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Abstract. In this paper, we introduce a general and weak sufficient condition that guarantees the existence
of infinitely many homoclinic solutions for a class of p−Laplacian Hamiltonian systems. Our findings
are established using a new symmetric mountain pass theorem developed by Kajikia. We extend and
refine several recent results from the literature and provide examples to demonstrate our key theoretical
contributions.

1. Introduction and main results

The aim of this paper is to establish the existence of infinitely many homoclinic solutions for the following
p-Laplacian Hamiltonian systems in the entire space

d
dt

(
|u̇(t)|p−2u̇(t)

)
− a(t)|u(t)|p−2u(t) + ∇W(t,u(t)) = 0, (1)

where t ∈ R, u ∈ RN, p > 1, a ∈ C(R,R) and ∇W(t,u) denotes the gradient of W(t,u) with respect to u. Here,
as usual, we say that a solution u of the problem (1) is homoclinic (to 0) if u ∈ C2(R,RN),u(t) −→ 0 and
u̇(t) −→ 0 as |t| −→ ∞. Furthermore, if u . 0 then u is called a nontrivial homoclinic solution.

Laplacian systems, characterized by their linearity, are commonly employed in applications such as
heat conduction, fluid dynamics, image processing (e.g., image denoising), and geometric modeling. In
contrast, p-Laplacian systems are nonlinear and particularly pertinent in contexts where nonlinear effects
are significant. These include modeling the flow of non-Newtonian fluids, phase transitions in materials,
and the analysis of complex biological systems.

When p = 2, the p-Laplacian Hamiltonian system (1) takes the simple form:

ü − a(t)u + ∇W(t,u) = 0,

which is a special form of the extensively studied Hamiltonian systems

ü − L(t)u + ∇W(t,u) = 0. (2)
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where L ∈ C(R,Rn×n) is a symmetric and positive definite matrix for all t ∈ R.
Many papers (see, e.g., [1]-[3], [14], [16]-[18], [26]-[29]) treated the periodic (including autonomous) case

where L(t) and W(t,u) are either independent of t or periodic in t. By contrast, the problem is quite different
in nature for the nonperiodic case due to the lack of compactness of the Sobolev embedding. After the
work of Rabinowitz and Tanaka [29], there are also many papers (see, e.g., [12], [13], [15], [17], [21]-[25],
[30]-[43]) concerning the nonperiodic case. For this case, the function L(t) plays an important role. As far
as we know, almost all these mentioned papers assumed that L(t) is either coercive or uniformly positively
definite and W(t, x) is subquadratic or superquadratic at infinity.

Recently, systems (2) was explored by a new symmetric mountain pass theorem due Kajikiya [19], when
the matrix L(t) is uniformly positively definite and the potential W ∈ C1(R ×RN,R), even in u and satisfies
the following main assumption or its equivalent:

(W) There exist t0 ∈ I and a constant r0 > 0 such that (t0 − r0, t0 + r0) ⊂ I and

lim inf
|u|−→0

inf
t∈[r0−τ,r0+τ]

W(t,u)
|u|2

> −∞

and
lim sup
|u|−→0

inf
t∈[r0−τ,r0+τ]

W(t,u)
|u|2

= +∞,

where I is a bounded domain in R.

Remark 1.1. The assumptions (W) is somewhat restrictive and eliminates many functions. For example, if we take:

W(t,u) =
a
s
|u|s −

γ(t)
r
|u|r, (3)

where s, r, a are constants satisfying 1 < r < 2, r < s < 2
3 (r + 1), a > 0 and

γ(t) =


t if t ∈ [0, 1

2 ],
1 − t if t ∈ [ 1

2 , 1],
0 if t ∈ R \ [0, 1],

then, we have

inf
t∈[r0−τ,r0+τ]

W(t,u)

|u|2
=

a
s
|u|−(2−s)

−
γ

r
|u|−(2−r)

→ −∞ as u→ 0,

for any [r0 − τ, r0 + τ] ⊂ (0, 1), where γ := max|t−t0 |≤τ γ(t) > 0. Which implies that the assumption (W) is not
satisfied. For more details, see Section 4.

The purpose of this article is to weaken the assumption (W) and to find a general sufficient condition on
W(t,u) which covers more examples as in the previous remark. More precisely, we make the following
assumptions:

(A0) There exists a constant a0 > 0 such that

a(t) + a0 ≥ 1, ∀t ∈ R,∫
R

(a(t) + a0)−
1

p−1 dt < ∞,

and {t ∈ R/a(t) ≡ 0} ⊃ (0, 1).

(W1) W ∈ C1(R×B(0, ε0),R), it is even with respect to u and W(t, 0) ≡ 0,where B(0, ε0) is the ball with center
zero and radius ε0 for some ε0 > 0.
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(W2) There exists a constant c1 > 0 such that

|∇W(t,u)| ≤ c1, ∀(t,u) ∈ R × B(0, ε0).

