coderivation on C. For any m ≥ 1, we define a new family
of mappings δ = {δn}

∞

n=0 from C to C by

δn =

{
0, if m ∤ n,
Dr, if n = rm.

Then δ = {δn}
∞

n=0 is a higher coderivation on C.

Proof. (1) If m ∤ n, for all 0 ≤ i ≤ n, either δi = 0 or δn−i = 0, hence δi⊗δn−i = 0. Obviously∆δn =
n∑

i=0
(δi⊗δn−i) =

0.
(2) If m | n and n = rm, then

∆δn = ∆Dr =

r∑
i=0

(Di ⊗Dn−i),

and for all 0 ≤ i ≤ n, either δi = 0, δn−i = 0 or δi , 0, δn−i , 0. Hence

n∑
i=0

(δi ⊗ δn−i) =
r∑

i=0

(δim ⊗ δ(r−i)m) =
r∑

i=0

(Di ⊗Dn−i).

The proof is completed.

Lemma 3.6. Let C be a coalgebra and D = {Dn}
∞

n=0 be a sequence of linear mappings of C. If there exist two sequences
{αn}

∞

n=0 and {βn}
∞

n=0 of elements in C∗ satisfying the conditions: α0 = β0 = ε = 1C∗ and

n∑
i=0

αiβn−i = δn,0ε =
n∑

i=0

βiαn−i

such that

Dn(c) =
n∑

j=0

α j(c1)c2βn− j(c3),

for all c ∈ C and each non-negative integer n, where δn,0 is the Kronecker sign. Then D = {Dn}
∞

n=0 is a higher
coderivation of C. This kind of higher coderivation is called an inner higher coderivation.

Proof. By the definition of D, from [17] we could see that D∗ is a higher derivation on C∗, where

D∗n( f )(c) =
n∑

i=0

αi(c1) f (c2)βn−i(c3),

for all f ∈ C∗, c ∈ C. Therefore by Proposition 3.3, D is a higher coderivation on C.

Lemma 3.7. Let C be a coalgebra and δ = {δn}
∞

n=0 a higher coderivation on C. Then εCδn = 0 for all positive integer
n.
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Proof. We prove it by an induction on n. First of all, since δ1 is a coderivation on C, by [24, Lemma 2.1],
εCδ1 = 0.

Now we assume that εCδk = 0 for all k < n. Then for all c ∈ C,

εCδn(c) = εC(δn(c)1)εC(δn(c)2)

=

n∑
i=0

εC(δi(c1))εC(δn−i(c2))

= 2εC(c1)εC(δn(c2))
= 2εCδn(c),

where the third identity holds by the inductive hypothesis. Thus εCδn = 0.

For the relation between higher coderivation and coderivation, we have the following result.

Proposition 3.8. Let D = {Dn}
∞

n=0 be a higher coderivation on C with D0 = idC. Then there exists a sequence { fn} of
coderivations on C such that for each nonnegative integer n,

(n + 1)Dn+1 =

n∑
k=0

Dn−k fk+1.

Proof. We give the proof by using induction on n. For n = 0, we have D0 = idC and D0 f1 = f1. Thus if f1 = D1,
then f1 is a coderivation on C.

Now suppose that fk is defined and is a coderivation for all k ≤ n. Putting

fn+1 = (n + 1)Dn+1 −

n−1∑
k=0

Dn−k fk+1,

Now we will show that the well-defined mapping fk is a coderivation on C.
Since {Dn} is a higher coderivation on C, we have that

∆ fn+1 = (n + 1)∆Dn+1 −

n−1∑
k=0

∆Dn−k fk+1

= (n + 1)
n+1∑
k=0

(Dk ⊗Dn+1−k)∆ −
n−1∑
k=0

n−k∑
l=0

(Dl ⊗Dn−k−l)∆ fk+1.

Since f1, · · · , fn are coderivations, we have that

∆ fn+1 = (n + 1)
n+1∑
k=0

(Dk ⊗Dn+1−k)∆ −
n−1∑
k=0

n−k∑
l=0

(Dl ⊗Dn−k−l)(idC ⊗ fk+1 + fk+1 ⊗ idC)∆

= (n + 1)
n+1∑
k=0

(Dk ⊗Dn+1−k)∆ −
n−1∑
k=0

n−k∑
l=0

(Dl ⊗Dn−k−l fk+1 +Dl fk+1 ⊗Dn−k−l)∆.

