Published by Faculty of Sciences and Mathematics,
University of Ni§, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

Filomat 38:32 (2024), 11553-11582
https://doi.org/10.2298/FIL.2432553Y

<&

ity oS,

%,
*)%

11pupor®

Comparative analysis in function approximation with neural networks
and some basic polynomials

Kostadin Yotov?®, Emil Hadzhikolev®’, Stanka Hadzhikoleva?® Margarita Terziyskab

*Faculty of Mathematics and Informatics, University of Plovdiv Paisii Hilendarski, Bulgaria
YDepartment of Mathematics, Physics and Information Technologies, University of Food Technologies, Bulgaria

Abstract. Choosing the appropriate approximation method is a crucial step in solving a broad class of
problems. It affects both the quality of the solutions obtained and the efficiency of the computational
process. The article presents a study of various approximation cases with a specific group of polynomials
and feedforward artificial neural networks. A comparative analysis of the results obtained has been
conducted.

1. Introduction

The present study is part of a comparative analysis conducted on the approximation efficiency of classical
approaches and different types of artificial neural networks, which covers the following stages:

1. Comparative analysis in approximation through polynomial approximations and artificial neural
networks with different architecture and functionality;

2. Comparative analysis in the approximation of functions with the method of least squares and artificial
neural networks;

3. Comparative analysis in approximation of functions through different types of splines and artificial
neural networks.

This part describes a portion of the first stage of the research done and the results in different cases of
approximation from a certain group of polynomials and feedforward neural networks. The focus is both
on a comparison of the interpolation performance and juxtaposition of the errors of the different methods
in subsequent prediction of function values outside of the training samples. The first part of the article
discusses the basic principles of the most commonly used approximation polynomials. The basic principles
and characteristics of neural networks are described, including their architectures and some of the popular
learning algorithms. In the next part, a comparative analysis of the efficiency and applicability of neural
networks and polynomial approximation approaches is performed. Their advantages and disadvantages
are discussed, considering various aspects such as in-sample modeling accuracy and predictive ability.

2020 Mathematics Subject Classification. Primary 68T07, 65D05.

Keywords. approximation; approximation method; approximation cases; neural network approximations; polynomial approxima-
tions

Received: 21 March 2024; Revised: 05 April 2024; Accepted: 03 May 2024

Communicated by Miodrag Spalevié¢

* Corresponding author: Emil Hadzhikolev

Email addresses: kostadin_yotov@uni-plovdiv.bg (Kostadin Yotov), hadjikolev@uni-plovdiv.bg (Emil Hadzhikolev),
stankah@uni-plovdiv.bg (Stanka Hadzhikoleva), mterziyska@uft-plovdiv.bg (Margarita Terziyska)

K. Yotov et al. / Filomat 38:32 (2024), 1155311582 11554

The purpose of the study is to provide an objective comparison between neural networks and classical
approximation polynomials, which will help those working on similar issues to choose the appropriate
method for their tasks oriented towards specific data modeling and approximation. In contrast to previous
studies that focused on comparing polynomial approximations and artificial neural networks, this study
adds a differential consideration of small and large-volume samples. It also examines the influence of noise
on the two methods and measures and compares the execution times of the different approaches.

2. Classical polynomial approximations and artificial neural networks used for data approximation

A polynomial approximation is a data approximation method that uses polynomials of different types
and aims at representing the typically hidden functional dependence which the previously made mea-
surements depend upon [1], [2], [3]. This method is based on the idea that we can approximate complex
functions with simpler polynomial structures by using different optimization methods. Approximation by
polynomials is widely used in various fields of mathematics, physics, engineering, and computer sciences.
For example, in [4] a com-pressed sensing approach for polynomial approximation of multidimensional
complex functions is proposed and analyzed, [5] consider the problem of approximate reconstruction of
a function defined on the surface of a sphere in Euclidean space, and [6] use polynomial approximations
to approximate the nonlinear relationship between the parameters and the state of a power system. In
addition to interpolation, very often polynomial approximations can also be used to predict the future
development of the observed quantities and extrapolate the available samples [7], [8], [9]. It should also
be noted that polynomial approximation can also be used for multivariate data, in which case polynomials
with more than one variable are used [10]-[12]. All these qualities make polynomial approximations a
useful tool for data analysis and function modeling in various fields of science and engineering. This study
focuses on some of the most commonly used approximation polynomials.