For ρ > 0, t ∈ [0, 1] satisfying [t − ρ, t + ρ] ⊂ (0, 1) and for 0 , u ∈ B(0, ε0), we define

W(t,u, ρ) := inf
{

W(l,u)
|u|p

ρp : l ∈ [t − ρ, t + ρ]
}
, (4)

W(t,u, ρ) := inf
{

W(l,mu)
|u|p

ρp : l ∈ [t − ρ, t + ρ], 0 ≤ m ≤ 1
}
. (5)

Substituting m = 0 into W(l,mu)
|u|p ρ

p, we see that W(t,u, ρ) ≤ 0. We assume:

(W3) There exists a positive integer k0 satisfying the following condition:
For each k ≥ k0, there exist 0 , µk ∈ B(0, ε0

2 ), tk,i ∈ (0, 1), with 1 ≤ i ≤ 2k and ρk > 0 such that
[tk,i − ρk, tk,i + ρk] ⊂ (0, 1), [tk,i − ρk, tk,i + ρk] ∩ [tk, j − ρk, tk, j + ρk] = ∅ for i , j and

min
1≤i≤2k

W(tk,i, µk, ρk) + 3 min
1≤i≤2k

W(tk,i, µk, ρk) >
2p+2

p
. (6)

Remark 1.2. • We insist on the fact that in the hypothesis (W1) − (W3), the conditions on the nonlinearity
W(t,u) are supposed only near u = 0 and there are no conditions for large |u|. This is essential and important.
Indeed, this assumptions allows us to study equations having singularity or supercritical terms as |u| → ∞.
For example, let us consider the following p-Laplacian Hamiltonian systems:

d
dt

(
|u̇(t)|p−2u̇(t)

)
+
|u|s−2.u
| sin u|

= 0,

where 1 < s < 2 and u ∈ R. The function u 7−→ |u|s−2.u
| sin u| has singularities at nπ with n ∈ Z\ {0} , but continuous

at u = 0.

• Under (W1) − (W3), W(t,u) can be subquadratic, superquadratic or asymptotically quadraticat infinity.

• To the best of our knowledge, there is no result concerning the existence and multiplicity of homoclinic orbits
for the system with the conditions.

Our main results reads as follows.

Theorem 1.3. Suppose that (A0) and (W1)− (W3) are satisfied. Then, system (1) possesses a sequence of homoclinic
solutions {uk} such that maxt∈R |uk(t)| → 0 as k→∞.

Corollary 1.4. Suppose that (A0) and (W1)− (W2) are satisfied and ε0 > 0 be as in (W1). We assume that there exist
sequences Mn → ∞ as n→ ∞, 0 , un ∈ B(0, ε0

2 ) and ρn > 0, vn ∈ (0, 1) such that [vn − ρn, vn + ρn] ⊂ (0, 1) and a
constant c ≥ 0, satisfy

W(t,un)ρp
n ≥Mn|un|

p, W(t, lun)ρp
n ≥ −c|un|

p for t ∈ [vn − ρn, vn + ρn], 0 ≤ l ≤ 1. (7)

Then, system (1) possesses a sequence of homoclinic solutions {uk} such that maxt∈R |uk(t)| → 0 as k→∞.

Corollary 1.5. Suppose that (A0) and (W1)− (W2) are satisfied and ε0 > 0 be as in (W1). We assume that there exist
sequences 0 , un ∈ B(0, ε0

2 ), ρn > 0 and vn ∈ [0, 1] such that [vn − ρn, vn + ρn] ⊂ (0, 1), and they satisfy

lim
n→∞

W(vn,un, ρn) = ∞, (8)

lim inf
n→∞

W(vn,un, ρn) > −∞. (9)

Then, system (1) possesses a sequence of homoclinic solutions {uk} such that maxt∈R |uk(t)| → 0 as k→∞.
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Corollary 1.6. Suppose that (A0) and (W), (W1) − (W2) are satisfied. Then, system (1) possesses a sequence of
homoclinic solutions {uk} such that maxt∈R |uk(t)| → 0 as k→∞.

Corollary 1.7. Suppose that (A0), (W1) − (W2) and

inf
t∈[t0−ρ0,t0+ρ0]

W(t,u)
|u|p

→∞ as u→ 0, (10)

are satisfied. Then, system (1) possesses a sequence of homoclinic solutions {uk} such that maxt∈R |uk(t)| → 0 as
k→∞.

