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Abstract. In this article, time-fractional advection-dispersion equation is considered. Fractional derivative
is in the Caputo sense and for approximating the first and second derivatives, the modified generalized
Laguerre polynomials (MGLPs) have been used. The MGLPs (Lα,βn (x)) have two parameter α > −1 and β > 0.
These polynomials, orthogonal polynomial on the [0,∞) by weight function ωα,β(x) = xαe−βx. For solving
these time-fractional advection-dispersion equation, we introduce optimal MGLPs collocation method. The
error of the proposed algorithm depends on the parameters of α and β. The (PSO) algorithm is used to find
the optimal parameters so that the error is minimized. In other words, we try to find the optimal value for
parameters α and β so that the error of the method is minimized. In practice, since the exact solution is not
available, we will face a problem to measure the error. To overcome this problem, the best parameters for
approximating the function that describes the initial condition with the help of PSO algorithm are found
and these parameters are used to better approximate the exact solution of the problem. A few numerical
experiments are carried out to support the theoretical claims. The presented examples confirm that the
optimal parameters for the initial condition can reduce the error of the method.

1. Introduction

In the last few decades, fractional differential equations have been studied by many researchers in
some of physical phenomena and numerous areas. Due to the ability and flexibility of fractional partial
differential equations (FPDEs) for describing scientific phenomena has made them a very good tool[1–3].
A fractional advection–dispersion equation (FADE) is a generalization of the classical (ADE) in which the
order of derivatives is replaced with a fractional-order derivative.

In the last decade, the advection–dispersion equation in the fractional form has attracted the attention of
researchers. Some of them are focused on solving the time fractional advection-dispersion equation(TFADE)
[10, 13, 16, 18–21, 28, 29], others on space fractional advection-dispersion equation (SFADE) [11, 12, 26], and
some of them are focused on the fractional time-space advection–dispersion equation(TSFADE)[23, 24, 27].
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To solve the equation (FADE), several methods have been used by researchers. Cao used the vari-
able weights particle tracking method[29], Singh used the homotopy analysis method[28] and homo-
topy perturbation method[27], Saw using collocation method[26] and the fourth kind shifted chebyshev
polynomials[11], Moghadam used radial basis functions[23], spline approximation method is used by Ravi
Kanth[20? ], Jacobi collocation method is used by Singh[22] and an RBF based meshless method is used by
Bhardwaj[19].

In this article, the time-fractional advection–dispersion equation is considered in the bounded space-time
variables as


∂νu(x,t)
∂tν = λ ∂

2u(x,t)
∂x2 − µ

∂u(x,t)
∂x + f (x, t) , 0 ≤ t, 0 ≤ x ≤ 1, 0 < ν ≤ 1,

B.C. : u (0, t) = 0, u (1, t) = 0, 0 ≤ t ≤ 1,
I.C : u (x, 0) = 1 (x), 0 ≤ x ≤ 1,

(1.1)

where the term f (x, t) is known as the source term, λ and µ represent the dispersion coefficient and the
average fluid velocity, respectively, and the fractional derivative is in the Caputo sense.

To approximate in the space domain, the modified generalized Laguerre polynomials (MGLPs) is used.
In order to be able to use orthogonality of MGLPs, we assume that the function 1(x) is defined in the interval
x ∈ [0,∞).
The paper is organized as follows. In Section 2, we give some definitions, notations and properties
of modified generalized Laguerre polynomials. In Section 3, a numerical method based on MGLPs is
presented. Then in Section 4, we give the analysis of stability and error estimates for the presented method.
In Section 5, some numerical experiments for the introduced method are carried out.

2. preliminary

In this section, the required preliminary concepts are presented. First, the fractional derivative and some of
its properties are presented, and then the important properties of Laguerre polynomials are studied. From
a few decades ago until today, various definitions for fractional derivatives have been proposed. Some
of them are limit based and others are defined based on integral. The fractional derivative presented by
Caputo is still of interest to researchers, which is defined as follows:

Definition 2.1. Caputo’s fractional derivative of function f (t) ∈ C⌈ν⌉(R) is defined as follows

C
a Dνt f (t) =

1
Γ (n − ν)

∫ t

a

f (n)(τ)

(t − τ)ν+1−n dτ, n − 1 < ν < n, (2.1)

Under natural conditions on the function f (t), for ν → n the Caputo derivative becomes a convctional nth

derivative of the function f (t).[4] that is

lim
ν→n

C
a Dνt f (t) = f (n)(t)

note that, C
a Dνt C = 0,where C is a constant and for f (t) = tη, η ∈N0 =N ∪ {0}we have

C
a Dνt tη =


Γ(η+1)
Γ(η−ν+1) tη−ν, η ∈N0 and η ≥ ⌈ν⌉,

0 η ∈N0 and η ≤ ⌈ν⌉.
(2.2)