2.1. Lagrange polynomial
Let the given sample be

D={xeRi=12,..m;y = f(x),i=1,2,...,n} 1)
from observed values of the function f(x). A standard approach to data approximation is to use the
Lagrange polynomial [13]-[14]:

La(x) =) yiFj(0),)

j=0

where y; are the values of the function whose interpolation we seek for the given sample

Fi(x) = ﬁ _X—x (x—x0)(x —x1) ... (x = xj-1)(x — Xj41) ... (x — X5)

= 3
L S) N CoReE o Ty I CTRarh ®
It is obvious that F;(x) are polynomials of degree 1, and in the interpolation nodes we have:
1, ifi=g
Fj(xi) = { 0, ifi #]', (4)

Therefore, the Lagrange polynomial degree is also of degree n, and at x = x;, all addends in the sum
L,(x) become zero, except for addend number j = i, equal to ;.
So the Lagrange polynomial is

Ly(x:) = v ®)

i.e. for all values of the independent variable, the values of their dependent variable are returned, hence
it is indeed an interpolation polynomial. In Fig. 1 a Lagrange polynomial (the red graph) is presented
interpolation sin(x) in the segment [-3, 3], using a sample of the following points x = [-3,-1.5,0, 1.5, 3] and
the corresponding functional values.

K. Yotov et al. / Filomat 38:32 (2024), 1155311582 11555

Lagrange interpolating polynomial

1F S
N\,
Lagrange polynomial /L o
y=sin(x) / \.\
O Points / \
0.5 /4 \
,/‘ \
/ \
—_ / !
x D
= /
= 0 d
il d /
|I~ /
\ /
-0.5 F-\ /
\\\ I/
\ /
\
-1 SN2 | . -
-3 -2 -1 0 1 2 3

Figure 1: Lagrange interpolation polynomial for the function sin(x).

Often this type of polynomials is also used for predicting, as for example in [15]-[16]. The Lagrange
polynomial approximation has several important advantages:

1. Ease of use: The approximation method with Lagrange polynomials is easy to understand and apply,
especially compared to other similar approaches, such as the least squares method or the Chebyshev
method.

2. Flexibility: Lagrange polynomials can be used to approximate functions in different domains and
intervals. They can be adapted to different types and shapes of functions, which means that they are
the right choice for a variety of tasks.

3. Accuracy: Lagrange polynomials can achieve high precision when approximating functions, es-
pecially if a large number of interpolation points are used. Given enough points, the Lagrange
polynomial can approximate the true function with good accuracy. However, it should be noted that
working with this polynomial requires increased attention with an excessively large number of points
or complex functions because in such conditions the degree of the polynomial becomes very large
and it may show a tendency to increase errors even within the limits of the samples with which it was
formed.

It is worth noting here that when using many of the polynomial approximations, including the Lagrange
polynomial, it is important to keep in mind that, in the general case, they can be sensitive to the location
of the data and may cause problems such as excessive distortion of the function outside of the range of
available data (the Runge phenomenon/Runge) [17]-[20]. For this reason, when choosing a polynomial for
approximation, some factors need to be considered, such as the polynomial degree, the data location and
distribution, and the application for which the approximation is being used.

2.2. Newton’s polynomial

Newton’s polynomial is an interpolation method that uses an interpolation polynomial of degree n,
based on the set sample of points [20]-[21]. Newton’s polynomial is based on the idea of divided differences.