Following the idea of [38], we will first modify W(t,u) for u outside a neighborhood of the origin 0 to
get W̃(t,u) and introduce a modified Hamiltonian system ˜(pHS), where ˜(pHS) and W̃(t,u) will be specified
in the following section (Section 2.). Then we show by variational methods that Hamiltonian system ˜(pHS)
possesses a sequence of homoclinic solutions, which converges to zero in L∞ norm. Consequently, we
obtain infinitely many homoclinic solutions for the original Hamiltonian system (pHS).

Here and in the following u.v denotes the inner product of u, v ∈ RN and |.| denotes the associated norm.
Throughout the paper we denote by c, ci the various positive constants which may vary from line to line
and are not essential to the problem.

The remaining part of this paper is organized as follows: Some preliminary results are presented in
Section 2. Section 3 is devoted to the proofs of our results and Section 4 is reserved for an example.

2. Preliminary results and variational setting

In order to prove our main result via the critical point theory, we need to establish the variational setting
for (1). Before this, we have the following remark:

Remark 2.1. Let a0(t) = a(t) + a0 and W0(t,u) =W(t,u) + a0
p |u|

p. Consider the following p-Laplacian Hamiltonian
system

d
dt

(
|u̇(t)|p−2u̇(t)

)
− a0(t)|u(t)|p−2u(t) + ∇W0(t,u(t)) = 0, ∀t ∈ R. (11)

Then, system (11) is equivalent to system (1). It is easy to check that the hypotheses (W1) − (W3) still hold for W0

provided that those hold for W. Moreover, a0(t) ≥ 1 for all t ∈ R and
∫
R

(a0(t))−
1

p−1 dt < ∞. Hence, without loss of

generality, we can assume in (A0) that a(t) ≥ 1 for all t ∈ R and
∫
R

(a(t))−
1

p−1 dt < ∞.

In view of Remark 2.1, we consider the space E := {u ∈W1,p(R,RN)|
∫
R
|u̇(t)|p + a(t)|u(t)|pdt < ∞}. Then E

is a reflexive, separable Banach space with norm

∥u∥ =
(∫
R

(|u̇|p + a(t)|u|p)dt
) 1

p

.

In what follows, E becomes our working spaceMoreover, we write E∗ for the topological dual of E, and
⟨·, ·⟩: E∗ × E → R for the dual pairing. Evidently, E is continuously embedded into W1,p(R,RN). Using the
Sobolev embedding theorem, we immediately get the following lemma.

Lemma 2.2. If a satisfies (A0), then E is continuously embedded in L1.
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Proof. By (A0) and Hölder inequality, we have for all u ∈ E∫
R

|u| dt =
∫
R

∣∣∣∣(a(t))
−1
p (a(t))

1
p u

∣∣∣∣ dt

≤

∫
R

(a(t))
−1
p

∣∣∣∣(a(t))
1
p u

∣∣∣∣ dt

≤

(∫
R

(a(t))−
1

p−1 dt
) p−1

p
(∫
R

a(t)|u|pdt
) 1

p

≤

(∫
R

(a(t))−
1

p−1 dt
) p−1

p

∥u∥ .

(12)

Lemma 2.3. If a satisfies (A0) then E is compactly embedded into L1.

Proof. Let (un) ⊂ E be a bounded sequence such that un ⇀ u in E. We will show that un −→ u in L1. By
Hölder inequality, we have∫

R

|un − u| dt =
∫
|t|≤R
|un − u| dt +

∫
|t|>R
|un − u| dt

≤ (2R)
1
p

(∫
|t|≤R
|un − u|p dt

) 1
p

+

∫
|t|>R

∣∣∣∣(a(t))
−1
p (a(t))

1
p (un − u)

∣∣∣∣ dt

≤ (2R)
1
p

(∫
|t|≤R
|un − u|p dt

) 1
p

+

∫
|t|>R

(a(t))−
1
p

∣∣∣∣(a(t))
1
p (un − u)

∣∣∣∣ dt

≤ (2R)
1
p

(∫
|t|≤R
|un − u|p dt

) 1
p

+

(∫
|t|>R

(a(t))−
1

p−1 dt
) p−1

p
(∫
|t|>R

a(t)|un − u|pdt
) 1

p

≤ (2R)
1
p

(∫
|t|≤R
|un − u|p dt

) 1
p

+

(∫
|t|>R

(a(t))−
1

p−1 dt
) p−1

p

∥un − u∥ ,

(13)

where R > 0. Then by (A0) and the Sobolev embedding Theorem, for any ε > 0 there exits R0 > 0 such that
for R > R0,we have∫

R

|un − u| dt ≤ ε.