Since we have n = 1 for the fractional derivative used in problem (1.1), so for simplicity, instead of writing
C
0 Dνt u(x, t), we use the symbol ∂νt u(x, t) for Caputo’s fractional derivative. With this notation, we will have

∂νt u (x, t) = λuxx (x, t) − µux (x, t) + f (x, t) , 0 ≤ t, 0 ≤ x ≤ 1, 0 < ν ≤ 1,
B.C. : u (0, t) = 0, u (1, t) = 0, 0 ≤ t ≤ 1,
I.C : u (x, 0) = 1 (x), 0 ≤ x ≤ 1,

(2.3)
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2.1. Modified generalized Laguerre polynomials
Consider the classical Laguerre differential equation

xy′′ + (1 − x)y′ + ny = 0. (2.4)

Classical Laguerre polynomials(CLPs) are the solutions of the classical Laguerre equation(2.4). These
polynomials are given by Rodrigues formula as

Ln(x) =
1
n!

ex∂n
x(xne−x), (2.5)

and in the[42]the generalized Laguerre differential equation given by

xy′′ + (α + 1 − x)y′ + ny = 0, (2.6)

generalized Laguerre polynomials(GLPs) are the solutions of the generalized Laguerre equation(2.6). These
polynomials are given by Rodrigues formula as

L(α)
n (x) =

1
n!

x−αex∂n
x(xn+αe−x). (2.7)

Finally, modified generalized Laguerre polynomials (MGLPs) are generated by [43]

L(α,β)
n (x) =

1
n!

x−αeβx∂n
x(xn+αe−βx), (2.8)

they are the eigenfunctions of the Sturm–Liouville problem

(ωα+1,β(x)y′)′ + (βn)ωα,β(x)y = 0. (2.9)

Also they can be generated by using the following recursive relation [37]

L(α,β)
0 (x) = 1,

L(α,β)
1 (x) = 1 + α − βx,

L(α,β)
n+1 (x) =

2n + 1 + α − βx
n + 1

L(α,β)
n (x) −

n + α
n + 1

L(α,β)
n−1 (x).

(2.10)

one can write, the n-th degree MGLPs in the analytical form

L(α,β)
n (x) =

n∑
k=0

(−1)k βkΓ(n + α + 1)
Γ(k + α + 1)(n − k)!k!

xk, (2.11)

and in the special case α = 0 we have

L(0,β)
n (x) =

n∑
k=0

(−1)k
(
n
k

)
(βx)k

k!
. (2.12)

Some other properties of the analytical form of MGLPs are presented as the following statements [37]

L(α,β)
n (0) =

Γ(n + α + 1)
Γ(α + 1)Γ(n + 1)

, (2.13)
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di

dxi L(α,β)
n (x) =


∑n

k=0(−1)k βkΓ(n+α+1)
Γ(k+α+1)Γ(k−i+1)(n−k)! x

k−i i ≤ n
0 i > n

, (2.14)

d
dx

L(α,β)
n (x) =

d
dx

L(α,β)
n−1 (x) − βL(α,β)

n−1 (x). (2.15)

It is possible to use property (2.15) and obtain the following important relationship

d
dx

L(α,β)
n (x) =

d
dx

L(α,β)
n−1 (x) − βL(α,β)

n−1 (x)

=
d

dx
L(α,β)

n−2 (x) − βL(α,β)
n−2 (x) − βL(α,β)

n−1 (x)

=
d

dx
L(α,β)

0 (x) − βL(α,β)
0 (x) − βL(α,β)

1 (x) − ... − βL(α,β)
n−1 (x)

= −β(L(α,β)
0 (x) + L(α,β)

1 (x) + ... + L(α,β)
n−1 (x)).

(2.16)

Let’s use the following notation

L(x) = [L(α,β)
0 (x),L(α,β)

1 (x), ...,L(α,β)
N (x)]T,

in this case, property (2.15) can be written as follows

d
dx
L(x) = −βDL(x), (2.17)

where

D =


0 0 0 · · · 0
1 0 0 · · · 0
1 1 0 · · · 0
...
...
. . .

. . .
...

1 · · · 1 1 0


and for k-th derivative we have

dk

dxk
L(x) = (−β)k

D
k
L(x), k = 1, 2, 3, ... (2.18)

The MGLPs are orthogonal polynomials on [0,∞) respect to weight function

ω(α,β)(x) = xαe−βx,

in other words〈
L(α,β)

m (x),L(α,β)
n (x)

〉
ω(α,β)(x)

=

∫
∞

0
L(α,β)

m (x)L(α,β)
n (x)ω(α,β)(x)dx

=
Γ(n + α + 1)
βα+1n!