K. Yotov et al. / Filomat 38:32 (2024), 1155311582 11556

For the given sample (1), the first-order divided differences have the representation

flxiv) = f(xi)

flxi, xia] = P—— (6)
as the divided differences of a higher order being inductively defined, for example from order (k + 1):
f[xl‘, Xisl, - - -, xi+k+1] — f[xi+1/ Xit2s ey xi+k+1] - f[xi/ Xitlseees xi+k] (7)

Xitk+1 — Xi
Newton's interpolation polynomial is based on the Lagrange polynomial and is introduced through the

proof of the following theorem:
The Lagrange interpolation polynomial L,(x) can be represented like this:

Lu(x) = f(xo) + flxo, x1](x — x0) + f[x0, X1, x2](x — x0)(x — x1) + ...

+fx0, 1, xu](x = x0)(x — x1) . .. (x — xp). ®)

The representation 8 of the Lagrange polynomial is called Newton’s divided difference interpolation
formula. Newton’s polynomial has several advantages and is preferred in several cases:

1. Easy calculation: The process of generating Newton’s polynomial and its coefficients is relatively
simple when using software algorithms.

2. Effectiveness: When the sample points are slightly changed to obtain a new interpolation polynomial,
the already calculated divided differences can be reused, reducing the computational effort.

3. Universality: Newton’s polynomial can be used to interpolate arbitrary functions, including nonlinear
ones and boundary conditions.

4. Adaptability: Newton’s polynomial can be easily modified to add new points or remove existing
points from the sample.

Despite its advantages, however, just like the case of Lagrange polynomial, Newton’s polynomial has its
limitations expressed in its increasing complexity as the samples become larger and its sensitivity to errors
in the input data. In some cases where accuracy and efficiency are critical, other interpolation methods may
be preferred, e.g. the Hermite polynomial or the Chebyshev polynomial.

2.3. Hermite polynomial

The Hermite polynomial is a special kind of polynomial which is also often used for interpolating and
approximating functions. It is based on the idea of expanding the Lagrange or Newton’s polynomials by
including additional components that also include derivatives of the function at the interpolation points
[22]-[23]. The Hermite polynomial of degree n can be defined by the following expression:

Hy) = (-1 e S o0 ©)
The first few Hermite polynomials are:

To(x) =1

T1(x) = 2x

Ty(x) = 4x* -2

T3(x) = 8x°> — 12x

Ta(x) = 16x* — 48x% + 12

Ts(x) = 32x° — 160x> + 120x

Te(x) = 64x° — 480x* + 720x> — 120

T, (x) = 128x7 — 1344x° + 3360x° — 1680x

Ts(x) = 256x% — 3584x° + 13440x* — 32x% + 1680

K. Yotov et al. / Filomat 38:32 (2024), 1155311582 11557

Hermite (physicists') Polynomials

= =
c
Il
n=0 ——
N=1 =— |
n=2 ——
n=3 =i
n=4 ——
n=5 =——
1 |
-2 5 0 X 2 3

Figure 2: The first five Hermite polynomials

The approximation with the Hermite polynomial is done by polynomials based on the ones known from
the predefined sample, values of the function and its derivatives in certain points. Similar approaches can
be used when we have information about the values of the function and its derivatives at specific points
and we want to construct the approximating polynomial to represent the function with predetermined
accuracy.

The advantages of the Hermite polynomial approximation are:

1. The possibility of interpolation and approximation of the function and its derivatives at specific
points. This means that we can represent not only the values of the function at the points, but also
the information about its change and the rate of this change (the acceleration).

2. The Hermite polynomial can represent complex forms of functions and capture details in the
function’s behavior. It can approximate the curvature, the convexity and other characteristics of the
function.

3. Itisnot tobe overlooked that Hermite polynomials can be constructed and used easily with suitable
algorithms and software tools. There are various libraries and programs that provide ready-made
functions for creating and manipulating Hermite polynomials. In our study, for example, we use the
built-in functions hermite, hermitepoly, and hermiteinterp in the Matlab environment. But similar tools
can be found in Python, Maple, etc.

As a disadvantage of the approaches using the Hermite polynomial, it should be noted that in many
cases the polynomial can turn out to be complex and require a large number of points for the correct
representation of the function and its derivatives. This may lead to a higher computational load and larger
data volume. In turn, the high degree of the polynomial can cause additional difficulties in a subsequent
analysis of the results.