In order to define the corresponding variational functional on our working space E, we need modify
W(t,u) for u outside a neighborhood of the origin to get a globally defined W̃(t,u) as follows: Choose a
constant b ∈ (0, ε0

2 ) and define a cut-off function χ ∈ C1(R+,R+) satisfying

χ(t) =

 1 if 0 ≤ t ≤ b

0 if t ≥ 2b
and, −

2
b
≤ χ′(t) < 0 for b < t < 2b. (14)

Let W̃(t,u) = χ(|x|)W(t,u), for all (t,u) ∈ R ×RN. By (14) and (W2) we have, for all (t,u) ∈ R ×RN,∣∣∣W̃(t,u)
∣∣∣ ≤ c1 |u| and

∣∣∣∇W̃(t,u)
∣∣∣ ≤ c2, (15)

for some c2 > 0, where c1 is the constant given in (W2).
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Now, we consider the following modified p-Laplacian Hamiltonian system

d
dt

(
|u̇(t)|p−2u̇(t)

)
− a(t)|u(t)|p−2u(t) + ∇W̃(t,u) = 0, ∀t ∈ R, ˜(pHS)

and define the variational functional Φ associated with system ˜(pHS) by

Φ(u) =
1
p

∫
R

(|u̇|p + a(t)|u|p)dt −Ψ(u)

=
1
p
∥u∥p −Ψ(u),

whereΨ(u) =
∫
R

W̃(t,u)dt.
According to [34], we know that in order to find solutions of ˜(pHS) it suffices to obtain the critical points

of Φ. For this purpose we recall the following definitions and results (see [15, 17, 18]).

Definition 2.4. Let E be a real Banach space and ϕ ∈ C1(E,R).
•ϕ is said to satisfy (PS) condition if any sequence (uk) ⊂ E for which (ϕ(uk)) is bounded and ϕ′(uk)→ 0 as k→ +∞,
possesses a convergent subsequence in E. Here ϕ′(u) denotes the Fréchet derivative of ϕ(u).
• Set Γ :=

{
A ⊂ E\ {0} : A is closed and symmetric with respect to the origin

}
. For A ∈ Γ, we say genus of A is n

(denoted by σ(A) = n), if there is an odd mapping φ ∈ C(A,Rn
\{0}), and n is the smallest integer with this property.

Theorem 2.5 ([19, Theorem 1]). Let ϕ be an even C1 functional on E with ϕ(0) = 0. Suppose that ϕ satisfies the
(PS) condition and

(1) ϕ is bounded from below.
(2) For each k ∈N, there exists an Ak ∈ Γk such that supu∈Akϕ(u) < 0, where Γk = {A ∈ Γ : σ(A) ≥ k}.

Then either (i) or (ii) below holds.

(i) There exists a critical point sequence (uk) such that ϕ(uk) < 0 and limk→∞ uk = 0.
(ii) There exist two critical point sequences (uk) and (vk) such that ϕ(uk) = 0,uk , 0, limk→∞ uk = 0, ϕ(vk) <

0, limk→∞ ϕ(vk) = 0, and (vk) converges to a non-zero limit.

Lemma 2.6. Let (A0), (W1) and (W2) be satisfied. ThenΨ ∈ C1(E,R), and hence Φ ∈ C1(E,R). Moreover,

⟨Ψ′(u), v⟩ =
∫
R

∇W̃(t,u)v dt, (16)

and

⟨Φ′(u), v⟩ =
∫
R

|u̇|p−2u̇v̇ + a(t)|u|p−2uv dt −
∫
R

∇W̃(t,u)v dt (17)

for all u, v ∈ E, and nontrivial critical points of Φ on E are homoclinic solutions of system ˜(pHS).

Proof. First, we show that Φ andΨ are both well defined. For any u ∈ E, by (12) and (15), we have∫
R

|W̃(t,u)|dt ≤ c1

∫
R

|u|dt

≤ c1

(∫
R

(a(t))−
1

p−1 dt
) p−1

p

∥u∥.

This implies that Φ andΨ are both well defined.
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Next, we proveΨ ∈ C1(E,R). For any given u ∈ E, define an associated linear operator J(u) : E→ R by

⟨J(u), v⟩ =
∫
R

∇W̃(t,u)v dt, ∀v ∈ E.

By (12) and (15), there holds

|⟨J(u), v⟩| =
∫
R

∣∣∣∇W̃(t,u)
∣∣∣|v|dt

≤ c2

∫
R

|v|dt

≤ c2

(∫
R

(a(t))−
1

p−1 dt
) p−1

p

∥v∥.