In the summation
n−1∑
k=0

n−k∑
l=0

, we have 0 ≤ k + l ≤ n and k , n. Thus if we put r = k + l, then we can write it as

the form
n∑

r=0

∑
k+l=r,k,n

. Putting l = r − k, we indeed have

∆ fn+1 = (n + 1)
n+1∑
k=0

(Dk ⊗Dn+1−k)∆
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−

n∑
r=0

∑
0≤k+l≤n,k,n

(Dr−k ⊗Dn−r fk+1 +Dr−k fk+1 ⊗Dn−r)∆

= (n + 1)
n+1∑
k=0

(Dk ⊗Dn+1−k)∆ −
n−1∑
r=0

r∑
k=0

(Dr−k ⊗Dn−r fk+1 +Dr−k fk+1 ⊗Dn−r)∆

−

n−1∑
k=0

(Dn−k ⊗ fk+1 +Dn−k fk+1 ⊗ idC)∆.

By our assumption

(n + 1)∆Dn+1 =

n∑
k=0

∆Dn−k fk+1.

Therefore

(n + 1)
n+1∑
k=0

(Dk ⊗Dn+1−k)∆ =
n∑

k=0

n−k∑
l=0

(Dl ⊗Dn−k−l)∆ fk+1

=

n∑
k=0

n−k∑
l=0

(Dl ⊗Dn−k−l)(idC ⊗ fk+1 + fk+1 ⊗ idC)∆

=

n∑
k=0

n−k∑
l=0

(Dl ⊗Dn−k−l fk+1 +Dl fk+1 ⊗Dn−k−l)∆.

By a similar argument, we can write
n∑

k=0

n−k∑
l=0

as the form
n∑

r=0

r∑
k

. Putting l = r − k, we have

(n + 1)
n+1∑
k=0

(Dk ⊗Dn+1−k)∆ =
n∑

r=0

r∑
k=0

(Dn−r ⊗Dn−r fk+1 +Dn−r fk+1 ⊗Dn−r)∆

=

n−1∑
r=0

r∑
k=0

(Dr−k ⊗Dn−r fk+1 +Dr−k fk+1 ⊗Dn−r)∆

+

n∑
k=0

(Dn−k ⊗ fk+1 +Dn−k fk+1 ⊗ idC)∆

=

n−1∑
r=0

r∑
k=0

(Dr−k ⊗Dn−r fk+1 +Dr−k fk+1 ⊗Dn−r)∆

+

n−1∑
k=0

(Dn−k ⊗ fk+1 +Dn−k fk+1 ⊗ idC)∆ + (idC ⊗ fk+1 + fk+1 ⊗ idC)∆.

Thus
∆ fn+1 = (idC ⊗ fk+1 + fk+1 ⊗ idC)∆,

that is, fn+1 is a coderivation. The proof is completed.

Theorem 3.9. Let {Dn}
∞

n=0 be a higher coderivation on an coalgebra C with D0 = idC. Then there is a sequence { fn}
of coderivations on C such that

Dn =

n∑
i=1

 ∑
Σi

j=1r j=n

(
i∏

j=1

1
r j + · · · + ri

) fri · · · fr1

 ,
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where the inner summation is taken over all positive integers r j with
i∑

j=1
r j = n.

Proof. We first show that if Dn is of the above form, then it satisfies the recursive relation of Proposition 3.8.
Since the solution of the recursive relation is unique, this proves the theorem. Simplifying the notation, we
put

ar1,··· ,ri =

i∏
j=1

1
r j + · · · + ri

.

Note that if r1 + · · · + ri = n + 1, then
(n + 1)ar1,··· ,ri = ar2,··· ,ri .