K. Yotov et al. / Filomat 38:32 (2024), 1155311582 11558

2.4. Chebyshev approximation

The Chebyshev polynomials are a certain group of polynomials that are used to approximate functions
in a certain interval. They are based on the Chebyshev points and have specific properties that make
them the preferred method in many cases for approximating functions [24]-[25]. Recurring formulas for
Chebyshev polynomials of the first kind have the representation:

To(x) =1
Ti(x) =x
(10)
Tn+1(x) = 2xTn(x) - Tn—l(x)
and those for second-kind polynomials —
UQ(X) =1
Ui(x) = 2x
(11)

U1 (x) = 2xU,(x) — Uy-1(x)

In our study, we use Chebyshev polynomials of the first kind.
The first few polynomials of this recurrent series are:

To(x) =1
Ti(x) =x
To(x) =2x* -1

T3(x) = 4x° — 3x
Ty(x) = 8x* — 8x2 + 1
Ts(x) = 16x° — 20x° + 5x
Te(x) = 32x° — 48x* + 18x* — 1
Ty (x) = 64x” — 112x° + 56x° — 7x
Tg(x) = 128x% — 256x° + 160x* — 32x% + 1
To(x) = 256x° — 576x7 + 432x° — 120x° + 9x
In the experiments we performed, for the distribution of the data (Chebyshev nodes) we use the function:
. rkm
X = sm(%), (12)

where 7 is the degree of the polynomial, and k = —n:2: n.
The major advantages of approximations with Chebyshev polynomials are:

1. Evenness: Chebyshev polynomials are formed through evenly scattered and distributed points
in a given interval, which can lead to better results when approximating functions with a complex
structure.

2. Minimal errors at the interval boundaries: Chebyshev polynomials have the property of minimizing
the error at the boundaries of the interval. This means that the approximation with Chebyshev
polynomials can be more accurate around the boundaries compared to other methods.

K. Yotov et al. / Filomat 38:32 (2024), 1155311582 11559

L L L L
1.0 o n=0]
0.5F -
~ [Il
> o]
L 0.0F :
E. — f'f \Q‘ .
- / n=3 \ [1
- /;’ \ N
[/ = \ | =
~0.5 f } n=5 \ 13
- / \ / =
— / ‘X\ / -]
2 \ / \ / E
-1.0f AN) :

P I I I PR I T I P I P P T I I
-1.0 -0.5 0.0 0.5 1.0

X

Figure 3: The first five Chebyshev polynomials of the first kind

3. Stability: Approximation with Chebyshev polynomials is robust to changes in data or the interval.
This means that even if there is some variation in the input data, Chebyshev polynomials can provide
a good approximation.

The main disadvantage of this approach worth noting is the computational complexity of the approx-
imation — with Chebyshev polynomials, it can be high, especially with large degrees of the polynomials,
which in turn requires more time and resources for the calculations. In addition, approximation with
Chebyshev polynomials requires a preliminary setting of the interval and the number of points, which
means that the method is not very adaptable and may face challenges when approximating functions with
a variable structure or ones with more complex behavior.

2.5. Approximation with artificial neural networks

Artificial neural networks (ANNs) are computer models based on the structure and functioning of
biological neural networks — a major part of the human brain [26]-[28]. The biological neuron is the basic
unit of the nervous system in living organisms which has a key role in the transmission of bio-electrical
signals and in-formation processing.

Anatomically and functionally, the biological neuron can be divided into several main components (Fig.
4):

1. Soma (body): The soma of a neuron is the body of the cell, it contains a nucleus and organelles
necessary for the metabolic functions and the maintenance of cellular life.

2. Dendrites: Dendrites are elongated and branched structures — the input part of the neuron that is
responsible for receiving signals and information from other neurons, receptors, glands or muscle
groups.