This implies that J(u) is well defined and bounded. Observing (12) and (15), for any u, v ∈ E, by the Mean
Value Theorem and Lebesgue’s Dominated Convergence Theorem, we have

lim
s→0

Ψ(u + sv) −Ψ(u)
s

= lim
s→0

∫
R

∇W̃(t,u + θ(t)sv)v dt

=

∫
R

∇W̃(t,u)v dt

= ⟨J(u), v⟩,

(18)

where θ(t) ∈ [0, 1] depends on u, v, s. This implies that Ψ is Gâteaux differentiable on E and the Gâteaux
derivative ofΨ at u ∈ E is J(u). Now for any u ∈ E, suppose un → u in E, then un → u in L∞. For any ϵ > 0,
by (L0), there exists Tϵ > 0 such that

(∫
|t|>Tϵ

(a(t))−
1

p−1 dt
) p−1

p

<
ϵ

4c2
. (19)

For the Tϵ given above, by virtue of the continuity of∇W̃ and Lebesgue’s Dominated Convergence Theorem,
we have

lim
n→∞

∫ Tϵ

−Tϵ

∣∣∣∇W̃(t,un) − ∇W̃(t,u)
∣∣∣p dt = 0.

Here we use the fact that un → u in L∞. Consequently, there exists Nϵ ∈N such that

(∫ Tϵ

−Tϵ

∣∣∣∇W̃(t,un) − ∇W̃(t,u)
∣∣∣p dt

)
<
ϵ
2
, ∀n ≥ Nϵ. (20)

Combining (15), (19), (20) and the Hölder inequality, for each n ≥ Nϵ, we have
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∥J(un) − J(u)∥E∗ = sup
∥v∥=1
|⟨J(un) − J(u), v⟩|

≤ sup
∥v∥=1

∣∣∣∣∣∫
R

(∇W̃(t,un) − ∇W̃(t,u)).vdt
∣∣∣∣∣

≤ sup
∥v∥=1

∣∣∣∣∣∣
∫ Tϵ

−Tϵ
(∇W̃(t,un) − ∇W̃(t,u)).vdt

∣∣∣∣∣∣
+ sup

∥v∥=1

∣∣∣∣∣∣
∫
|t|>Tϵ

(∇W̃(t,un) − ∇W̃(t,u)).vdt

∣∣∣∣∣∣
≤ sup

∥v∥=1

(∫ Tϵ

−Tϵ

∣∣∣∇W̃(t,un) − ∇W̃(t,u)
∣∣∣p dt

) 1
p
(∫ Tϵ

−Tϵ
|v|p dt

) 1
p

+ 2c2 sup
∥v∥=1

(∫
|t|>Tϵ

(a(t))−
1

p−1 dt
) p−1

p
(∫
|t|>Tϵ

a(t)|v|pdt
) 1

p

≤
ϵ
2
+

2c2ϵ
4c2
= ϵ.

This means that J is continuous in u. ThusΨ ∈ C1(E,R) and (16) holds. Due to the form of ϕ, we know that
Φ ∈ C1(E,R) and (17) also holds.

Finally, a standard argument shows that nontrivial critical points of Φ on E are homoclinic solutions of
˜(pHS) (see, e.g., [29]). The proof is completed.

Lemma 2.7. Let (A0), (W1) and (W2) be satisfied. Then Φ is bounded from below and satisfies (PS) condition.

Proof. We first prove that Φ is bounded from below. Combining (W2), (12), (15) and the Hölder inequality,
we have

Φ(u) ≥
1
2
∥u∥2 − c2

∫
R

|u|dt

≥
1
2
∥u∥2 − c2

(∫
R

(a(t))−
1

p−1 dt
) p−1

p

∥u∥, ∀u ∈ E,

(21)

where c2 is the constant given in (15). Then it follows that Φ is bounded from below.
Next, we show that Φ satisfies (PS)-condition.
Let {un} ⊂ E be a (PS)-sequence, i.e.,

|Φ(un)| ≤ D2 and Φ′(un) −→ 0 as n −→ ∞ (22)

for some D2 > 0. By (21) and (22), we have

D2 ≥
1
2
∥un∥

2
− c2

(∫
R

(a(t))−
1

p−1 dt
) p−1

p

∥un∥, ∀n ∈N.

This implies that {un} is bounded in E. Thus, there exists a subsequence {unk } such that

unk ⇀ u0 as k −→ ∞ (23)

for some u0 ∈ E. By Lemma 2.3, it holds that

unk −→ u0 in L1 as k −→ ∞. (24)
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This together with (15) yields∣∣∣∣∣∫
R

(
∇W̃(t,unk ) − ∇W̃(t,u0)

)
· (unk − u0)dt

∣∣∣∣∣ ≤ 2c2

∫
R

|unk − u0|dt −→ 0 as k −→ ∞. (25)

Noting that {un} is bounded in E, we infer from (22) and (23) that

⟨Φ′(unk ) −Φ
′(u0),unk − u0⟩ −→ 0 as k −→ ∞. (26)

Combining (17), (25) and (26), we have

∥unk − u0∥
2 = ⟨Φ′(unk ) −Φ

′(u0),unk − u0⟩

+

∫
R

(
∇W̃(t,unk ) − ∇W̃(t,u0)

)
· (unk − u0)dt −→ 0 as k −→ ∞.