Moreover an+1 =
1

n+1 . Therefore

(n + 1)Dn+1 =

n+1∑
i=2

 ∑
∑i

j=1 r j=n+1

(n + 1)ar1,...,ri fi . . . f1

 + fn+1

=

n+1∑
i=2

n+2−i∑
r1=1

 ∑
∑i

j=2 r j=n+1−r1

ar2,··· ,ri fri · · · fr2

 fr1 + fn+1

=

n∑
r1=1


n−r1+1∑

i=2

 ∑
Σi

j=2r j=n−r1+1

ar2,··· ,ri fri · · · fr2


 fr1 + fn+1

=

n∑
r1=1

Dn−r1+1 fr1 + fn+1 =

n∑
k=0

Dn−k fk+1.

The proof is completed.

Theorem 3.10. Let C be a coalgebra, Φ the set of all higher coderivations D = {Dn}
∞

n=0 on C with D0 = idC and Ψ
be the set of all sequences { fn} of coderivations on C with f0 = 0. Then there is a one to one correspondence between Φ
andΨ.

Proof. Let { fn} ∈ Ψ. Define Dn : C→ C by D0 = idC and

Dn =

n∑
i=1

 ∑
Σi

j=1r j=n

(
i∏

j=1

1
r j + · · · + ri

) fri · · · fr1

 .
We show that {Dn} ∈ Φ. By Theorem 3.9, {Dn} satisfies the recursive relation

(n + 1)∆Dn+1 =

n∑
k=0

∆Dn−k fk+1.

To show that {Dn} is a higher coderivation, we use induction on n. For n = 0, we have D0 = idC. Let us
assume that

∆Dk =

k∑
i=0

(Di ⊗Dk−i)∆

for k ≤ n. Thus we have

(n + 1)∆Dn+1 =

n∑
k=0

∆Dn−k fk+1
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=

n∑
k=0

n−k∑
l=0

(Dl ⊗Dn−k−l)∆ fk+1

=

n∑
k=0

n−k∑
l=0

(Dl ⊗Dn−k−l)(I ⊗ fk+1 + fk+1 ⊗ I)∆

=

n∑
k=0

n−k∑
l=0

(Dl ⊗Dn−k−l fk+1 +Dl fk+1 ⊗Dn−k−l)∆,

and

(n + 1)
n+1∑
k=0

(Dk ⊗Dn+1−k)∆ =
n+1∑
k=0

(k + n + 1 − k)(Dk ⊗Dn+1−k)∆

=

n+1∑
k=0

(kDk ⊗Dn+1−k)∆ +
n+1∑
k=0

(Dk ⊗ (n + 1 − k)Dn+1−k)∆.

Let S =
n+1∑
k=0

(kDk ⊗Dn+1−k)∆ and T =
n+1∑
k=0

(Dk ⊗ (n + 1 − k)Dn+1−k)∆, then

(n + 1)
n+1∑
k=0

(Dk ⊗Dn+1−k)∆ = S + T.

For S, we have

S =
n+1∑
k=0

(kDk ⊗Dn+1−k)∆

=

n+1∑
k=0

((n + 1 − k)Dn+1−k ⊗Dk)∆

=

n∑
k=0

((n + 1 − k)Dn+1−k ⊗Dk)∆

=

n∑
k=0

((
n−k∑
l=0

Dn−l−k fl+1) ⊗Dk)∆

=

n∑
k=0

n−k∑
l=0

(Dn−l−k fl+1 ⊗Dk)∆

=

n∑
k=0

n−k∑
l=0

(Dl fk+1 ⊗Dn−l−k)∆.

For T, we have

T =
n+1∑
k=0

(Dk ⊗ (n + 1 − k)Dn+1−k)∆

=

n∑
k=0

(Dk ⊗ (n + 1 − k)Dn+1−k)∆
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=

n∑
k=0

(Dk ⊗ (
n−k∑
l=0

Dn−k−l fl+1))∆

=

n∑
k=0

n−k∑
l=0

(Dk ⊗Dn−k−l fl+1)∆

=

n∑
k=0

n−k∑
l=0

(Dl ⊗Dn−k−l fk+1)∆.

Therefore

(n + 1)∆Dn+1 = S + T = (n + 1)
n+1∑
k=0

(Dk ⊗Dn+1−k)∆,

that is, ∆Dn+1 =
n+1∑
k=0

(Dk ⊗Dn+1−k)∆. Thus {Dn} ∈ Φ.