3. Axon: The axon is a long structure, typically insulated with a myelin sheath that transmits electrical
signals from the soma to other cells — the postsynaptic neurons. At the end of the axon are the axon
terminals which connect to the dendrites of the next cell through structures called synapses.

4. Synapses: Synapses are anatomical structural formations through which the contact between neu-
rons is made. They can be chemical, electrical or mixed. In chemical synapses, neurons communicate

K. Yotov et al. / Filomat 38:32 (2024), 11553-11582 11560

through chemical substances called neurotransmitters, while electrical synapses allow direct trans-
mission of electrical signals from one neuron to another.

Neuron

Dendrites

Axon terminals

/

Figure 4: Structure of the biological neuron.

Adhering to the evolutionarily created model, the structure of the artificial neuron is presented schemat-
ically according to Fig. 5. Here:
- }_(,(x1, X2,X3,...,%,) is the input stimuli vector;
- W(wl, wy, ..., Wy) is the weight vector;
- b — threshold of the neuron;
- § — function modeling the summation of input stimuli;
- g — activation/transfer function modeling the output signal along the axon.

Output

Figure 5: Scheme of an artificial neuron
Generally, artificial neural networks can be defined as computer models that are structured from multiple
artificial neurons designed to model biological neural networks. They are characterized by:

1. Layered structure: ANNSs consist of several layers of neurons that are arranged sequentially (Fig. 6).
Typically, ANNSs include an input layer, hidden layers and an output layer, where the input layer

K. Yotov et al. / Filomat 38:32 (2024), 1155311582 11561

Npipo--s i —a{Npy

S :
Naa| i N YNeo—— Npye
NZ‘I : ‘N)q

Figure 6: An artificial neural network with r-hidden layers, each of which has g neurons

receives the data from the environment external to the neuron, the hidden layers perform processing
and pass the information forward, and the output layer generates the final result.

2. Links and weights: Neurons in the different layers of the ANN are connected through links that
have associated weights. These weights determine the importance of input signals and control the
influence that one neuron has on others.

3. Learning process: ANNSs are trained by providing input data and adjusting the weights of the links
between neurons. The training can be done in a variety of ways and is closely related to the type of
transfer function used. During training, the ANN goes through an iterative error correction algorithm.

Through the iterative process, the weights are changed to reduce the error at each subsequent cycle
[29]-[31].

Based on their structure and principles of functionality, along with the training option, artificial neural
networks become a powerful tool for processing information and solving complex tasks. They are capable
of learning from data, discovering complex patterns and even making predictions. They are used for image
recognition [32], speech recognition [33], natural language processing [34], prediction [35], robotics [36],
medicine [37], finances [38] and other. In the present study, ANNs were used to approximate functions in
parallel with polynomials, and a comparative analysis of the obtained results was carried out.

2.6. Other contemporary approaches to approximation of functions

There are numerous modern approaches that are used to approximate an unknown functional depen-
dency, based on experimentally obtained data on the predictors and the target value. Some of the most
commonly encountered methods in the literature include:

1. Support Vector Machines (SVM): SVM is a classification and regression method used to find an
optimal hyperplane that partitions the data in space based on various features. SVM can be used
to approximate functions and predict their future behavior. For example, Martin offers an online
method for using SVM to approximate time series and numerical functions [39]. On the other hand,
Hammer and Gersmann show that an SVM with a polynomial kernel of degree p — 1 trained with a
training set of size p can approximate p training points to any desired accuracy [40].

2. Decision Trees and Random Forests: These methods use tree-like structures to divide the data into
sequential steps. Random forests are an ensemble of multiple decision trees that work together
to make predictions more efficient. In their work, Balaskas and colleagues use the approximating
capabilities of Decision Trees to solve problems related to technologies used in manufacturing printed
circuits in electronics [41]. An example of how to design decision rules using Decision Trees and
approximations is presented in [42].