δnm, n,m = 0, 1, 2, ...,
(2.19)

where δnm is the Kronecker function and L2
ω(α,β) ([0,∞)) is a Hilbert space. Note that, all the zeros of modifed

generalized Laguerre polynomials are simple and in the (0,∞). Therefore, L(α,β)
n (x) has exactly n zeros, all
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of which are simple, real and positive. When N tends to∞, then the largest root tends to∞.

Suppose BN = {L
α,β
n (x)}Nn=0 and we want to use a finite numbers terms for expanssion as

u(x, t j) � ũ(x, t j) = ũ j(x) =
N∑

n=0

cnLα,βn (x) = CT
L(x) = L(x)TC, (2.20)

where

C = [c0, c1, c2, · · ·, cN]T,

then we have

dk

dxk
ũ j(x) = CT dk

dxk
L(x) = (−β)kCTDk

L(x) = (−β)k(Dk
L(x))TC. (2.21)

To convince the reader that the approximation error depends on the values of α and β, we write the
approximation of f (t) = e−t for N = 1. that is

f (t) = c0Lα,β0 (t) + c1Lα,β1 (t) = c0 + c1((1 + α) − βt).

It can be written by using the orthogonality property

c0 =

∫
∞

0 f (t)Lα,β0 (t)ωα,β(t)dt∫
∞

0 Lα,β0 (t)Lα,β0 (t)ωα,β(t)dt

=
βα+10!
Γ(α + 1)

∫
∞

0
tαe−(β+1)tdt

=
βα+1

Γ(α + 1)

∫
∞

0
(
τ
β + 1

)αe−τ
dτ
β + 1

=
βα+1

Γ(α + 1)
1

(β + 1)(α+1)
Γ(α + 1)

=(
β

β + 1
)(α+1),

where (β + 1)t = τ and

c1 =

∫
∞

0 f (t)Lα,β1 (t)ωα,β(t)dt∫
∞

0 Lα,β1 (t)Lα,β1 (t)ωα,β(t)dt

=
βα+11!
Γ(α + 2)

∫
∞

0
[(1 + α) − βt]tαe−(β+1)tdt

=
βα+1

Γ(α + 2)
{(1 + α)

∫
∞

0
tαe−(β+1)tdt − β

∫
∞

0
tα+1e−(β+1)tdt}

=
βα+1

Γ(α + 2)
{(1 + α)

1
(β + 1)(α+1)

Γ(α + 1) − β
1

(β + 1)(α+2)
Γ(α + 2)}

=(
β

β + 1
)(α+1)

− (
β

β + 1
)(α+2),

then we have

e−t
≈ (

β

β + 1
)(α+1) + ((

β

β + 1
)(α+1)

− (
β

β + 1
)(α+2))[(1 + α) − βt]. (2.22)
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In other words, (2.22) is the best approximation of the function 1(t) = e−t in the

Span{Lα,β0 (t),Lα,β1 (t)}.
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Figure 1: The MSE for 1(t) = e−t when N = 1. The minimum error is 3.6831 × 10−3 which is achieve for α = 0.75 and β = 2.5 and The
maximum error is 0.2467 which is achieve for α = 10 and β = 0.25.

Figure 1 shows that the mean squared error(MSE) changes with variety in parameters α and β. In
other words, the best approximation obtained in Span{Lα,β0 (t),Lα,β1 (t)} changes with the variety of these two
parameters. How to find the best of best approximation among the best approximations?

3. Derivation of the method

In this section, a spectral method based on MGLPs with specific parameters α and β is presented. Then,
we use the PSO algorithm to determine the best parameters α∗ and β∗.

3.1. Selection the best parameters
For this purpose, first, it obtains the best approximation for the describing function of the initial condi-

tion, 1(t), in Span{Lα,βn (t)}Nn=0 space. That is

1
α,β
N (t) =

N∑
n=0

cnLα,βn (t),

where

cn =

〈
Lα,βn (t), 1(t)

〉
ω(α,β)(t)〈

Lα,βn (t),Lα,βn (t)
〉
ω(α,β)(t)

=
βnn!

Γ(n + α + 1)

〈
Lα,βn (t), 1(t)

〉
ω(α,β)(t)

=
βnn!

Γ(n + α + 1)

∫
∞

0
1(t)L(α,β)

n (t)ω(α,β)(t)dt,
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then minimize the error

E(α, β) = ||1α,βN (t) − 1(t)||,

that is

min
α,β

E(α, β). (3.23)

In order to get the desired results, it is better to introduce a boundary searching interval for α and β. Let
α ∈ [αl, αu] and β ∈ [βl, βu]. For minimizing the error (3.23) we use the PSO algorithm. After finding the
best parameters α∗ and β∗, we solve the problem by these best parameters.

