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Abstract. The aim of this paper is to study a class of anisotropic Robin elliptic equations with variable
exponents where the nonlinearity may depend on the gradient of the solution. First, we demonstrate the
existence of at least one weak solution using the surjectivity result of pseudomonotone operators. Moreover,
under additional conditions on the data, we show that the solution is unique. Furthermore, we prove the
existence of at least three weak solutions using the direct Ricceri variational principle when the nonlinearity
does not depend on the gradient.

1. Introduction

Through recent years, Neumann and Robin elliptic problems have sparked immense interest for their
ability to unravel the complexities of physical phenomena that vary in intensity across different areas within
a domain. These intriguing problems, characterized by variable exponents, often emerge from the non-
linear dynamics inherent in physical processes or the diverse nature of the domain itself. Understanding
these nuances is crucial, as it allows us to create more accurate models of real-world scenarios, including
materials with spatially varying properties, porous media flow, and non-Newtonian fluid flows. Hence-
forth, investigating Robin problems, especially those that may involve convection terms, is pivotal as they
play starring roles in fields such as fluid dynamics, combustion, heat transfer, and the intricate world of
environmental modeling.

In this paper, we deal with a class of anisotropic elliptic equations with variable exponents, convection
terms, and Robin nonlinear boundary conditions, that is the following problem

A(u) + b(x)|u|pM(x)−2u = λ f (x,u,∇u) + h(x) in Ω,
N∑

i=1

ai(x, ∂xi u)νi(x) = µ1(x,u) on ∂Ω,
(1)

where Ω ⊆ RN is an open bounded domain with smooth boundary, A(u) := −
N∑

i=1

∂xi ai(x, ∂xi u) is an

anisotropic elliptic operator defined by the functions ai subjected to the conditions (Ai) below and associated
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to the continuous variable exponents pi with inf
x∈Ω̄

pi(x) > 1, and where pM(·) := max
1≤i≤N

pi(·), while f : Ω ×

R × RN
→ R and 1 : ∂Ω × R → R are Carathéodory functions and h ∈ Lp′M(x)(Ω) with p′M(x) such that

1
pM(x)

+
1

p′M(x)
= 1. Finally, b(x) ∈ L∞(Ω) with ess inf

x∈Ω
b(x) = b0 > 0, λ > 0 and µ ≥ 0 are real parameters, and

νi constitute the elements comprising the outer normal unit vector for all i ∈ {1, . . . ,N}.
This paper addresses a problem featuring the forementioned class of operators, associated with the

operaor

A(u) := −
N∑

i=1

∂xi ai(x, ∂xi u), (2)

where, for all i ∈ {1, . . . ,N}, ai : Ω ×R→ R are applications of Carathéodory type verifying

(A1) Ai(x, 0) = 0, for all x ∈ Ω and t ∈ R, where Ai is such that

ai(x, t) =
∂Ai

∂t
(x, t),

for all x ∈ Ω and t ∈ R.

(A2) ai(x, ·) is strictly monotone in R, that is

(ai(x, s) − ai(x, t)) (s − t) > 0,

for all (s, t) ∈ R2 with s , t and x ∈ Ω.

(A3) There exist positive constants σi and ρi with σi ≤ ρi such that

σi|t|pi(x)
≤ ai(x, t)t and |ai(x, t)| ≤ ρi

(
1 + |t|pi(x)−1

)
,

for all x ∈ Ω and t ∈ R.

Numerous studies have addressed questions regarding the dependence of the right-hand side on the
gradient of the solution in the context of anisotropic elliptic equations. For instance, Benboubker et al.
[3] (see the references cited in this article) mentioned this category of problems in the anisotropic Sobolev
space W1,p⃗(Ω) . Our focus here is twofold: First, to tackle gradient-dependent nonlinearity in variable-
exponent Sobolev space under anisotropic conditions in the context of parametric elliptic equations. This
class of problems presents many challenges, including the limitation of variational methods owing to
the dependence of the right-hand side on the gradient. The complexity is further aggravated by the
nonhomogeneous nature of the p(·)-Laplacian and p⃗(·)-Laplacian operators, which is distinct from the
homogeneous p-Laplacian operator.

Second, our focus extends to establishing the existence of multiple solutions for nonlinearities that do
not depend on the gradient. Notably, previous papers employing variational methods have addressed
the existence of solutions concerning quasilinear anisotropic elliptic equations with constant or variable
exponents, specifically, when the right-hand side term remains independent of the gradient. Furthermore,
our problem adds another layer of difficulty when dealing with nonlinear Robin conditions, as well as an
additional term h(x).

Now, we situate our work in relation to some publications already published on this subject. Colasuonno
et al. [10] studied the following isotropic Robin boundary type problem−div(a⃗(x,∇u)) = λ

(
b(x)|u|p(x)−2u + f (x,u)

)
in Ω,

a⃗(x,∇u) · ν = −a(x)|u|p(x)−2u + λµ1(x,u) on ∂Ω,
(3)
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where p(x) = p and the operator −div(a⃗(x,∇u)) is driven by the p-Laplacian. In the case where b(x) ≡ 0,
they showed the existence of either two nontrivial solutions or only trivial solutions under specific growth
conditions verified by functions f and 1.

In parallel, in the case where λ = µ = 1 and h(x) ≡ 0, the nonparametric isotropic problem
A(u) + b(x)|u|pM(x)−2u = f (x,u) in Ω,

N∑
i=1

ai(x, ∂xi u)νi(x) = 1(x,u) on ∂Ω,
(4)

was treated by Boureanu and Rădulescu [7]. The authors proved the existence of at least a nonnegative
solution using the standard minimization result for a weakly lower semicontinuous and coercive functional.

On the other hand, the authors in [6, 11] dealt with problem (3) in the case where a(x) ≡ 0 and obtained
the existence of infinitely many solutions. Interesting multiplicity results of solutions for some problems
related to problem (1) have been obtained by several authors, especially Ahmed and Elemine Vall [1], Aydin
and Unal [2], Khademloo et al. [19], Kim and Park [20], and Marano and Motreanu [23]. Furthermore,
Ourraoui and Ragusa [25] studied a slightly different problem than (1) when µ = 0 and obtained results
regarding the existence of solutions without requiring Ambrosetti-Rabinowitz-type conditions. Ellahyani
and El Hachimi [14] also studied a similar problem to (1) with a Robin boundary condition and established
existence and multiplicity results. All these authors established the existence of infinitely many solutions
using different variational methods (see also Chems Eddine and Ragusa [9], Jleli et al. [18], Papageorgiou
and Scapellato [26] and the references therein).

Finally, let us point out that the paper by Kim and Park [20] seems to be closer to our present work.
These authors obtained the existence of at least three solutions for problem (3) in the isotropic case and
functions f that satisfy the following hypotheses

(KP1) | f (x, t)| ≤ k1(x) + σ1(x)|t|r1(x)−1, with r+1 < p−, for all (x, t) ∈ Ω ×R,

(KP2) lim sup
s→0

ess sup
x∈Ω

∣∣∣∣∣∫ s

0
f (x, t)dt

∣∣∣∣∣
|s|q(x)

 < +∞, with q ∈ C+(Ω̄), p+ < q− ≤ q < p∗, where C+(Ω̄) and the parame-

ters p−, p+ and p∗ are defined in the next section.

Note that our hypotheses (H1), (H2) and (H3) or (H′3) in Section 4 differ from these assumptions. For example,
the function given in Example 4.6 in the isotropic case, does not verify the conditions (KP1) and (KP2) for
β(x) < p+, for a.e. x ∈ Ω. However, it satisfies our hypotheses (H) and the existence of three solutions is
assured.