3. Genetic Algorithms: Genetic algorithms are used to solve optimization problems, offering an alterna-
tive approach to finding optimal solutions in the problem space by creating, mutating, and combining
genetic codes that represent potential solutions. In function approximation, genetic algorithms can
find approximate solutions to functional problems, where the population of solutions is represented

K. Yotov et al. / Filomat 38:32 (2024), 1155311582 11562

by genetic codes that are transformed and optimized through evolutionary operators such as selection
and mutation. The process iteratively evolves over several generations, aiming to find increasingly
efficient solutions. Examples of the use of genetic approximation algorithms can be seen in [43]-[44].

In the present study, artificial neural networks are used to conduct a meaningful comparative analysis
of their approximation efficiency relative to that of polynomial approximations.

3. Comparative analysis of the efficiency of polynomial approximations and artificial neural networks
in function approximation

Approximation of functions is of great importance in various fields of science, engineering, business
and sometimes even in public life. It allows complex functions to be represented with simpler models that
can be analyzed and used more easily, to make predictions, extract information and find solutions that
would otherwise be difficult or even impossible. There are many different approaches to approximation
— polynomials, splines, regression models and others, and it should be noted that each method has its
advantages and disadvantages in terms of accuracy, computational complexity or applicability in specific
cases. This means that choosing the most suitable approximation method is essential when we have to
decide which one to use depending on the characteristics of the data, the presence of noise, and the desired
accuracy. That is why conducting a comparative analysis between different approximation methods is
extremely important. Such an analysis helps us compare the effectiveness, accuracy, and applicability of
the different methods in specific scenarios. Through the comparative analysis, we can select the most
suitable method for our needs and achieve optimal results in the approximation of functions.

In the present study, a comparative analysis was conducted between some classical polynomial approx-
imations and artificial neural networks, and for the purposes of the analysis, applying the same computer
configuration, the following criteria for the effectiveness of the respective approach were used:

1. Accuracy in interpolation: How accurately the method approximates the real function or the data it
is trying to approximate. To estimate the in-sample precision, we use mean absolute error (MAE):

1y —
MAE = ~ Zl“ [7i - vil (13)

where ¥; are the values interpolated by the respective method, y; are the real values, and n is the
volume of the sample.
Unlike the research of other authors, which focused on comparing polynomial and neural network
methods, we have set several additional new tasks for ourselves, namely, to compare the following
indicators:

2. Speed: How fast the respective algorithm performs the approximation. In general, speed can be
measured by indicating the execution time or the number of steps that need to be completed. In this
study, we have chosen to consider the execution time.

3. Memory and computer efficiency: Requiring a large amount of memory or computing power can
also limit the effectiveness of the chosen approximation method, especially when dealing with larger
or more complex data. Therefore, as an additional criterion considering the efficacy of an approach,
we have also added the efficiency when using the memory or computing capabilities of the computer.

4. Predicting near and away from the boundaries of the given sample: The data and functions we
want to approximate can often have significant variations both near the sample boundaries and far
beyond. This means that if the approximation method is not good in one of these two areas, the
results may be inaccurate or not applicable in real conditions. Thus, if an approximation method is
only good near the boundaries of the sample, its usefulness and reliability decrease when applied to
a prediction or approximation far beyond those boundaries.

K. Yotov et al. / Filomat 38:32 (2024), 1155311582 11563

5. Scalability: The ability of the selected approximation method to handle large data sets or complex
functions. It is important to verify whether the algorithm can be applied efficiently on different data
sizes or function complexity. In our case, we check scalability through re-considering criteria (1)-(4)
with an increased sample size.

6. Impact of noise on the results: To what extent the compared methods are able to handle the noise in
the input data?

3.1. Comparative analysis of Lagrange polynomial approximation and artificial neural networks

To make a comparative analysis of the efficiency in approximation of Lagrange polynomials and artificial
neural networks, we used different types of functions. The process of experimentation covered several
different, relatively long stages, and the results in all cases were uniform. Therefore, in the present study,
the analysis described when comparing an approximation done by the Lagrange polynomial and by artificial
neural networks, one of the most representative examples is chosen — the approximation of the function:

y = log(x) (14)

3.1.1. Small number of nodes (n = 10)
The sample we used at this stage is as follows:

D ={x;=1:10, y; = log(x:)}; (15)

The interpolating Lagrange polynomial was implemented with the Matlab script shown below.