3.2. Discretization

For discretization we use the following nodesxi = i∆x, i = 0, 1, ...,M,∆x = 1/M,
t j = j∆t, j = 0, 1, ...,N,∆t = 1/N,

(3.24)

where the ∆x is step size of x and ∆t is step size of t. In the [13], time fractional derivative in the j+ 1/2 time
level, is discretized as following

∂νu
(
x, t j+1/2

)
∂tν

= ω1u j(x) +
j−1∑
k=1

(
ω j−k+1 − ω j−k

)
uk(x) − ωju0(x)

+σ
u j+1(x) − u j(x)

21−ν +O
(
∆2−ν

t

)
,

(3.25)

where

σ =
∆−νt

Γ (2 − ν)
, ω j = σ

[(
j + 1/2

)1−ν
−

(
j − 1/2

)1−ν
]
,

or by using the following notation

d j
0 = −ω j,

d j
k = ω j−k+1 − ω j−k, k = 1, 2, ..., j − 1,

d j
j = ω1 −

σ

21−ν = σ[(
3
2

)1−ν
− (

1
2

)1−ν] −
σ

21−ν ,

d j
j+1 =

σ

21−ν ,

the equation (3.25) can be rewritten as follows

∂νu
(
x, t j+1/2

)
∂tν

=

j+1∑
k=0

d j
kuk(x) +O(∆2−ν

t )

=

j+1∑
k=0

d j
kL(x)TCk +O(∆2−ν

t ).

(3.26)
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And for the discretization of spatial derivatives, it can be written

λuxx(x, t j+1/2) − µux(x, t j+1/2) =
λ
2

(uxx(x, t j+1) + uxx(x, t j))

−
µ

2
(ux(x, t j+1) + ux(x, t j))

�
λ
2

(
d2

dx2 ũ j+1(x) +
d2

dx2 ũ j(x))

−
µ

2
(

d
dx

ũ j+1(x) +
d
dx

ũ j(x))

=
λβ2

2
(D2
L(x))T(C j+1 + C j)

+
µβ

2
(DL(x))T(C j+1 + C j).

(3.27)

3.3. Derivation of the method

Replacing (3.26) and (3.27) in (2.3) conclude that

j+1∑
k=0

d j
kL(x)TCk =

λβ2

2
(D2
L(x))T(C j+1 + C j)

+
µβ

2
(DL(x))T(C j+1 + C j) + f j+1/2(x)

(3.28)

According to the collocation technique, we force L(x) to satisfy the following collocation conditions:

j+1∑
k=0

d j
kL(xi)TCk =

λβ2

2
(D2
L(xi))T(C j+1 + C j)

+
µβ

2
(DL(xi))T(C j+1 + C j)

+ f j+1/2(xi), i = 1, 2, ...,M − 1.

(3.29)

Or

L
T
i (−
λβ2

2
D2
−
µβ

2
D + d j

j+1I)TC j+1 = LT
i (
λβ2

2
D2 +

µβ

2
D − d j

jI)
TC j

− L
T
i

j−1∑
k=0

d j
kCk + f j+1/2

i ,

i = 1, 2, ...,M − 1,

(3.30)

or

L
T
i DT

1 C j+1 = LT
i DT

2 C j
− L

T
i

j−1∑
k=0

d j
kCk + f j+1/2

i i = 1, 2, ...,M − 1. (3.31)

Equations (3.31) for 1 ≤ i ≤M− 1, yields a linear system of M− 1 equations in M+ 1 unknowns c j
0, c

j
1, ..., c

j
M.

In order to close this system we need two equations. For this purpose, we use the initial conditions
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u j+1(0) = u j+1(1) = 0

ũ j+1(0) = L(0)TC j+1 = 0,

ũ j+1(1) = L(1)TC j+1 = 0.
(3.32)

Equations (3.31) for 1 ≤ i ≤M−1 and (3.32) yields a linear system of M+1 equations in M+1 unknowns.
Suppose that L1,L2 are (M + 1) × (M + 1) matrices as follows

L = [L0,L1, ...,LM−1,LM]T,

L0 = [0,L1, ...,LM−1, 0]T,

L̄1 = [D−1
1 L0,L1, ...,LM−1,D−1

1 LM]T,

L1 = [L0,D1L1, ...,D1LM−1,LM]T = D1L̄1,

L2 = [0,D2L1, ...,D2LM−1, 0]T = D2L0.

(3.33)

In this case, (3.31) and (3.32) can be rewritten as follows

L1C j+1 = L2C j
− L0

j−1∑
k=0

d j
kCk + F j+1/2, (3.34)

or

C j+1 = L−1
1 (L2C j

− L0

j−1∑
k=0

d j
kCk + F j+1/2), (3.35)

where

F j+1/2 = [0, f j+1/2
1 , f j+1/2

2 , ..., f j+1/2
M−1 ]T, 0]T,

D1 = (−
λβ2

2
D2
−
µβ

2
D + d j

j+1I)T,

D2 = (
λβ2

2
D2 +

µβ

2
D − d j

jI)
T.