The remainder of this paper is organized as follows. In Section 2, we provide definitions and propositions
for generalized Lebesgue-Sobolev spaces alongside generalized anisotropic Sobolev spaces. In Section 3,
using the surjectivity result for pseudomonotone operators, we demonstrate the existence of a solution
concerning problem (1). Moreover, under suitable hypotheses, we show that the solution is unique. In
Section 4, we demonstrate the existence of a minimum of three weak solutions by applying a recent Ricceri
variational principle in the case where there is no dependence of nonlinearity f on the gradient.

2. Functional framework

We now introduce the variable exponent Lebesgue-Sobolev setting. For further information on the
properties of the variable exponent Lebesgue-Sobolev spaces, we refer to Edmunds et al. [12], Edmunds
and Rákosnı́k [13], Kovacik and Rákosnı́k [22], Samko and Vakulov [28]. For s ∈ C+(Ω̄), define the Lebesgue
space with variable exponents as

Ls(x)(Ω) =
{

u,u is a measurable real-valued function and ρs(·)(u) =
∫
Ω

|u(x)|s(x)dx < ∞
}

,
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characterized by the Luxemburg norm

∥u∥Ls(x)(Ω) = inf
{
µ > 0 :

∫
Ω

∣∣∣∣∣u(x)
µ

∣∣∣∣∣s(x)

dx ≤ 1
}

,

where

C+(Ω̄) =
{
s ∈ C(Ω̄;R) : inf

x∈Ω
s(x) > 1

}
.

For s ∈ C+(Ω̄), denote

s+ = sup
x∈Ω

s(x), s− = inf
x∈Ω

s(x).

Note that Ls(x)(Ω) is a separable and reflexive Banach space and recall the following embedding result.

Proposition 2.1. (see Kovacik and Rákosnı́k [22]) Assume that Ω is bounded and that s1, s2 ∈ C+(Ω̄) such that
s1 ≤ s2 in Ω. Then, the embedding Ls2(x)(Ω) ↪→ Ls1(x)(Ω) is continuous.

Denote Ls′(x)(Ω) the conjugate space
(
Ls(x)(Ω)

)′
of Ls(x)(Ω), where

1
s(x)
+

1
s′(x)

= 1. Then, for any u ∈ Ls(x)(Ω)

and v ∈ Ls′(x)(Ω), the following Hölder-type inequality∣∣∣∣∣∫
Ω

uvdx
∣∣∣∣∣ ≤ ( 1

s−
+

1
s′−

)
∥u∥Ls(x)(Ω)∥v∥Ls′ (x)(Ω) ≤ 2∥u∥Ls(x)(Ω)∥v∥Ls′ (x)(Ω),

holds. The next proposition sheds light on the relation between the norm ∥u∥s(.) and the convex modular
ρs(·).

Proposition 2.2. (see Fan and Zhao [17]) Let s ∈ C+(Ω̄),. Then, one has

(a) ∥u∥Ls(x)(Ω) > 1 =⇒ ∥u∥s−
Ls(x)(Ω)

≤ ρs(·)(u) ≤ ∥u∥s+
Ls(x)(Ω)

.

(b) ∥u∥Ls(x)(Ω) < 1 =⇒ ∥u∥s+
Ls(x)(Ω)

≤ ρs(·)(u) ≤ ∥u∥s−
Ls(x)(Ω)

.

(c) ∥u∥Ls(x)(Ω) = a > 0⇐⇒ ρs(·)

(u
a

)
= 1.

(d) ∥u∥Ls(x)(Ω) < 1(= 1;> 1)⇐⇒ ρs(·)(u) < 1(= 1;> 1).

Remark 2.3. From Proposition 2.2, it follows that, for all u ∈ Ls(x)(Ω), we have

(e) ∥u∥Ls(x)(Ω) < ρs(·)(u) + 1.

( f ) ρs(·)(u) < ∥u∥s+
Ls(x)(Ω)

+ 1.

Proposition 2.4. (see Zhao et al. [16]) Let s ∈ C+(Ω̄). If u,un ∈ Ls(x)(Ω), then the following statements are
equivalent

(i) lim
k→∞
∥uk − u∥Ls(x)(Ω) = 0.

(ii) lim
k→∞
ρs(·) (uk − u) = 0.

(iii) uk → u in measure in Ω and lim
k→∞
ρs(·) (uk) = ρs(·)(u).

Let s ∈ C+(Ω̄) and denote W1,s(x)(Ω) the variable exponent Sobolev space defined by

W1,s(x)(Ω) =
{
u ∈ Ls(x)(Ω) : ∂xi u ∈ Ls(x)(Ω),∀i ∈ {1, . . . ,N}

}
,
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endowed with the norm

∥u∥W1,s(x)(Ω) = ∥u∥Ls(x)(Ω) +

N∑
i=1

∥∥∥∂xi u
∥∥∥

Ls(x)(Ω)
.

The space
(
W1,s(x)(Ω), ∥ · ∥W1,s(x)(Ω)

)
is a separable and reflexive Banach space. In general, the smooth functions

are not dense in W1,s(x)(Ω), but if the variable exponent s ∈ C+(Ω̄) is logarithmic Hölder continuous, that is

|s(x) − s(y)| ≤ −
M

log(|x − y|)
for all x, y ∈ Ω, such that |x − y| ≤

1
2

,

then the smooth functions are dense in W1,s(x)(Ω). We now define p⃗ as the vector function p⃗ : Ω̄→ RN such
that p⃗(x) =

(
p1(x), . . . , pN(x)

)
, where pi ∈ C+(Ω̄), for all i ∈ {1, . . . ,N} and denote

pM(x) = max
{
p1(x), . . . , pN(x)

}
, pm(x) = min

{
p1(x), . . . , pN(x)

}
.

The anisotropic variable exponent Sobolev space is given by

X =W1,p⃗(x)(Ω) =
{
v ∈ LpM(x)(Ω) : ∂xi v ∈ Lpi(x)(Ω),∀i ∈ {1, . . . ,N}

}
,

and it is endowed with the norm

∥v∥ = ∥v∥W1,p⃗(x)(Ω) = ∥v∥LpM(x)(Ω) +

N∑
i=1

∥∥∥∂xi v
∥∥∥

Lpi(x)(Ω)
.

We emphasize that
(
W1,p⃗(x)(Ω), ∥ · ∥W1,p⃗(x)(Ω)

)
is a reflexive Banach space. Over the course of this paper, we

suppose that

(A0) 1 <
N∑

i=1

1
p−i
< N + 1.

Next, we introduce the following notations

(p̄)∗ =
N

N∑
i=1

1
p−i
− 1

, and p∂i (x) :=


(N − 1)pi(x)

Npi(x)
, if pi(x) < N,

+∞, if pi(x) ≥ N.

For any q ∈ C+(Ω̄) with 1 < q(x) ≤ max
{
(p̄)∗, p−M

}
, for a.e x ∈ Ω̄, we denote Sq,Ω the best constant in the

continuous embedding W1,p⃗(x)(Ω) ↪→ Lq(x)(Ω), that is,

Sq(x),Ω = inf
v∈W1,p⃗(x)(Ω)\{0}

∥v∥W1,p⃗(x)(Ω)

∥v∥Lq(x)(Ω)
.

Similarly, for any q ∈ C+(Ω̄) verifying 1 ≤ q(x) ≤ min
x∈∂Ω
{p∂1(x), . . . , p∂N(x)}, where

p∂i (x) =

(N − 1)pi(x)/[N − pi(x)] if pi(x) < N,
∞ if pi(x) ≥ N,

for all x ∈ Ω̄ and for i ∈ {1, . . . ,N}, we denote Sq(x),∂Ω the best constant in the embedding W1,p⃗(x)(Ω) ↪→
Lq(x)(∂Ω).