Conversely, suppose that {Dn} ∈ Φ. Define fn : C→ C by f0 = 0 and

fn = nDn −

n−2∑
k=0

Dn−k−1 fk+1.

Then Proposition 3.8 ensures us that { fn} ∈ Ψ.
Now define φ : Ψ→ Φ by φ({ fn}) = {Dn}, where

Dn =

n∑
i=1

 ∑
Σi

j=1r j=n

(
i∏

j=1

1
r j + · · · + ri

) fri . . . fr1

 ,
Clearly φ is a one to one correspondence. The proof is completed.

4. Higher coderivations on formal triangualr matrix coalgebras

In this section, we will describe the higher coderivations on formal triangualr matrix coalgebras.

Proposition 4.1. Let Γ =
(

C M
0 D

)
be a formal triangular matrix coalgebra and {Dn}

∞

n=0 a higher coderivation on

Γ. Then for all c ∈ C, d ∈ D,m ∈M,

Dn

(
c m
0 d

)
=

(
δn(c) + ξn(m) fn(m)

0 δ′n(d) + τn(m)

)
,

where δn : C→ C, δ′n : D→ D, ξn : M→ C, τn : M→ D, fn : M→M are all linear maps satisfying

(1) {δn}
∞

n=0(resp., {δ′n}∞n=0) is a higher coderivation on C(resp.,D);

(2) ∆ξn =
n−1∑
i=0

(δi ⊗ ξn−i)ρl, ∆τn =
n−1∑
i=0

(τn−i ⊗ δ′i )ρ
r;

(3) Set f0 = idM, then

ρl fn =
n∑

i=0

(δi ⊗ fn−i)ρl, (3.1)

ρr fn =
n∑

i=0

( fn−i ⊗ δ
′

i )ρ
r. (3.2)
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Proof. We prove this theorem by induction on n. First of all, by Proposition 3.5, the conclusion holds when
n = 1.

Now assume that the conclusion holds for Di, i = 1, 2, · · · ,n − 1. For all c ∈ C, define

Dn

(
c 0
0 0

)
=

(
δn(c) γn(c)

0 βn(c)

)
,

where δn : C→ C, βn : C→ D, γn : C→M are maps. Then on one hand,

∆Dn

(
c 0
0 0

)
= ∆

(
δn(c) γn(c)

0 βn(c)

)
=

(
δn(c)1 0

0 0

)
⊗

(
δn(c)2 0

0 0

)
+

(
γn(c)<−1> 0

0 0

)
⊗

(
0 γn(c)<0>
0 0

)
+

(
0 γn(c)(0)
0 0

)
⊗

(
0 0
0 γn(c)(1)

)
+

(
0 0
0 βn(c)1

)
⊗

(
0 0
0 βn(c)2

)
.

On the other hand,
n∑

i=0

(Di ⊗Dn−i)∆
(

c 0
0 0

)
=

n∑
i=0

Di

(
c1 0
0 0

)
⊗Dn−i

(
c2 0
0 0

)
=

(
c1 0
0 0

)
⊗Dn

(
c2 0
0 0

)
+Dn

(
c1 0
0 0

)
⊗

(
c2 0
0 0

)
+

n−1∑
i=1

Di

(
c1 0
0 0

)
⊗Dn−i

(
c2 0
0 0

)
=

(
c1 0
0 0

)
⊗

(
δn(c2) γn(c2)

0 βn(c2)

)
+

(
δn(c1) γn(c1)

0 βn(c1)

)
⊗

(
c2 0
0 0

)
+

n−1∑
i=1

(
δi(c1) 0

0 0

)
⊗

(
δn−i(c2) 0

0 0

)
.

Since {Dn} is a higher coderivation, we have

δn(c)1 ⊗ δn(c)2 =

n∑
i=0

(δi ⊗ δn−i)∆(c),

γn(c)<−1> ⊗ γn(c)<0> = c1 ⊗ γn(c2),
γn(c)(0) ⊗ γn(c)(1) = 0,
βn(c)1 ⊗ βn(c)2 = 0.