(27)

This means that unk → u0 in E as k→∞. Thus Φ satisfies (PS)-condition.

We introduce a closed symmetric set Vk as below:

Vk ≡ {(l1, l2, ..., l2k) ∈ R2k; |li| ≤ 1 for all i, card{i : |li| = 1} ≥ k}.

Lemma 2.8 ([27, Lemma 4.5]). Vk has the genus of k + 1.

Lemma 2.9. Let (A0), (W1) and (W3) be satisfied. Then for each k ∈ N, there exists an Ak ⊆ E with genus
σ(Ak) = k + 1 such that supu∈Ak

Φ(u) < 0.

Proof. Let µk, tk,i and ρk with k ≥ k0 be given in assumption (W3). Since Γk ⊂ Γk−1 by definition, it is enough
to construct an Ak ∈ Γk for k ≥ k0 such that supu∈Ak

Φ(u) < 0. Fix k ≥ k0. Instead of µk, tk,i and ρk we write
µ, ti and ρ for simplicity. Using W and W given by (4) and (5) respectively, we define

Wi :=W(ti, µ, ρ), Wi :=W(ti, µ, ρ), 1 ≤ i ≤ 2k.

It follows from (4) and (5) and for t ∈ [ti − ρ, ti + ρ], that

W(t, µ) ≥
1
ρp Wi|µ|

p, (28)

W(t, lµ) ≥
1
ρp Wi|µ|

p, |l| ≤ 1. (29)

We define a function φ(t) onR by φ(t) = 1 for t ≤ 1
2 , φ(t) = 2(1− |t|) for 1

2 ≤ |t| ≤ 1 and φ(t) = 0 for |t| ≥ 1. Put
φi(t) := φ( |t−ti |

ρ ) for t ∈ R. Define Di := [ti −
ρ
2 , ti +

ρ
2 ]. Then 0 ≤ φi(t) ≤ 1 inR, φi(t) = 0 for t ∈ R\[ti − ρ, ti + ρ]

and

φi(t) = 1 for t ∈ Di, |φ̇i(t)| ≤
2
ρ

for t ∈ R. (30)

We define

Ak :=
{ 2k∑

i=1

liφi(t)µ : (l1, ..., l2k) ∈ Vk

}
.

Since all the supports of φi are disjoint, they are linearly independent. Define 1(l1, ..., l2k) :=
∑2k

i=1 liφi(t)µ.
Then 1 is a mapping from Vk onto Ak and it is an odd homeomorphism. By Lemma 2.8, the genus of Vk is
k + 1 and so is Ak. Thus Ak ∈ Γk.
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We shall show that supAk
Φ(u) < 0. Fix (l1, ..., l2k) ∈ Vk arbitrary. Then u :=

∑2k
i=1 liφi(t)µ ∈ Ak. Since the

support of φi is [ti − ρ, ti + ρ] and [ti − ρ, ti + ρ] ∩ [t j − ρ, t j + ρ] = ∅ for i , j, we have

Φ(u) =
1
p

∫
R

(|u̇|p + a(t)|u|p)dt −
∫
R

W̃(t,u)dt

=

2k∑
i=1

∫ ti+ρ

ti−ρ

1
p
|µ|p|li|p|φ̇i|

pdt +
1
p

2k∑
i=1

∫ ti+ρ

ti−ρ

(
a(t)|liφi(t)µ|p)dt

−

2k∑
i=1

∫ ti+ρ

ti−ρ
W(t, liφiµ)dt.

By the assumption (L0) and (30), we have

Φ(u) ≤
2p+2k|µ|pρ1−p

p
−

2k∑
i=1

∫ ti+ρ

ti−ρ
W(t, liφiµ)dt. (31)

To estimate the second term, we define

Λ1 := {i ∈ {1, ..., 2k} : |li| = 1}
Λ2 := {i ∈ {1, ..., 2k} : |li| < 1}.

By the definition of Vk, the cardinal number of Λ1 greater than or equal to k. We compute the integral of
W on [ti − ρ, ti + ρ] for i ∈ Λ1, and for i ∈ Λ2, separately. Recall that W(t,u) is even with respect to u and
φi(t) = 1 on Di. By (28) and (29) we obtain, for i ∈ Λ1,∫ ti+ρ

ti−ρ
W(t, liφiµ)dt =

∫
Di

W(t, µ)dt +
∫

[ti−ρ,ti+ρ]\Di

W(t, liφiµ)dt

≥
|µ|p

ρ
Wi +

|µ|p

ρ
Wi.

(32)

We define
α := min

1≤i≤2k
Wi, β := min

1≤i≤2k
Wi.