Proposition 2.5. (see Fan [15]) If q ∈ C+(Ω̄) satisfies 1 < q(x) < max
{
(p̄)∗, pM(x)

}
for all x ∈ Ω̄, then the embedding

W1,p⃗(x)(Ω) ↪→↪→ Lq(x)(Ω) is compact.
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Proposition 2.6. (see Boureanu and Rădulescu [7]) Suppose that p⃗ ∈
(
C+(Ω̄)

)N and q ∈ C+(Ω̄) satisfying 1 <
q(x) < min

x∈∂Ω

{
p∂1(x), . . . , p∂N(x)

}
, for all x ∈ ∂Ω. Then, the embedding W1,p⃗(x)(Ω) ↪→↪→ Lq(x)(∂Ω) is compact.

Definition 2.7. An element u ∈W1,p⃗(x)(Ω) is termed a weak solution of problem (1) if∫
Ω

N∑
i=1

ai
(
x, ∂xi u

)
∂xi vdx +

∫
Ω

b(x)|u|pM(x)−2uvdx = λ
∫
Ω

f (x,u,∇u)vdx + µ
∫
∂Ω
1(x,u)vdσ + ⟨h, v⟩, (5)

for all v ∈W1,p⃗(x)(Ω), where ⟨h, v⟩ is the duality pairing between W1,p⃗(x)(Ω) and its dual space.

Definition 2.8. Let X be a reflexive Banach space, X∗ its dual space and denote by ⟨·, ·⟩ the duality pairing. Consider
an application J : X→ X∗. Then, J is called

(a) to verify the (S+)-property if

un ⇀ u in X and lim sup
n→∞

⟨Jun,un − u⟩ ≤ 0 imply un → u in X.

(b) pseudomonotone if

un ⇀ u in X and lim sup
n→∞

⟨Jun,un − u⟩ ≤ 0 imply Jun ⇀ Ju and ⟨Jun,un⟩ → ⟨Ju,u⟩.

(c) coercive if

lim
∥u∥X→∞

⟨Ju,u⟩
∥u∥X

= ∞.

3. Existence and uniqueness of the solution

Now, in order to state the main existence result for problem (1), we assume the following assumptions
on the functions f and 1.

(F1) There exists r1, r2 ∈ C+(Ω̄) with 1 < r1(x) < max
{
(p̄)∗, pM(x)

}
for all x ∈ Ω, and 1 < r2(x) <

min
x∈∂Ω

{
p∂1(x), . . . , p∂N(x)

}
for all x ∈ ∂Ω , k1 ∈ Lr′1(x)(Ω), k2 ∈ Lr′2(x)(∂Ω) and c1, c2, c′1 > 0 such that

| f (x, t, ξ)| ≤ k1(x) + c1|t|r1(x)−1 + c2

N∑
i=1

|ξi|
pi(x) r1(x)−1

r1(x) , for a.e. x ∈ Ω and all (t, ξ) ∈ R ×RN,

and

|1(x, t)| ≤ k2(x) + c′1|t|
r2(x)−1, for a.e. x ∈ ∂Ω and all (t, ξ) ∈ R ×RN.

(F2) There exists θ1 ∈ L1(Ω), θ2 ∈ L1(∂Ω) and c3, c4, c′2 ≥ 0 such that

f (x, t, ξ)t ≤ θ1(x) + c3|t|r1(x) + c4

N∑
i=1

|ξi|
pi(x),

1(x, t)t ≤ θ2(x) + c′2|t|
r2(x),

for a.e. x ∈ Ω and all (t, ξ) ∈ R ×RN.

Proposition 3.1. We define X =W1,p⃗(x)(Ω) and
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⟨J(u), v⟩ =
∫
Ω

( N∑
i=1

ai
(
x, ∂xi u

)
∂xi vdx + b(x)|u|pM(x)−2uv

)
dx,

for all u, v ∈ X. Then

i) J : X→ X⋆ is bounded and coercive.

ii) J is of type (S+).

Proof. i) The boundedeness of J is a consequence of hypothesis (A3) and the coerciveness is obtained
in the proof of Theorem 3.3 below.

ii) The proof is similar to that in Boureanu [5, Lemma 2] and is omitted here.

Now, we state the primary tool employed in this section that relies on the surjectivity result for pseu-
domonotone operators, as presented in Carl et al. [8].

Lemma 3.2. (see Carl et al. [8]) Given a real reflexive Banach space X and a bounded, pseudomonotone, and coercive
operator J : X→ X∗, there exists a solution to the equation J(u) = h, for any h ∈ X∗.

Theorem 3.3. Assume that hypotheses (A0) − (A3), (F1) and (F2) are satisfied. Furthermore, suppose that 1 < r−i ≤

r+i < p−m, for all i ∈ {1, 2}. Then, for any λ ∈
]
−
σ0
c4
, σ0

c4

[
and any h ∈

(
W1,p⃗(x)(Ω)

)⋆
, problem (1) admits a weak solution

in W1,p⃗(x)(Ω).

Proof. We define the Nemytskii operators N̄ f : X ⊆ Lr1(x)(Ω) → Lr′1(x)(Ω) and N̄1 : Lr2(x)(∂Ω) → Lr′2(x)(∂Ω) by(
N̄ f u

)
(x) = f (x,u(x),∇u(x)) and

(
N̄1u

)
(x) = 1(x,u(x)) respectively. Furthermore, denote i∗ : Lr′1(x)(Ω) → X∗

the adjoint operator for the embedding i : X→ Lr1(x)(Ω) and j∗ : Lr′2(x)(∂Ω)→ X∗ the adjoint operator for the
embedding j : X → Lr2(x)(∂Ω). Subsequently, define N f = i∗ ◦ N̄ f : X → X∗ and N1 = j∗ ◦ N̄1 ◦ j : X → X∗,
which are well-defined, bounded and continuous operators by assumption (F1).
Now, define the operatorA : X→ X∗ as follows

A(u) = J(u) − λN f (u) − µN1(u) − h.

Our aim is to apply Lemma 3.2. Hence, we need to show thatA is bounded, pseudomonotone and coercive.
•A is bounded:

Thanks to growth conditions on functions f and 1 stated in (F1) and the boundedness of J , we obtain the
boundedness ofA.
•A is pseudomonotone:

Let (un)n∈N be a sequence such that un ⇀ u in X,
lim sup

n→+∞
⟨A (un) ,un − u⟩ ≤ 0.

Thanks to the compact embeddings X ↪→↪→ Lr1(x)(Ω) for 1 < r1(x) < max
{
p̄∗(x), pM(x)

}
for all x ∈ Ω̄, and

X ↪→↪→ Lr2(x)(∂Ω) for 1 ≤ r2(x) < min
x∈∂Ω

{
p∂1(x), . . . , p∂N(x)

}
for all x ∈ ∂Ω, we obtain

un → u in Lr1(x)(Ω) and un → u in Lr2(x)(∂Ω) (6)

Thus, using (F1) alongside Hölder’s inequality and the boundedness of (un)n∈N, we obtain
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Ω

f (x,un,∇un) · (un − u)dx
∣∣∣∣∣ ≤ [ ∫

Ω

k1(x)|un − u|dx + c1

∫
Ω

|un|
r1(x)−1

|un − u|dx

+ c2

∫
Ω

N∑
i=1

∣∣∣∂xi un

∣∣∣pi(x)
r1(x)−1

r1(x)
|un − u|dx

]
≤

[
2∥k1∥Lr′1(x)(Ω)

∥un − u∥Lr1(x)(Ω) + 2c1

∥∥∥|un|
r1(x)−1

∥∥∥
Lr′1(x)(Ω)

∥un − u∥Lr1(x)(Ω)

+ 2c2

N∑
i=1

∥∥∥∥∥∣∣∣∂xi un

∣∣∣pi(x)
r1(x)−1

r1(x)

∥∥∥∥∥
Lr′1(x)(Ω)

∥un − u∥Lr1(x)(Ω)

]
,

and ∣∣∣∣∣∫
∂Ω
1(x,un) · (un − u)dx

∣∣∣∣∣ ≤ ∫
∂Ω

k2(x)|un − u|dx + c′1

∫
∂Ω
|un|

r2(x)−1
|un − u|dx

≤ 2∥k2∥Lr′2(x)(∂Ω)
∥un − u∥Lr2(x)(∂Ω) + 2c′1

∥∥∥|un|
r2(x)−1

∥∥∥
Lr′2(x)(∂Ω)

∥un − u∥Lr2(x)(∂Ω).