Therefore βn = 0, γn = 0, and {δn} is a higher coderivation on C. Moreover

Dn

(
c 0
0 0

)
=

(
δn(c) 0

0 0

)
.

Similarly we could obtain

Dn

(
0 0
0 d

)
=

(
0 0
0 δ′n(d)

)
,

for all d ∈ D, where {δ′n} is a higher coderivation on D.
For all m ∈M, define

Dn

(
0 m
0 0

)
=

(
ξn(m) fn(m)

0 τn(m)

)
,
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where ξn : M→ C, fn : M→M, τn : M→ D are linear maps. Then on one hand,

∆Dn

(
0 m
0 0

)
= ∆

(
ξn(m) fn(m)

0 τn(m)

)
=

(
ξn(m)1 0

0 0

)
⊗

(
ξn(m)2 0

0 0

)
+

(
fn(m)<−1> 0

0 0

)
⊗

(
0 fn(m)<0>
0 0

)
+

(
0 fn(m)(0)
0 0

)
⊗

(
0 0
0 fn(m)(1)

)
+

(
0 0
0 τn(m)1

)
⊗

(
0 0
0 τn(m)2

)
.

On the other hand,

n∑
i=0

(Di ⊗Dn−i)∆
(

0 m
0 0

)
=

n∑
i=0

Di

(
m<−1> 0

0 0

)
⊗Dn−i

(
0 m<0>
0 0

)

+

n∑
i=0

Di

(
0 m(0)
0 0

)
⊗Dn−i

(
0 0
0 m(1)

)
.

For the first term,

n∑
i=0

Di

(
m<−1> 0

0 0

)
⊗Dn−i

(
0 m<0>
0 0

)

=

n−1∑
i=1

Di

(
m<−1> 0

0 0

)
⊗Dn−i

(
0 m<0>
0 0

)
+

(
m<−1> 0

0 0

)
⊗Dn

(
0 m<0>
0 0

)
+Dn

(
m<−1> 0

0 0

)
⊗

(
0 m<0>
0 0

)
=

n−1∑
i=1

(
δi(m<−1>) 0

0 0

)
⊗

(
ξn−i(m<0>) fn−i(m<0>)

0 τn−i(m<0>)

)
+

(
m<−1> 0

0 0

)
⊗

(
ξn(m<0>) fn(m<0>)

0 τn(m<0>)

)
+

(
δn(m<−1>) 0

0 0

)
⊗

(
0 m<0>
0 0

)
.

For the second term,

n∑
i=0

Di

(
0 m(0)
0 0

)
⊗Dn−i

(
0 0
0 m(1)

)

=

n−1∑
i=1

(
ξi(m(0)) fi(m(0))

0 τi(m(0))

)
⊗

(
0 0
0 δ′n−i(m(1))

)
+

(
0 m(0)
0 0

)
⊗

(
0 0
0 δ′n(m(1))

)
+

(
ξn(m(0)) fn(m(0))

0 τn(m(0))

)
⊗

(
0 0
0 m(1)

)
.

Hence we get

∆ξn =

n−1∑
i=0

δi ⊗ ξn−i

ρl, ∆τn =

n−1∑
i=0

τn−i ⊗ δ
′

i

ρr,

ρl fn =

n−1∑
i=0

δi ⊗ fn−i

ρl + (δn ⊗ id)ρl,
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ρr fn =

n−1∑
i=0

fn−i ⊗ δ
′

i

ρr + (id ⊗ δ′n)ρr.

Set f0 = idM, and we could finish the proof.

Definition 4.2. Let C and D be coalgebras, M be a C-D-bicomodule via ρl and ρr respectively, {δn : C → C} and
{δ′n : D → D} be higher coderivations. The family of linear maps { fn : M → M} is called a generalized higher
coderivation with respect to ({δn}, {δ′n}) if the relations (3.1) and (3.2) hold.

Lemma 4.3. Let {Dn}
∞

n=0 be defined in Proposition 4.1. Then for all m ∈M,

ξn(m) +
n∑

i=1

εD(τi(m<0>))δn−i(m<−1>) = 0, (3.3)

τn(m) +
n∑

i=1

εC(ξi(m(0)))δ′n−i(m(1)) = 0. (3.4)

Proof. We only prove the identity (3.3), and (3.4) could be proved similarly. For all m ∈M, on one hand,

(id ⊗ ε2)∆Dn

(
0 m
0 0

)
=

(
0 fn(m)
0 τn(m)

)
.