The proposed algorithm needs C0 to start. Vector C0, is the Vector C0, is the expansion coefficients of the
1(x) which is calculated by (3.23).

3.4. Solvability, stability and convergence
First of all, we need to show that (3.35) is solvable. For this purpose, the invertibility of L1 must be

proved. We start the proof from the following proposition

Proposition 3.1. The matrix L in (3.33) is invertible.

Proof. Assume that L singular. Then there is a vector v = [v0, v1, ..., vN]T , 0 with Lv = 0. The polynomial

p(x) = vT
L(x) =

N∑
n=0

vnLα,βn (x),

with de1ree(p) = N has the N + 1 distinct roots x0, x1, ..., xN and must vanish identically. Let m be the largest
index with vm , 0. Then

Lα,βm (x) = −
1

vm

m−1∑
n=0

vnLα,βn (x).
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This is a contradiction, since the polynomial to the right has the de1ree = m − 1 but the polynomial to the
left has the de1ree = m.

The non-singularity of L̄ results from the non-singularity of L and the non-singularity of L1 results from the
non-singularity of L̄. Therefore, L1 is invertible and (3.35) is solvable.

The matrices D1 and D2 are lower triangular matrix with fix diagonal entries σ
21−ν , ω1 −

σ
21−ν respectively.

Then spectral(D1) = σ
21−ν , spectral(D2) = ω1 −

σ
21−ν and the relations in the following hold

Proposition 3.2. D2 = (2 σ
21−ν − ω1)I −D1 and D1

−1D2 = (2 1
21−ν − ω1)D1

−1
− I.

Proof. By (3.35), D1 +D2 = (d j+1 − d j)I. But

(d j+1 − d j) =
σ

21−ν − (ω1 −
σ

21−ν )

= 2
σ

21−ν − ω1.

So we obtain D2 = (2 σ
21−ν − ω1)I −D1. To prove the next part of the claim, it can be written

D1
−1D2 = D1

−1[(2
σ

21−ν − ω1)I −D1]

= (2
σ

21−ν − ω1)D1
−1
− I.

Proposition 3.3. L−1
1 L2 = L̄−1

1 [(2 σ
21−ν − ω1)D1

−1
− I]L0.

Proof. By (3.33), we have L1 = D1L̄1 and L2 = D2L0. Then L1
−1 = L̄−1

1 D1
−1 and

L1
−1L2 = L̄−1

1 D1
−1D2L0

= L̄−1
1 [(2

σ

21−ν − ω1)D1
−1
− I]L0.

Proposition 3.4. Spectral([(2 σ
21−ν − ω1)D1

−1
− I]) < 1 if and only if ν < 1.

Proof.

Spectral([(2
σ

21−ν − ω1)D1
−1
− I]) = (2

σ

21−ν − ω1)
1
σ

21−ν

− 1

= 1 −
ω1
σ

21−ν

= 1 −
1.51−ν

− 0.51−ν

0.51−ν

= 2 − 31−ν.

Therefore, to complete the proof we have to show 2−31−ν < 1 or 1 < 31−ν. But this inequality is true because
ν is the order of fractional derivative in the problem (1.1) and it is in the interval ν ∈ (0, 1).

Theorem 3.1. The proposed algorithm (3.35) is stabile if

∆νt <
||L0||

Γ(2 − ν)(||L2|| − ||L1||)
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Proof. Let ϵ j
i = u(xi, t j) − ũ(xi, t j). We can write u(xi, t j) = L(xi)TC j and ũ(xi, t j) = L(xi)TC̃ j then

||ϵ j
i || = ||u(xi, t j) − ũ(xi, t j)||

= ||L(xi)T(C j
− C̃ j)||

= ||L(xi)T
||.||(C j

− C̃ j)||

= ||L(xi)T
||.||ζ j
||,

where ζ j = (C j
− C̃ j). To prove stability, we must show ||ζ j

|| ≤ ||ζ0
||. For this purpose, we use mathematical

induction. First, it can be seen that the assertion is true for j=0

||ζ1
|| = ||L−1

1 L2ζ
0
||

= ||L−1
1 L2||.||ζ

0
||

≤ ||ζ0
||

(3.36)

Suppose the induction assertion holds for n ≤ j (induction hypothesis) and we try to prove the induction
assertion for j + 1

||ζ j+1
|| = ||L−1

1 (L2ζ
j
− L0

j−1∑
k=0

d j
kζ

k)||

≤ ||L−1
1 L2||.||ζ

j
|| − ||L−1

1 L0||.

∣∣∣∣∣∣∣
j−1∑
k=0

d j
k

∣∣∣∣∣∣∣ .||ζk
||

≤ ||L−1
1 L2||.||ζ

j
|| − ||L−1

1 L0||.

∣∣∣∣∣∣∣
j−1∑
k=0

d j
k

∣∣∣∣∣∣∣ .||ζ j
||

= {||L−1
1 L2|| − ||L−1

1 L0||.

∣∣∣∣∣∣∣
j−1∑
k=0

d j
k}

∣∣∣∣∣∣∣ .||ζ j
||

= {||L−1
1 L2|| − ||L−1

1 L0||σ}||ζ
j
||

≤ ||ζ j
||

(3.37)

The last inequality is true by assumption of theorem. By hypothesis of induction we can write

||ζ j+1
|| ≤ ||ζ j

|| ≤ ||ζ0
|| (3.38)

Therefore, the proposed algorithm is conditionally stable.