Therefore, we obtain∣∣∣∣∣∫
Ω

f (x,un,∇un) · (un − u)dx
∣∣∣∣∣ ≤ [

2∥k1∥Lr′1(x)(Ω)
∥un − u∥Lr1(x)(Ω)

+ 2c1

(∥∥∥|un|
r+1−1

∥∥∥
Lr1(x)(Ω)

+
∥∥∥|un|

r−1−1
∥∥∥

Lr1(x)(Ω)

)
∥un − u∥Lr1(x)(Ω)

+ 2c2

N∑
i=1

∥∥∥∥∥∥∣∣∣∂xi un

∣∣∣p+i (
r+1 −1

r+1
)
∥∥∥∥∥∥

Lpi (x)(Ω)

+

∥∥∥∥∥∥∣∣∣∂xi un

∣∣∣p−i (
r−1 −1

r−1
)
∥∥∥∥∥∥

Lpi (x)(Ω)

 ∥un − u∥Lr1(x)(Ω)

]
,

and ∣∣∣∣∣∫
∂Ω
1(x,un) · (un − u)dx

∣∣∣∣∣ ≤ 2∥k∥Lr′2(x)(∂Ω)
∥un − u∥Lr2(x)(∂Ω)

+ 2c1

(∥∥∥|un|
r+2−1

∥∥∥
Lr2(x)(∂Ω)

+
∥∥∥|un|

r−2−1
∥∥∥

Lr2(x)(∂Ω)

)
∥un − u∥Lr′2(x)(∂Ω)

.

This, in combination with (6), leads to the conclusion that

lim
n→+∞

∫
Ω

f (x,un,∇un) · (un − u)dx = 0,

and

lim
n→+∞

∫
∂Ω
1(x,un) · (un − u)dx = 0.

Taking the limit in (5), and substituting u with un and v with un − u, yields

lim sup
n→+∞

⟨A(u),un − u⟩ = lim sup
n→+∞

⟨J(u),un − u⟩ ≤ 0.

Therefore, un → u follows fromJ being of type (S+). Moreover, considering the continuity ofA, we deduce
A(un)→ A(u) in X∗, establishing the pseudomonotonicity ofA.
•A is coercive:

We need to show that

lim
∥u∥→+∞

⟨A(u),u⟩
∥u∥

= +∞. (7)

Initially, let us give the following notations
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L1 =
{
i ∈ {1, . . . ,N} :

∥∥∥∂xi un

∥∥∥
Lpi (x)(Ω)

≤ 1
}
,

L2 =
{
i ∈ {1, . . . ,N} :

∥∥∥∂xi un

∥∥∥
Lpi (x)(Ω)

> 1
}
.

Then, we get

N∑
i=1

∫
Ω

∣∣∣∂xi un

∣∣∣pi(x)
dx =

∑
i∈L1

∫
Ω

∣∣∣∂xi un

∣∣∣pi(x)
dx +

∑
i∈L2

∫
Ω

∣∣∣∂xi un

∣∣∣pi(x)
dx

≥

∑
i∈L1

∥∥∥∂xi un

∥∥∥p+M
Lpi (x)(Ω)

+
∑
i∈L2

∥∥∥∂xi un

∥∥∥p−m
Lpi (x)(Ω)

≥

N∑
i=1

∥∥∥∂xi un

∥∥∥p−m
Lpi (x)(Ω)

−

∑
i∈L1

∥∥∥∂xi un

∥∥∥p−m̄
Lpi (x)(Ω)

≥

N∑
i=1

∥∥∥∂xi un

∥∥∥p−m
Lpi (x)(Ω)

−N

≥
1

Np−m−1

 N∑
i=1

∥∥∥∂xi un

∥∥∥
Lpi (x)(Ω)


p−m

−N.

Case 1: If ∥u∥LpM (x)(Ω) ≥ 1, we have

⟨J(u),u⟩ ≥ min{σ0, b0}

 1
Np−m−1

 N∑
i=1

∥∥∥∂xi u
∥∥∥

Lpi (x)(Ω)


p−m

−N + ∥u∥p
−
m

LpM (x)(Ω)


≥ min{σ0, b0}

 1
Np−m−1

 N∑
i=1

∥∥∥∂xi u
∥∥∥

Lpi (x)(Ω)


p−m

+ ∥u∥p
−
m

LpM(x)(Ω)

 −N min{σ0, b0}

≥
min{σ0, b0}

(2N)p−m−1

 N∑
i=1

∥∥∥∂xi u
∥∥∥

Lpi (x)(Ω)
+ ∥u∥LpM(x)(Ω)


p−m

−N min{σ0, b0}

≥
min{σ0, b0}

(2N)p−m−1
∥u∥p

−
m −N min{σ0, b0}.

Case 2: If ∥u∥LpM (x)(Ω) < 1, we have

⟨J(u),u⟩ ≥ min{σ0, b0}

 1
Np−m−1

 N∑
i=1

∥∥∥∂xi u
∥∥∥

Lpi (x)(Ω)


p−m

+ ∥u∥p
−
m

LpM(x)(Ω)
− 1 −N


≥ min{σ0, b0}

 1
Np−m−1

 N∑
i=1

∥∥∥∂xi u
∥∥∥

Lpi (x)(Ω)


p−m

+ ∥u∥p
−
m

LpM(x)(Ω)

 − (N + 1) min{σ0, b0}

≥
min{σ0, b0}

(2N)p−m−1
∥u∥p

−
m − (N + 1) min{σ0, b0}.

Therefore, in both cases, we obtain

⟨J(u),u⟩ ≥ d0∥u∥p
−
m − d1, (8)

where

d0 =
min{σ0, b0}

(2N)p−m−1
,
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and

d1 =

{
N min{σ0, b0}, if ∥u∥LpM(x)(Ω) ≥ 1,

(N + 1) min{σ0, b0}, if ∥u∥LpM(x)(Ω) < 1.

Now, denote the dual norm in X∗ by ∥ · ∥∗. For any u ∈ X, using (F2) and Proposition 2.2, we obtain

⟨A(u),u⟩ ≥ σ0

N∑
i=1

∫
Ω

∣∣∣∂xi un

∣∣∣pi(x)
dx + b0

∫
Ω

|u|pM(x)udx − λ
∫
Ω

f (x,u,∇u)udx − µ
∫
∂Ω
1(x,u)udσ − ⟨h,u⟩

≥ σ0

N∑
i=1

∫
Ω

∣∣∣∂xi un

∣∣∣pi(x)
dx + b0

∫
Ω

|u|pM(x)udx − |λ|

∫
Ω

|θ1(x)|dx + c3

∫
Ω

|u|r1(x) + c4

∫
Ω

N∑
i=1

∣∣∣∂xi u
∣∣∣pi(x)

dx


− |µ|

(∫
∂Ω
|θ2(x)|dσ + c′2

∫
∂Ω
|u|r2(x)dσ

)
− ∥u∥∥h∥⋆

≥ min {σ0 − |λ|c4, b0}

∫
Ω

N∑
i=1

∣∣∣∂xi u
∣∣∣pi(x)

dx +
∫
Ω

|u|pM(x)dx

 − |λ|c3 max
{
∥u∥r

+
1

Lr1(x)(Ω)
, ∥u∥r

−

1

Lr1(x)(Ω)

}
− |µ|c′2 max

{
∥u∥r

+
2

Lr2(x)(∂Ω)
, ∥u∥r

−

2

Lr2(x)(∂Ω)

}
− |λ|∥θ1∥L1(Ω) − |µ|∥θ2∥L1(∂Ω) − ∥u∥∥h∥⋆.