On the other hand,

(id ⊗ ε2)
n∑

i=0

(Di ⊗Dn−i)∆
(

0 m
0 0

)

= (id ⊗ ε2)
n∑

i=0

Di

(
0 m(0)
0 0

)
⊗Dn−i

(
0 0
0 m(1)

)

+ (id ⊗ ε2)
n∑

i=0

Di

(
m<−1> 0

0 0

)
⊗Dn−i

(
0 m<0>
0 0

)
Lemma 4.4
=

(
ξn(m) fn(m)

0 τn(m)

)
+

n−1∑
i=0

εD(τn−i(m<0>))
(
δi(m<−1>) 0

0 0

)
.

Therefore

ξn(m) +
n−1∑
i=0

εD(τn−i(m<0>))δi(m<−1>) = 0,

or

ξn(m) +
n∑

i=1

εD(τi(m<0>))δn−i(m<−1>) = 0.

The proof is completed.

Proposition 4.4. Let Γ =
(

C M
0 D

)
be a formal triangular matrix coalgebra, and {Dn : Γ→ Γ}∞n=0 a family of maps.

Then the following assertions are equivalent:

(1) {Dn}
∞

n=0 given by

Dn

(
c m
0 d

)
=

(
δn(c) fn(m)

0 δ′n(d)

)
is a higher coderivation on Γ, where {δn} (resp. {δ′n}) is a higher coderivation on C (resp. D), and { fn : M→M}
is a generalized higher coderivation with respect to ({δn}, {δ′n}).
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(2) {Dn}
∞

n=0 is a higher coderivation on Γ with ε1Dn = 0 for all positive integer n.

(3) {Dn}
∞

n=0 is a higher coderivation on Γ with ε2Dn = 0 for all positive integer n.

Proof. (1)⇒ (2). Clearly for all n ∈N, Dn is linear. For all c ∈ C, d ∈ D,m ∈M,

∆Dn

(
c m
0 d

)
= ∆

(
δn(c) fn(m)

0 δ′n(d)

)
=

(
δn(c)1 0

0 0

)
⊗

(
δn(c)2 0

0 0

)
+

(
fn(m)<−1> 0

0 0

)
⊗

(
0 fn(m)<0>
0 0

)
+

(
0 fn(m)(0)
0 0

)
⊗

(
0 0
0 fn(m)(1)

)
+

(
0 0
0 δ′n(d)1

)
⊗

(
0 0
0 δ′n(d)2

)
=

n∑
i=0

(
δi(c1) 0

0 0

)
⊗

(
δn−i(c2) 0

0 0

)
+

n∑
i=0

(
δi(m<−1>) 0

0 0

)
⊗

(
0 fn−i(m<0>)
0 0

)

+

n∑
i=0

(
0 fn−i(m(0))
0 0

)
⊗

(
0 0
0 δ′i (m(1))

)
+

n∑
i=0

(
0 0
0 δ′i (d1)

)
⊗

(
0 0
0 δ′n−i(d2)

)

=

n∑
i=0

(Di ⊗Dn−i)∆
(

c m
0 d

)
.

That is, {Dn} is a higher coderivation. It is easy to check that ε1Dn = 0.
(2)⇒ (1). Assume that {Dn} be a higher coderivation on Γ, then by Proposition 4.1,

Dn

(
c m
0 d

)
=

(
δn(c) + ξn(m) fn(m)

0 δ′n(d) + τn(m)

)
,

with δn, δ′n, ξn, fn, τn satisfying the conditions (1)-(3) of Proposition 4.1.
Since ε1Dn = 0(n > 0), we have

εC(ξn(m)) = 0.

The relation (3.4) implies
τn(m) = 0.

Again by relation (3.3), we have
ξn(m) = 0.

Therefore

Dn

(
c m
0 d

)
=

(
δn(c) fn(m)

0 δ′n(d)

)
.

In a similar way, one could also acquire the equivalence between (1) and (3). The proof is completed.
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