Theorem 3.2. Spectral(L1
−1L2) < 1 so the proposed algorithm (3.35) is convergent.

Proof. By Prop.(3.2) and Prop.(3.3), L1
−1L2 = L̄−1

1 [(2 σ
21−ν − ω1)D1

−1
− I]L0. So,

Spectral(L1
−1L2) = Spectral(L̄−1

1 [(2
σ

21−ν − ω1)D1
−1
− I]L0)

≤ Spectral([(2
σ

21−ν − ω1)D1
−1
− I])

= 2 − 31−v.

therefore, when ν < 1 we have 2 − 31−v < 1. Consequently Spectral(L1
−1L2) < 1. But ||L1

−1L2||2 =
Spectral(L1

−1L2) then proposed algorithm (3.35) is convergent.
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4. Numerical results

In this section, to show the accuracy of the proposed algorithm, we solve some problems for example.
In the problems, we setting ∆x = 1/M,∆t = 1/N and M = 5,N = 1000. For Implementation, the matlab
software are used and the errors are calculated in the end of interval ,t = 1 by the formula

error = ∥u(x, 1) − ũ(x, 1)∥2. (4.39)

Since the accuracy of the 1 approximation is very effective (as the first step in the accuracy of the
algorithm), we try to find the best parameters αbest1 and βbest1 for the approximation of 1(x). For this
purpose, we use two different search methods to find the optimal parameters(α, β) to approximate 1. The
search operation is performed in the α ∈ [−1, 10] and β ∈ [0, 10] intervals. In the step-by-step (S.b.S)
searching we set ∆α = ∆β = 0.25.

Example 4.1. Consider the time-fractional advection-diffusion equation as


∂0.5

t u = uxx +
6
Γ(3.5) t

2.5x(1 − x) + 2(1 + t3),
I.C. : u(x, 0) = x(1 − x),
B.C. : u(0, t) = u(1, t) = 0,

(4.40)

The exact solution for this problem is u(x, t) = x(1−x)(1+t3). With the help of PSO algorithm, the best parameters
for approximating of 1(x) are obtained as

(αbest1
pso = 1.6061, βbest1

pso = 6.4396) ebest1
pso = 2.2204 × 10−16,

Figure 2 shows the steps of this search. By using the step-by-step search, the best parameters for approximating of
1(x) are obtained as

(αbest1
S.b.S = 0, βbest1

S.b.S = 4.25) ebest1
S.b.S = 1.5203 × 10−11.

Figure 3 shows the steps of this search.

When the exact solution of the problem is available, the error of the proposed algorithm can be calculated. Figure
4 shows the errors of the proposed algorithm at t = 1 for different parameters. As can be seen, improper selection of
these parameters can increase the error of the algorithm by tens of times. From PSO algorithm for maximizing the
error of u(x, t = 1) approximation by using the proposed method, the worst parameters obtained as

(αworstu
pso = 5.4347, βworstu

pso = 0.0500) eworstu
pso = 1.5634 × 10−2.

To compare the error of the proposed algorithm with the best and worst parameters, see Figure 5. As can be seen,
the solution obtained with the best parameters is matched with the exact solution with considerable accuracy, while
the solution obtained from the worst parameter has a non-negligible difference with the exact solution.

Example 4.2. Consider the time-fractional advection-diffusion equation as
∂0.5

t u =4uxx − 3ux +
6
Γ(3.5)

t2.5sin(πx) + 4π2(1 + t3)sin(πx)

+ 3π(1 + t3)cos(πx),
B.C. : u(0, t) = u(1, t) = 0,
I.C. : u(x, 0) = sin(πx),

(4.41)
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Figure 2: Minimizing the maximum absolute error for g when M = 5 by using PSO algorithm for Example 4.1.
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Figure 3: The maximum absolute error for g when M = 5 by using S.b.S method for Example 4.1

note that, λ = 4, µ = 3, α = 0.5, 1(x) = sin(πx) and f (x, t) = 6
Γ(3.5) t

2.5sin(πx)+4π2(1+t3)sin(πx)+3π(1+t3)cos(πx).
The exact solution for this problem is u(x, t) = (1 + t3)sin(πx). With the help of PSO algorithm, the best parameters
for approximating of 1(x) are obtained as