Now using either Case 1 or Case 2, it follows

⟨A(u),u⟩ ≥ min {σ0 − λc4, b0}
1

(2N)p−m−1
∥u∥p

−
m − λc3 max

 ∥u∥r
+
1

S
r+1
r1(x),Ω

,
∥u∥r

−

1

S
r−1
r1(x),Ω


− µc′2 max

 ∥u∥r
+
2

Sr+2
r2(x),∂Ω

,
∥u∥r−2

Sr−2
r2(x),∂Ω

 − λ∥θ1∥L1(Ω) − µ∥θ2∥L1(∂Ω) − ∥u∥∥h∥⋆.

Since 1 < r−i ≤ r+i < p−m, for all i ∈ {1, 2}, then (7) is satisfied. Hence,A is coercive.
Thus, all the assumptions of Lemma 3.2 are satisfied. Therefore, there exists u ∈ X such that A(u) = h.

This completes the proof.

In what follows, we consider the uniqueness of the solution for problem (1) under the following
additional hypotheses.

(F3) For all ξ ∈ RN and for a.e x ∈ Ω, we have s→ f (x, s, ξ) and s→ 1 (x, s) are decreasing.

(F4) For s ∈ R, a.e x ∈ Ω and all ξ ∈ RN, we have f (x, s, ξ) = f (x, s, |ξ|) and |ξ| → f (x, s, |ξ|) is decreasing.

(F5) λ > 0 and pM(x) ≥ 2, for a.e x ∈ Ω.

Theorem 3.4. Suppose that hypotheses of Theorem 3.3 alongside with (F3) to (F5) are verified. Then, problem (1)
admits a unique solution.

Proof. Consider u1 and u2 as two weak solutions to problem (1). By using the weak formulation of u1 and
u2, and selecting ϕ = (u1 − u2)+ as a test function, we derive∫

Ω

N∑
i=1

(
ai

(
x, ∂xi u1

)
− ai

(
x, ∂xi u2

)) (
∂xi u1 − ∂xi u2

)
+ dx

+

∫
Ω

b(x)
(
|u1|

pM(x)−2u1 − |u2|
pM(x)−2u2

)
(u1 − u2)+ dx

= λ

∫
Ω

( f (x,u1,∇u1) − f (x,u2,∇u2)) (u1 − u2)+ dx + µ
∫
∂Ω

(1(x,u1) − 1(x,u2)) (u1 − u2)+ dσ.
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By hypothesis (F5), we obtain

0 ≤ b0

∫
Ω

∣∣∣(u1 − u2)+
∣∣∣pM(x)

dx ≤
∫
Ω

N∑
i=1

(
ai

(
x, ∂xi u1

)
− ai

(
x, ∂xi u2

)) (
∂xi u1 − ∂xi u2

)
+ dx

+

∫
Ω

b(x)
(
|u1|

pM(x)−2u1 − |u2|
pM(x)−2u2

)
(u1 − u2)+ dx

≤ λ

∫
Ω

( f (x,u1, |∇u1|) − f (x,u2, |∇u2|) (u1 − u2)+ dx

+ µ

∫
∂Ω

(1(x,u1) − 1(x,u2)) (u1 − u2)+ dσ.

On the other hand,

λ

∫
Ω

( f (x,u1, |∇u1|) − f (x,u2, |∇u2|) (u1 − u2)+ dx + µ
∫
∂Ω

(1(x,u1) − 1(x,u2)) (u1 − u2)+ dσ = I1 + I2,

where

I1 = λ

∫
Ω

(
f (x,u1, |∇u1|) − f (x,u2, |∇u1|)

)
· (u1 − u2)+ dx + µ

∫
∂Ω

(1(x,u1) − 1(x,u2)) (u1 − u2)+ dσ,

I2 = λ

∫
Ω

(
f (x,u2, |∇u1|) − f (x,u2, |∇u2|)

)
· (u1 − u2)+ dx.

According to hypothesis (F1), we have I1 ≤ 0. On the other hand, we get

I2 = λ

∫
Ω2

(
f (x,u2, |∇u1|) − f (x,u2, |∇u2|)

)
· (|∇u1| − |∇u2|)+

(u1 − u2)+
(|∇u1| − |∇u2|)+

dx,

where Ω2 =
{
x, (|∇u1| − |∇u2|)+ (x) , 0

}
. Thus, according to hypothesis (F2), we have I2 ≤ 0. Therefore, we

obtain

λ

∫
Ω

(
f (x,u1,∇u1) − f (x,u2,∇u2)

)
· (u1 − u2)+ dx ≤ 0.

which implies that

b0

∫
Ω

∣∣∣(u1 − u2)+
∣∣∣pM(x)

dx = 0.

From this, we find u1(x) = u2(x) for a.e x on U = {x ∈ Ω : u1(x) > u2(x)}; while for x ∈ Ω\U, we have
(u1 − u2)+ (x) = 0 . Consequently, we have u1 ≤ u2 on Ω. Similarly, we find u1 ≥ u2, in Ω. Hence, u1 = u2
and the solution is unique.

Example 3.5. Let the functions f and 1 be defined by

f (x, s, ξ) = −a(x)s −
2
π

(
arctan s +

s
1 + s2

) (
1 + d(x)

|ξ|2

1 + |ξ|2

)
,

1(x, s) = −b(x)s −
2
π

(
arctan s +

s
1 + s2

)
,

where a, b and d are positive functions in L∞(Ω). Then, f and 1 satisfy assumptions of Theorem 3.4.
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4. Three weak solutions

In this section, we investigate and obtain the existence of three weak solutions for the following problem
−

N∑
i=1

∂xi ai(x, ∂xi u) + b(x)|u|pM(x)−2u = λ f (x,u) + h(x) in Ω,

N∑
i=1

ai(x, ∂xi u)νi(x) = µ1(x,u) on ∂Ω,

(9)

where Ω ⊆ RN is an open bounded domain with smooth boundary, f : Ω × R → R is a Carathéodory

function, 1 : R→ R is a nonnegative continuous function, h ∈ L(p+M)′ (Ω) with
1

p+M
+

1
(p+M)′

= 1, 1 < r−i ≤ r+i <

p−m ≤ p+M, b ∈ L∞(Ω) verifying ess inf
x∈Ω

b(x) = b0 > 0, λ > 0 and µ ≥ 0 are real parameters, and νi constitute the

elements comprising the outer normal unit vector for all i ∈ {1, . . . ,N}.

Definition 4.1. An element u ∈W1,p⃗(x)(Ω) is termed a weak solution of problem (9) if∫
Ω

N∑
i=1

ai
(
x, ∂xi u

)
∂xi vdx +

∫
Ω

b(x)|u|pM(x)−2uvdx = λ
∫
Ω

f (x,u)vdx + µ
∫
∂Ω
1(x,u)vdσ + ⟨h, v⟩, (10)

for all v ∈W1,p⃗(x)(Ω), where ⟨h, v⟩ is the duality pairing between W1,p⃗(x)(Ω) and its dual space.