As stated after (5), it holds that Wi ≤ 0, and hence β ≤ 0.We rewrite (6) as

α + 3β >
2p+2

p
. (33)

We reduce (32) to∫ ti+ρ

ti−ρ
W(t, liφiµ)dt ≥ [α + β]

|µ|pρ1−p

p
.

The right hand side is positive because of (33) with β ≤ 0. Recall that the cardinal number of Λ1 is greather
than ou equal to k. Summing up both sides of the inequality above over i ∈ Λ1,we obtain

∑
i∈Λ1

∫ ti+ρ

ti−ρ
W(t, liφiµ)dt ≥ [α + β]k

|µ|pρ1−p

p
. (34)

Next, by (29), for i ∈ Λ2,we have
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∫ ti+ρ

ti−ρ
W(t, liφiµ)dt ≥ 2|µ|pρ1−pWi ≥ 2β|µ|pρ1−p. (35)

Recall that the cardinal number of Λ2 is less than or equal to k. Summing up both sides over i ∈ Λ2 and
using β ≤ 0,we find∑

i∈Λ2

∫ ti+ρ

ti−ρ
W(t, liφiµ)dt ≥ 2kβ|µ|pρ1−p. (36)

The set Λ2 may be empty. In this case, we consider the left hand side to be zero. Then the inequality above
is still valid because β ≤ 0. Substituting (34) and (36) into (31) and using (33), we obtain

Φ(u) ≤ −[α + 3β −
2p+2

p
]k|µ|pρ1−p < 0,

which implies that supu∈Ak
Φ(u) < 0.

Now we are in the position to give the proofs of our main results.

3. Proofs of Theorem 1.3 and Corollary 1.4-1.7

The aim of this section is to establish the proofs of Theorem 1.3 and Corollary 1.4-1.7.

3.1. Proof of Theorem 1.3
Lemmas 2.7, 2.8 and 2.9 shows that the functional Φ satisfies conditions (1) and (2) in Theorem 2.5.

Therefore, there exist a sequence of nontrivial critical points (uk) of Φ such that Φ(uk) ≤ 0 for all k ∈ N and
uk −→ 0 in E as k −→ ∞. By virtue of Lemma 2.6, {uk} is a sequence of homoclinic solutions of (pHS). Since
E is continuously embedded into L∞, then it follows that maxt∈R |uk(t)| −→ 0 as k −→ ∞. Hence, there exists
k0 ∈N such that uk is a homoclinic solution of (1) for each k ≥ k0.

3.2. Proof of Corollary 1.4 and 1.5
It is enough to show that (8) and (9)⇒(7)⇒ (6). Impose (8) and (9). Then we shall construct µk, tk,i and

ρk satisfying (6). Fix k arbitrary. Let K be the smallest integer that satisfies K ≥ 2k.We divide [vn−ρn, vn+ρn]
equally into K intervals. Denote them by Cn,i with i ≤ K. Then the edge of Cn,i has the length of 2ρn

K . Let
[tn,i − rn, tn,i + rn] the inscribed interval in Cn,i. Then rn =

ρn

K . Since K ≥ 2k, tn,i is defined for all 1 ≤ i ≤ 2k.We
shall show that assumption (W3) is fulfilled with µk, tk,i and ρk replaced by un, tn,i and rn, respectively, if n is
large enough. It is clear that [tn,i − rn, tn,i + rn] ⊂ (0, 1) and [tn,i − rn, tn,i + rn] ∩ [tn, j − rn, tn, j + rn] = ∅ when
i , j. Define Mn :=W(vn,un, ρn),which implies that

W(t,un)
|un|

p ρp
n ≥Mn for t ∈ [vn − ρn, vn + ρn].

By (9), there exists a c ≥ 0 such that

W(t, lun)
|un|

p ρp
n ≥ −c for t ∈ (vn − ρn, vn + ρn), 0 ≤ l ≤ 1.

Then we obtain (7). On the other hand, substituting ρn = Krn in the two inequalities above we have,

W(t,un)
|un|

p Kprp
n ≥Mn,

W(t, lun)
|un|

p Kprp
n ≥ −c for t ∈ (vn − ρn, vn + ρn), 0 ≤ l ≤ 1.



A. Benhassine et al. / Filomat 38:32 (2024), 11211–11225 11222

Taking the infimum on (tn,i − rn, tn,i + rn),we have

W(tn,i,un, rn) ≥
Mn

Kp , W(tn,i,un, rn) ≥ −
c

Kp .

Then we get

min
1≤i≤2k

W(tn,i,un, rn) + 3 min
1≤i≤2k

W(tn,i,un, rn) >
Mn

2Kp −
7c

2Kp .

Since limn→∞Mn = ∞ by (8), the right hand side is larger than 8 for n large enough.