(αbest1
pso = 0.9496, βbest1

pso = 10) ebest1
pso = 6.1472 × 10−3,

Figure 6 shows the steps of this search. By using the step-by-step search, the best parameters for approximating of
1(x) are obtained as

(αbest1
S.b.S = 5, βbest1

S.b.S = 10) ebest1
S.b.S = 6.4396 × 10−3,
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Figure 4: The maximum absolute error for u when M = 5 and N = 1000 for Example 4.1.
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Figure 5: Comparison of the exact solution with the numerical solutions for the best parameter (α
best1
pso , β

best1
pso ) and the worst parameter

(αworstu
s.b.s , β

worstu
s.b.s ) at t = 1 when M = 5 and N = 1000 for Example 4.1.

Figure 7 shows the steps of this search.
Figure8 shows the errors of the proposed algorithm at t = 1 for different parameters. As can be seen, improper

selection of these parameters can increase the error of the algorithm by thousands of times. From S.b.S method for
u(x, t = 1) approximation by using the proposed method, the worst parameters obtained as

(αworstu
S.b.S = 10, βworstu

S.b.S = 3.5) eworstu
S.b.S = 0.1824.

In Figure 9, the exact solution is compared with the solutions obtained from the proposed numerical method with
the best parameters for 1, αbest1

pso = 10, βbest1
pso = 3.5, and the worst parameters for u, αworstu

S.b.S = 10, βworstu
S.b.S = 3.5.
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This figure shows that the proposed parameters obtained by using the PSO algorithm on the known function 1(x)
can greatly increase the accuracy of the proposed algorithm. It should not be forgotten that we never claim that the
suggested parameters αbest1

pso , βbest1
pso are the best parameters, but from the known information of the problem, these

parameters may be the best possible parameters. In other words, finding the better parameters than the proposed
parameters is possible only when the exact solution is available, but in practice this exact solution is not available.
From the observation of Figure 10 and Figure 11, it seems that the effect of the changes of parameters α and β on the
approximation accuracy of these two functions 1(x) and u(x, t = 1) are almost similar to each other, so choosing the
optimal parameters from the approximation of function 1(x) is not so inappropriate.
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Figure 6: Minimizing the maximum absolute error for g when M = 5 by using PSO algorithm for Example 4.2.
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Figure 7: The maximum absolute error for g when M = 5 by using S.b.S method for Example 4.2.
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Figure 8: The maximum absolute error for u when M = 5 and N = 1000 for Example 4.2.
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Figure 9: Comparison of the exact solution with the numerical solutions for the best parameter (α
best1
pso , β

best1
pso ) and the worst parameter

(αworstu
s.b.s , β

worstu
s.b.s ) at t = 1 when M = 5 and N = 1000 for Example 4.2.

Example 4.3. Consider the time-fractional advection-diffusion equation as
∂0.3

t u = 5uxx − ux +
−60
Γ(5.7) x(x − 1)t4.7

− 5(2 − t5) + (2x − 1)(1 − 0.5t5),
B.C. : u(0, t) = u(1, t) = 0,
I.C : u(x, 0) = x(x − 1),

(4.42)

note that, λ = 5, µ = 1, α = 0.3, 1(x) = x(x− 1) and f (x, t) = −60
Γ(5.7) x(x− 1)t4.7

− 5(2− t5)+ (2x− 1)(1− 0.5t5),. The
exact solution for this problem is u(x, t) = x(x − 1)(1 − 0.5t5). With the help of PSO algorithm, the best parameters
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for approximating of 1(x) are obtained as

(αbest1
pso = 1.1087, βbest1

pso = 6.18108) ebest1
pso = 1.1102 × 10−16,

Figure 10 shows the steps of this search. By using the step-by-step search, the best parameters for approximating of
1(x) are obtained as

(αbest1
S.b.S = −0.5, βbest1

S.b.S = 5.5) ebest1
S.b.S = 8.3267 × 10−17,

Figure 11 shows the steps of this search.
Figure 12 shows the errors of the proposed algorithm at t = 1 for different parameters. As can be seen, improper

selection of these parameters can increase the error of the algorithm by thousands of times. From S.b.S method for
u(x, t = 1) approximation by using the proposed method, the worst parameters obtained as

(αworstu
S.b.S = 9.25, βworstu

S.b.S = 0.25) eworstu
S.b.S = 6.8804 × 10−4.

In Figure 13, the exact solution is compared with the solutions obtained from the proposed numerical method with
the best parameters for 1, αbest1

pso , βbest1
pso , and the worst parameters for u, αworstu

S.b.S , βworstu
S.b.S . This figure shows that the

proposed parameters obtained by using the PSO algorithm on the known function 1(x) can increase the accuracy of
the proposed algorithm.