Define

F(x,u) :=
∫ u

0
f (x, s)ds, for all (x,u) ∈ Ω ×R and G(x,u) :=

∫ u

0
1(x, s)ds, for all (x,u) ∈ ∂Ω ×R.

First, we make the following assumptions regarding f and 1 to obtain the desired result.

(H1) There exists q, r1, r2 ∈ C+(Ω̄) with 1 < q(x) < p−m, 1 < q, r1(x) < max
{
(p̄)∗, pM(x)

}
, for all x ∈ Ω,

1 < r2(x) < min
x∈∂Ω

{
p∂1(x), . . . , p∂N(x)

}
for all x ∈ ∂Ω, k1 ∈ Lr′1(x)(Ω), k2 ∈ Lr′2(x)(∂Ω) and c6, c7 > 0 such that

| f (x, t)| ≤ k1(x) + c6|t|r1(x)−1, for all (x,u) ∈ Ω ×R,

|1(x, t)| ≤ k2(x) + c7|t|r2(x)−1, for all (x,u) ∈ ∂Ω ×R.

(H2) lim sup
|t|→0

F(x, t)
|t|p−m

= 0, uniformly with respect to x ∈ Ω, and

(H3) lim sup
|t|→+∞

q(x)
F(x, t)
|t|q(x)

= A(x), uniformly with respect to x ∈ Ωwith A such that A0 := ∥A∥∞ > 0, or

(H′3) lim sup
|t|→+∞

pM(x)
F(x, t)
|t|pM(x)

= 0, uniformly with respect to x ∈ Ω.

Remark 4.2. Note that, under hypotheses (H2) and (H3) (resp. (H′3)), for all ϵ > 0, there exist Mϵ ∈ L1(Ω) such
that, for a.e. x ∈ Ω and all t ∈ R, we have

F(x, t) ≤ ϵ|t|p
−
m +

(A0 + ϵ)
q(x)

|t|q(x) +Mϵ(x), (11)

(resp.

F(x, t) ≤ ϵ
(
|t|p

−
m +

1
pM(x)

|t|pM(x)

)
+Mϵ(x)). (12)
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Let ϵ > 0. Using (H3), there exists ηϵ > 0 such that

F(x, t) ≤ ϵ|t|q(x), for all |t| ≤ ηϵ, uniformly for a.e x ∈ Ω. (13)

Moreover, using (H2), there exists an ϵ-uniformly integrable function Lϵ ∈ L1(Ω) and νϵ > 0 such that

F(x, t) ≤
(A(x) + ϵ)

q(x)
|t|q(x) + Lϵ(x), for all |t| ≥ νϵ, uniformly for a.e x ∈ Ω. (14)

Now, using hypothesis (H1), (13) and (14), there exists k0(ϵ) > 0 that depends on ϵ, q, k1 and c6 such that

F(x, t) ≤ ϵ|t|p
−
m +

(A0 + ϵ)
q(x)

|t|q(x) + Lϵ(x) + k0(ϵ), for all t ∈ R, uniformly for a.e x ∈ Ω.

Then, it suffices to take Mϵ(x) = Lϵ(x) + k0(ϵ) and A0 = ∥A∥∞. Note that the same remark stands for relation (12),
starting from hypotheses (H2) and (H′3).

For the last hypotheses (H), we suppose that there exists a real e0 > 0 such that

(H4) F(x, e0) + e0h(x) ≥ 0, for a.e x ∈ B(x0,D),

(H5) There exists 0 < α0 < 1 such that F(x, e0) + e0h(x) > 0, for a.e x ∈ B(x0, α0D),

(H6) There exists γ0 ∈ R such that G(x, y) := F(x, y) + yh(x) ≥ γ0, ∀(x, y) ∈ B(x0,D)×] − e0, e0[, where x0 ∈ Ω
and D > 0 are such that

B(x0,D) :=

x ∈ RN : ∥x − x0∥1 =

N∑
i=1

|xi − x0i| ≤ D

 ⊂ Ω.

Proposition 4.3. (see Bonanno and Candito [4]) Let X be a reflexive real Banach space and I be a real interval.
H : X → R is a continuously differentiable and sequentially weakly lower semi-continuous functional whose
derivative admits a continuous inverse on X∗,K : X→ R is a continuously differentiable functional whose derivative
is compact. Assume that

(i) lim
∥u∥→∞

(H(u) + λK (u)) = ∞, for all λ ∈ I.

(ii) There exists γ ∈ R such that

sup
λ∈I

inf
u∈X

(H(u) + λ(K (u) + γ)) < inf
u∈X

sup
λ∈I

(H(u) + λ(K (u) + γ)).

Then, there exist an open interval Λ ⊂ I and a positive real number ρ such that, for each λ ∈ Λ and for each
M : X → R continuously differentiable, with compact derivative, there exists δ > 0 such that for any µ ∈ [0, δ], the
equation

H
′(u) + λK ′(u) + µM′(u) = 0,

has at least three solutions in X whose norms are less than ρ.

Put θ0 :=
b0

A0
. The main result of this section is the following.

Theorem 4.4. Assume that hypotheses (A0) − (A4), (H1), (H2), (H3) (resp. (H′3)), and (H4) − (H6) are verified and

suppose that h ∈
(
Lp+M (Ω)

)′
. Additionally, suppose that |λ| < θ0 (resp. λ ∈] − ∞,+∞[). Then, there exist an open

intervalΛ ⊂]−θ0, θ0[ (resp. ⊂]−∞,+∞[), two positive constants ρ and δ such that for any λ ∈ Λ and any µ ∈ [0, δ],
problem (9) has at least three weak solutions in W1,p⃗(x)(Ω), whose norms are less than ρ.
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Proof. In order to apply Ricceri’s result [27], we define the functionalsH ,K ,M : W1,p⃗(x)(Ω)→ R by

H(u) =
∫
Ω

N∑
i=1

Ai
(
x, ∂xi u

)
dx +

∫
Ω

b(x)
pM(x)

|u|pM(x)dx

K (u) = −
∫
Ω

F(x,u)dx −
∫
Ω

u(x)h(x)dx,

M(u) = −
∫
∂Ω

G(x,u)dσ.

One can see thatH ,K ,M ∈ C1(W1,p⃗(x)(Ω),R) just by drawing on similar reasoning as demonstrated in the
proof of [21, Lemma 3.4.], with their respective derivatives given by

〈
H
′(u), v

〉
=

∫
Ω

N∑
i=1

ai
(
x, ∂xi u

)
∂xi vdx +

∫
Ω

bi(x)|u|pM(x)−2uvdx

⟨K
′(u), v⟩ = −

∫
Ω

f (x,u)vdx −
∫
Ω

hvdx,

⟨M
′(u), v⟩ = −

∫
∂Ω
1(x,u)vdσ,

for any u, v ∈W1,p⃗(x)(Ω). Hence, if there exists a critical point u of the operatorH + λK + µM, we conclude
that u ∈ W1,p⃗(x)(Ω) is a weak solution to equation (9). Then, we can apply Theorem 4.3 to look for weak
solutions to problem (9). First, the fact thatM′ is compact can be shown easily by adapting to the case of
∂Ω (instead of Ω) the proof of Colasuonno et al. [10, Lemma 3.2.]. Next, we prove (i) in Proposition 4.3.
Case 1: Suppose hypothesis (H3) is satisfied. We denote Φ(u) = H(u)+ λK (u). Let ϵ0 > 0 be fixed such that

|λ| <
b0

ϵ0
and u ∈W1,p⃗(x)(Ω) with ∥u∥ > max{1, ηϵ0 } (where ηϵ0 is given in (13)). By using (14), it follows that

Φ(u) =
∫
Ω

N∑
i=1

Ai
(
x, ∂xi u

)
dx +

∫
Ω

b(x)
pM(x)

|u|pM(x)dx − λ
∫
Ω

F(x,u)dx − λ
∫
Ω

u(x)h(x)dx

≥ σ0

∫
Ω

N∑
i=1

∣∣∣∂xi u
∣∣∣pi(x)

pi(x)
dx + b0

∫
Ω

|u|pM(x)

pM(x)
dx − |λ|

∫
Ω

(
(A0 + ϵ)

q(x)
|u(x)|q(x) + |Mϵ0 (x)|

)
dx − |λ|∥u∥∥h∥∗.