3.3. Proof of Corollary 1.6

To prove this corollary, it is enough to show that the assumption (W) implies (8) and (9). By (W) there
exists a sequence un converging to zero such that

inf
t∈(t0−ρ0,t0+ρ0)

W(t,un)
|un|

p →∞ as n→∞.

Put (vn, ρn) := (t0, ρ0) for all n. Then the above inequality shows (8). Also, by (W), there exists a constant
c ≥ 0 such that

inf
t∈(t0−ρ0,t0+ρ0)

W(t,u)
|u|p

≥ −c for 0 < |u| ≤ 1.

Putting u = lun,we find

inf
t∈(t0−ρ0,t0+ρ0)

W(t, lun)
|lun|

p ≥ −c for all large n and 0 < l ≤ 1,

which leads to

inf
t∈(t0−ρ0,t0+ρ0)

W(t, lun)
|un|

p ≥ −clp ≥ −c.

Therefore (9) holds.

3.4. Proof of Corollary 1.7

We observe that (10) implies (W). Therefore, Corollary 1.6 yields Corollary 1.7.

4. Example

For the reader’s convenience, we present one example to illustrate our main results.
Let

a(t) =



0 if 0 ≤ t < q

(qp + 1)p(t − q), if q ≤ t < q + 1
qp+1 ,

(qp + 1)p, if q + 1
qp+1 ≤ t < q + qp

qp+1 ,

(qp + 1)p(q + 1 − t), if q + qp

qp+1 ≤ t < q + 1,

and

W(t,u) =
a
s
|u|s −

α(t)
r
|u|r, (37)



A. Benhassine et al. / Filomat 38:32 (2024), 11211–11225 11223

where q ∈N∗, and s, r, a are constants satisfying 1 < r < p, 1 < s < p
p+1 (r + 1), a > 0 and

α(t) =


t if t ∈ [0, 1

2 ],
1 − t if t ∈ [ 1

2 , 1],
0 if t ∈ R \ [0, 1].

Then L and W match Theorem 1.3, but not satisfying the corresponding results on the above papers.
Indeed, it is clear that L(t) and W(t,u) satisfy (A0) and (W1) − (W2) respectively. It remains to check that
W(t,u) satisfies (W3). For this purpose we take k0 be a positive integer such that 4k0e−k0 < 1

2 and k ≥ k0.We
define

ρk := e−k, ti := (2i − 1)e−k with 1 ≤ i ≤ 2k. (38)

Then (ti − ρk, ti + ρk) becomes the interval (2(i − 1)e−k, 2ie−k). Theses intervals are disjoint. We have the
estimate α(t) = t ≤ 4ke−k < 1

2 for t ∈ (ti − ρk, ti + ρk) with 1 ≤ i ≤ 2k. The function W(t,u) is computed as

W(t,u) ≥
a
s
|u|s −

1
r

4ke−k
|u|r.

Define θ as follows

p
p − s

< θ <
s

p(s − r)
+ 1 when s > r. (39)

p
p − s

< θwhen s ≤ r. (40)

It follows from (39) and (40) and 1 < s < p(r+1)
p+1 that

−(p − s)θ + p < 0, −(p − s)θ + p < −(p − r)θ + p + 1. (41)

Put µk := ρθk = e−kθ. Then we have

W(ti, µk, ρk) ≥
a
s

e[(p−s)θ−p]k
−

4
r

ke[(p−r)θ−p−1]k
−→ ∞,

as k→∞ by (41). Furthermore, we have

W(t,mµk)ρp
k

|µ|pk
≥

a
s

mse[(p−s)θ−p]k
−

4
r

mrke[(p−r)θ−p−1]k for 0 ≤ m ≤ 1. (42)

Let
ξk(m) :=

a
s

mse[(p−s)θ−p]k
−

4
r

mrke[(p−r)θ−p−1]k for 0 ≤ m ≤ 1.

We shall show that ξk(m) is bounded from below by a constant independent of k and m ∈ [0, 1].
By (42), ξk(1) > 0 for k ≥ k0 with a large k0.We divide the proof into two cases.

• s > r. Then ξk(m) achieves a negative minimum in [0, 1],which is computed as

min
0≤m≤1

ξk(m) =
s − r

sr

(
ae[(p−s)θ−p]k

) −r
s−r

(
4ke[(p−r)θ−p−1]k

) s
s−r .

By (39), the minimum of ξk converges to zero as k −→ ∞.

• s ≤ r. Since ms
≥ mr,we have ξk(m) ≥ 0 for k ≥ k0 and m ∈ [0, 1].
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By Cases 1 and 2, we have the inequality W(ti, µk, ρk) ≥ −c for all i and k ≥ k0 with c ≥ 0.
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