In this example, similar to example ??, the function describing the initial condition is a polynomial of degree 2.
Also, the exact solution in t = 1 is again a polynomial of degree 2. Therefore, they are approximated carefully, for this
reason, the error in this example is not significantly different for the worst parameters and the best parameters.
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Figure 10: Minimizing the maximum absolute error for g when M = 5 by using PSO algorithm for Example 4.3.

Example 4.4. Consider the time-fractional advection-diffusion equation as

∂0.5
t u = 4uxx − 3ux + (1 − e−x)cos(

π
2

x)
Γ(4)
Γ(3.5)

t2.5

+ (((7 − π2)e−x + π2)cos(
π
2

x) + (
11π

2
e−x
−

3π
2

)sin(
π
2

x))(1 + t3)

B.C. : u(0, t) = u(1, t) = 0,
I.C : u(x, 0) = (1 − e−x)cos(π2 x),

(4.43)



A. H. B. Albohiwela et al. / Filomat 38:32 (2024), 11453–11475 11470

10
9

8
7

6
5

4

α

3
2

1
0

-10
1

2
3

4

β

5
6

7
8

9

1.4

1.6

1.2

0

0.2

0.4

0.6

0.8

1

10

×10-8

m
a

x
im

u
m

 a
b

s
o

lu
te

 e
rr

o
r 

fo
r 

g

Figure 11: The maximum absolute error for g when M = 5 by using S.b.S method for Example 4.3.
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Figure 12: The maximum absolute error for u when M = 5 and N = 1000 for Example 4.3.

note that, λ = 4, µ = 3, γ = 0.5, 1(x) = (1 − e−x)cos(π2 x) and f (x, t) = (1 − e−x)cos(π2 x) Γ(4)
Γ(3.5) t

2.5 + (((7 − π2)e−x +

π2)cos(π2 x) + ( 11π
2 e−x

−
3π
2 )sin(π2 x))(1 + t3). The exact solution for this problem is u(x, t) = (1 − e−x)cos(π2 x)(1 + t3).

With the help of PSO algorithm, the best parameters for approximating of 1(x) are obtained as

(αbest1
pso = 1.1233, βbest1

pso = 9.9992) ebest1
pso = 1.0891 × 10−4,

Figure 14 shows the steps of this search. By using the step-by-step search, the best parameters for approximating of
1(x) are obtained as

(αbest1
S.b.S = 1, βbest1

S.b.S = 9.75) ebest1
S.b.S = 1.1349 × 10−4,
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Figure 13: Comparison of the exact solution with the numerical solutions for the best parameter (α
best1
pso , β

best1
pso ) and the worst parameter

(αworstu
s.b.s , β

worstu
s.b.s ) at t = 1 when M = 5 and N = 1000 for Example 4.3.

Figure 15 shows the steps of this search.

Figure 16 shows the errors of the proposed algorithm at t = 1 for different parameters. As can be seen, improper
selection of these parameters can increase the error of the algorithm by hundreds of times. From S.b.S method for
u(x, t = 1) approximation by using the proposed method, the worst parameters obtained as

(αworstu
S.b.S = 10, βworstu

S.b.S = 3.25) eworstu
S.b.S = 0.2767,

and the best parameters for u are

(αbestu
S.b.S = 9.5, βbestu

S.b.S = 1.75) ebestu
S.b.S = 0.0365.

To compare the error of the proposed algorithm with the best and worst parameters, see Figure 17. As can be
seen, the solution obtained with the best parameters is closer to the exact solution with acceptable accuracy, while the
solution obtained from the worst parameter has a non-negligible difference with the exact solution.

It should be noted that unlike the Examples 4.1 and 4.3, the function describing the initial condition in Examples
4.2 and 4.4 is not a polynomial function. Therefore, it is not possible to approximate these functions with the help of

Lα,βn (x)
N=5
n=0 carefully and it is because the error in Examples 4.2 and 4.4 is considerably unacceptable.
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Figure 14: Minimizing the maximum absolute error for g when M = 5 by using PSO algorithm for Example 4.4
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Figure 15: The maximum absolute error for g when M = 5 by using S.b.S method for Example 4.4.

5. Conclusion

Modified generalized Laguerre polynomials were used to solve problem (1.1) of spectral and collacation
methods. It was shown that the error is very sensitive to parameters α and β. Using PSO algorithm, the best
values of parameters α and β were found for each of the examples so that the error of the algorithm was
minimized for that problem. Numerical results show that when the function describing the initial condition
is a polynomial function, in this case, the sensitivity to the parameters is less, provided that the number of
expansion terms are sufficient but when the number of expansion terms is not enough, the sensitivity to
the parameters is more. Also, when the initial condition is a transcendental function, the sensitivity to the
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Figure 16: The maximum absolute error for u when M = 5 and N = 1000 for Example 4.4.
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