Now, we have ∫
Ω

1
q(x)
|u(x)|q(x)dx ≤

1
q−

∫
Ω

|u(x)|q(x)dx ≤ c
(
∥u∥q

−

+ ∥u∥q
+
)
.

Then, we get

Φ(u) ≥ min{σ0, b0}


∫
Ω

N∑
i=1

∣∣∣∂xi u
∣∣∣pi(x)

pi(x)
dx +

∫
Ω

|u|pM(x)

pM(x)
dx

 − |λ|(A0 + ϵ0)
∫
Ω

1
q(x)
|u(x)|q(x)dx

− |λ|∥Mϵ0∥1 − ∥u∥∥h∥∗

≥ min{σ0, b0}


∫
Ω

N∑
i=1

∣∣∣∂xi u
∣∣∣pi(x)

pi(x)
dx +

∫
Ω

|u|pM(x)

pM(x)
dx

 − cλ
(
∥u∥q

−

+ ∥u∥q
+
)
− |λ|∥Mϵ0∥1 − ∥u∥∥h∥∗

≥
d0

p+M
∥u∥p

−
m − cλ

(
∥u∥q

−

+ ∥u∥q
+
)
− |λ|∥Mϵ0∥1 − |λ|∥u∥∥h∥∗ −

d1

p+M
,
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where cλ := c|λ|(A0 + ϵ0). For 1 < q− < q+ < p−m, we deduce that Φ(u)→ ∞ is ∥u∥ → ∞, which means that Φ
is coercive for any λ ∈ R. Therefore, (i) in Proposition 4.3 is verified.

Case 2: Suppose hypothesis (H′3) is satisfied. Let ϵ0 > 0 be fixed such that |λ| <
b0

ϵ0
and let u ∈ W1,p⃗(x)(Ω)

with ∥u∥ > max{1, ηϵ0 } (where ηϵ0 is mentioned in (13)). By using (14), it follows that

Φ(u) =
∫
Ω

N∑
i=1

Ai
(
x, ∂xi u

)
dx +

∫
Ω

b(x)
pM(x)

|u|pM(x)dx − λ
∫
Ω

F(x,u)dx − λ
∫
Ω

u(x)h(x)dx

≥ σ0

∫
Ω

N∑
i=1

∣∣∣∂xi u
∣∣∣pi(x)

pi(x)
dx + b0

∫
Ω

|u|pM(x)

pM(x)
dx − |λ|

∫
Ω

(
ϵ0

pM(x)
|u(x)|pM(x) + |Mϵ0 (x)|

)
dx − |λ|∥u∥∥h∥∗.

Then, by (8), we get

Φ(u) ≥ σ0

∫
Ω

N∑
i=1

∣∣∣∂xi u
∣∣∣pi(x)

pi(x)
dx + (b0 − |λ|ϵ0)

∫
Ω

|u|pM(x)

pM(x)
dx − |λ|∥Mϵ0∥1 − |λ|∥u∥∥h∥∗

≥ min{σ0, b0 − |λ|ϵ0}


∫
Ω

N∑
i=1

∣∣∣∂xi u
∣∣∣pi(x)

pi(x)
dx +

∫
Ω

|u|pM(x)

pM(x)
dx

 − |λ|∥Mϵ0∥1 − |λ|∥u∥∥h∥∗

≥
d0 min{σ0, b0 − |λ|ϵ0}

p+M
∥u∥p

−
m − |λ|∥Mϵ0∥1 − |λ|∥u∥∥h∥∗ −

d1

p+M
.

Because p−m > 1, we deduce thatΦ(u)→∞ as ∥u∥ → ∞, which means thatΦ is coercive for anyλ ∈
]
−∞,+∞

[
.

Therefore, (i) in Proposition 4.3 is verified.
Now, in order to establish (ii) of Proposition 4.3, by Bonanno and Candito [4, Proposition 1.3], it suffices

to show that there exists w ∈ X and r > 0 such that

(B1) H(w) > ρ

(B2) sup
H(u)<r

K (u) < ρ
K (w)
H(w)

.

We now prove (B1). Consider x0 ∈ Ω , e0 and D > 0 as defined in hypothesis (H6). For α with 0 < α < 1 ,
define uα such that

uα(x) =


0 if x ∈ Ω \ B(x0,D),

e0

D(1 − α)
(D − ∥x − x0∥1) if x ∈ B(x0,D) \ B(x0, αD),

e0 if x ∈ B(x0, αD).

Straightforward calculations show that uα ∈ X. Moreover, for α less and close to 1, we have

∫
Ω

N∑
i=1

∣∣∣∂xi uα
∣∣∣pi(x)

dx +
∫
Ω

|uα|pM(x)dx >
∫

Tα

N∑
i=1

(
e0

D(1 − α)

)pi(x)

dx

> N
(

e0

D(1 − α)

)p−m

meas(Tα),

where Tα = B(x0,D)\B(x0, αD). Therefore, we get
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H(uα) ≥
σ0

p+M

∫
Ω

N∑
i=1

∣∣∣∂xi uα
∣∣∣pi(x)

dx +
b0

p+M

∫
Ω

|uα|pM(x)dx

>
σ0N
p+M

(
e0

D(1 − α)

)p−m

meas(Tα),

Denote

rα =
σ0N
p+M

(
e0

D(1 − α)

)p−m

meas(Tα),

and recall that

meas(B(x0, τD)) =
(2τD)N

N!
,

for any τ > 0. Therefore, we have

lim
α→1−

rα = +∞.

To complete the proof of (B1), it suffices to consider w = uα and ρ = rα, with 0 < α < 1. Next, we prove (B2).
Let u ∈ X be such thatH(u) < rα.
Case 1: Suppose that hypothesis (H3) is satisfied. We have

H(u) ≥
σ0

p+M

∫
Ω

N∑
i=1

∣∣∣∂xi u
∣∣∣pi(x)

dx +
b0

p+M

∫
Ω

|u|pM(x)dx

≥
min{σ0, b0}

p+M

∫
Ω

N∑
i=1

∣∣∣∂xi u
∣∣∣pi(x)

dx +
∫
Ω

|u|pM(x)dx


≥

1
p+M

(
d0∥u∥p

−
m − d1

)
.

Therefore, we obtain

∥u∥ ≤
(

p+M
d0

(
rα +

d1

p+M

)) 1
p−m

.

That is,

∥u∥ ≤ Λr
1

p−m
α . (15)

for certain Λ > 0.
Case 2: Suppose that hypothesis (H′3) is satisfied. We have

H(u) ≥
σ0

p+M

∫
Ω

N∑
i=1

∣∣∣∂xi u
∣∣∣pi(x)

dx +
b0

p+M

∫
Ω

|u|pM(x)dx

≥
b0

p+M

∫
Ω

|u|pM(x)dx

=
b0

p+M
ρpM(x)(u).

It gives

ρpM(x)(u) ≤
p+M
b0

rα. (16)

To obtain (B2), we prove the following lemma.
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Proposition 4.5. Suppose that hypotheses (H1), (H2), (H3) (resp.(H′3)) and (H4) − (H6) are satisfied. Then, we have

lim
α→1−

sup
{
K (u)/H(u) < rα

}
rα

= 0. (17)

Let us first point out thatK (uα) is positive for α close to 1. Straightforward calculations give

K (uα) = Iα + Jα,

where

Iα =
∫
B(x0,αD)

(F(x, e0) + e0h(x)) dx,

and

Jα =
∫

Tα

(
F(x,

e0

(1 − α)D
(D − ∥x − x0∥1) +

e0

(1 − α)D
h(x)(D − ∥x − x0∥1)

)
dx,

where Tα = B(x0,D) \ B(x0, αD). Choosing 0 < α < 1 very close to 1, and using hypotheses (H4) and (H5),
we have Iα > Iα0 > 0, for any α0 < α < 1 . Similarly, based on hypothesis (H6), Jα can be made sufficiently
small such that we can obtain K (uα) > 0 (note that limα→1− meas(Tα) = 0). On the other hand, it is evident

thatH(uα) is positive. Now, if (17) is satisfied, then for 0 < ϵ <
K (uα0 )
H(uα0 )

, there exists 0 < η < 1 such that, for

any α satisfying 0 < 1 − η < α < 1, we have

sup
{
K (u)/H(u) < rα

}
< ϵrα < rα

K (uα0 )
H(uα0 )

,

which yields (B2).
Proof of Proposition 4.5.

Case 1: Suppose hypothesis (H3) is satisfied. Let ϵ > 0. By using (11) we derive that, for some positive
constant c8 that may depend on ϵ, we have

K (u) ≤ ϵ∥u∥p
−
m + c8

(
∥u∥q

−

+ ∥u∥q
+
)
+ ∥Mϵ∥L1(Ω) + ∥h∥∗∥u∥, (18)

for all u ∈ X. Therefore, for u ∈ X withH(u) < rα, thanks to (15) and (18), there exist positive constants K1,
K2 and K3 (K2 depending on ϵ) such that

K (u) ≤ ϵΛp−m rα + K1

r
q−

p−m
α + r

q+

p−m
α

 + K2 + K3r
1

p−m
α .

Consequently, we obtain

K (u)
rα
≤ ϵΛp−m + K1

r
q−

p−m
−1

α + r
q+

p−m
−1

α

 + K2

rα
+ K3r

1
p−m
−1

α . (19)

Because p−m > max{1, q−, q+}, by letting α tend to 1 and ϵ tend to 0, we can make the second term in (19) as
small as desired.
Case 2: Suppose that hypothesis (H′3) is satisfied. Let ϵ > 0. By using (12), we derive

K (u) ≤ ϵ∥u∥p
−
m +

ϵ
p−M
ρpM(x) + ∥Mϵ∥L1(Ω) + ∥h∥∗∥u∥, (20)

for all u ∈ X. Then, for u ∈ X with H(u) < rα, thanks to (16) and (20), there exist positive constants K1, K2
and K3 (K2 depending on ϵ) such that
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K (u) ≤ ϵ
(
Λp−m +

p+M
b0p−M

)
rα + K2 + K3r

1
p−m
α .

Consequently, we obtain

K (u)
rα
≤ ϵ

(
Λp−m +

p+M
b0p−M

)
+

K2

rα
+ K3r

1
p−m
−1

α . (21)

Because p−m > 1, by letting α tend to 1 and ϵ to 0, we can make the second term in (21) as small as desired.
Hence, the proof of Proposition 4.5 is complete.

Now, we conclude the proof of Theorem 4.3. Let 0 < α1 < 1 such thatK (uα1 ) > 0 and choose ϵ such that

0 < ϵ < ϵ0 :=
1
2
K (uα1 )
H(uα1 )

. Using Proposition 4.5, there exists η0 such that, for any 1 − η0 < α < 1, we have

sup
{
K (u)/H(u) < rα

}
rα

< ϵ0. (22)

By choosing α1 > 1 − η0 and taking

ξ0 :=
sup

{
K (u)/H(u) < rα1

}
rα1

and δ =
b

2ϵ0 − ξ0
,

with b > 1 and applying the result by Bonanno and Candito [4, Proposition 1.3], we deduce that

sup
λ∈R

inf
u∈X

(
H(u) + λ(β −K (u))

)
= inf

u∈X
sup
λ∈[0,δ]

(
H(u) + λ(β −K (u))

)
,

for a suitable β > 0. Then, by using Ricceri [27, Theorem 1], there exist a non-empty set U ⊂ ]−σ0, σ0[ (where
σ0 := θ0 if (H3) is satisfied and σ0 := +∞ when (H′3) is supposed) and ρ > 0 such that for any λ ∈ U, there
exists δ > 0, such that the equation

H
′(u) + λK ′(u) + µM′(u) = 0,

has at least three solutions in X whose norms are less than ρ. This completes the proof of Theorem 4.4.

Example 4.6. Let Ω be a smooth bounded domain of RN, pi ∈ C+(Ω̄) with pi(x) ≥ 2 for all i ∈ {1, . . . ,N} and
(r1, r2) ∈

(
C+(Ω̄)

)2 with 2 ≤ r1(x) < max
{
(p̄)∗, pM(x)

}
, for all x ∈ Ω and 1 < r2(x) < minx∈∂Ω

{
p∂1(x), . . . , p∂N(x)

}
.

Consider β and q in C+(Ω̄) such that 1 < q(x) < p−m < β(x) and 1 + q(x) ≤ r1(x) ≤ β(x) for all x ∈ Ω. Take
h ∈ Lp′M(·)(Ω) and A ∈ L∞(Ω) with

h(x) :=
( 1

1 + x2

) 1
p′M(x)

and A(x) :=
β(x)
q(x)

(
π
2

)β(x)−q(x)
,

for all x ∈ Ω. Note that ∥A∥∞ =
β+

q−

(
π
2

)β+−q−

. Now, define

f (x,u) :=


β(x)|u|β(x)−2u if |u| ≤

π
2
,

q(x)A(x)|u|q(x)−2u sin u + A(x)|u|q(x) cos u if |u| ≥
π
2
,

for all (x,u) ∈ Ω ×R, and

1(x,u) =
1

1 + x2 |u|
σ(x) cos u, ∀(x,u) ∈ ∂Ω ×R,

with σ ∈ C+(Ω̄) such that 1 < σ(x) < r2(x) − 1, ∀x ∈ ∂Ω. Straightforward calculations give that

| f (x,u)| ≤ c6|u|r1(x)−1, ∀(x,u) ∈ Ω ×R, (resp. |1(x,u)| ≤ |u|r2(x)−1, ∀(x,u) ∈ ∂Ω ×R),
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with c6 := max
{
β+,

(
q+ +

2
π

)
∥A∥∞

}
and

F(x,u) :=
∫ u

0
f (x, s)ds =


|u|β(x) if |u| ≤

π
2
,

A(x)|u|q(x) if |u| ≥
π
2
,

for all (x,u) ∈ Ω ×R. Moreover, we have

F(x, y) + yh(x) > 0, ∀(x, y) ∈ Ω × BR(O, e0),

with 0 < e0 <
π
2

and

lim sup
|u|→0

F(x,u)
|u|p−m

= 0 and lim sup
|u|→+∞

F(x,u)
|u|q(x)

= A(x),

uniformly for a.e x ∈ Ω. Then, all hypotheses of Theorem 4.4 are satisfied and we obtain the existence of at least three
solutions for the following problem

−

N∑
i=1

|∂xi u(x)|pi(x)−2∂xi u + |u|
pM(x)−2u = λ f (x,u) + h(x) in Ω,

N∑
i=1

|∂xi u(x)|pi(x)−2∂xi u(x)νi(x) = µ1(x,u) on ∂Ω.
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