% Sample
x =1:10; v = log(x);
% Lagrangeinterpolationpolynomial
symst;
L = 0;
fori = 1l:length (x)
¥ Lagrangepolynomialformula

Li = 1;
for 7 = l:length(x)
if j ~=1

Li = Li * (t - x(J)) / (x(1) - 2(3));

end
end

L =1L+ Li * y(i)+s
end
% Calculatingthepolynomialerror
error = subs(L, t, x) - vy:

mean error = mean (abs (error));
% Al&s:ithmspeed

tic
interpolated y
execution time

sum(y .* L);
toc;

Once the input-output sample vectors (x, y) are defined, the variable ¢ for the implementation of the
Lagrange polynomial L is also declared. After the creation of L, all differences (errors) between the values
of the polynomial and the objective function in the sample nodes are reported. Subsequently, the mean
absolute error during interpolation (mean_error) is formed. During the implementation of the code, the
measurement of the time of completion (speed) of the algorithm is also started (tic).

K. Yotov et al. / Filomat 38:32 (2024), 1155311582 11564

To specify a suitable neural network, we use the following formula for the number of neurons in one
hidden layer [45]-[46]:

m-—1
T n+2

(16)

where m is the number of training samples and # is the number of input stimuli. At this sample size, the
neural network we use consists of one hidden layer that contains 3 neurons. All training samples from D
were divided into three groups: 70% (6 samples) — training; 15% (2) — validation; 15% (2) — network test.
The hidden neurons in the network are used for transfer function

TanH(x) = 1 2

+ e—2x - (17)

and the training was implemented with the Levenberg-Marquardt algorithm.

% preparing the data for the neural network
input = =x;output = y;

% Creating a neural network

net=fitnet (3);

net.divideParam.trainRatio = 75/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

net = train(net, input, ocutput);% Training

% Interpoclation with the neural network
interpolated _y nn = net(input);

% Calculation of the mean absolute error (MAE)
mae nn = mean(abs(interpolated y nn - output));

The comparison between this neural network with the Lagrange polynomial constructed for the sample
showed the following results (Fig. 7).

From the interpolation graph it is immediately noticeable how strongly expressed Runge’s phenomenon
is, for the Lagrange polynomial — outside the boundaries of the sample, it sharply begins to deviate from
the real function, something that the neural network copes with. However, it can be said that under these
conditions of a small-size sample and a neural network that has distributed the insufficient training samples
into three groups, an ANN cannot do very well and the advantage is in favor of the Lagrange polynomial.
The polynomial interpolation (within the sample bounds) is better, the time for executing the approximation
with the polynomial is shorter, and the error (MAE) is also smaller even when predicting outside the sample
but near its boundaries. Only when predicting far outside the sample boundaries, the absolute error of the
neural network is negligible compared to that of the polynomial, a fact that is a consequence of the strong
dependence of Lagrange polynomials on Runge’s phenomenon.

Table 1 describes the numerical results of the comparison between the two methods.

Approximation Close Distant
Method || execution time | Interpolation prediction prediction
(seconds) error error (at x=11) || error (at x=20)
Lagrange polynomial 0.0064 0 0.0354 1.829¢e+3
Artificial neural network 0.059 0.0387 0.0696 0.0501

Table 1: Comparison between Lagrange polynomial and an artificial neural network with three neurons in
the hidden layer and sampling distribution training/test/validation (70%/15%j/15%)

Itis noticeable that, unlike the polynomial whose mathematical model obliges it to pass correctly through
all nodes of the sample since it is distributed into training samples, test, and validation samples, the neural

K. Yotov et al. / Filomat 38:32 (2024), 11553-11582

Lagrange Interpolating Polynomial

11565

2. 7_<__7A>f___-~f‘_ o i R > -
o 0 7
2t 4
Interpolating Polynomial
40 Real function T
0 2 4 6 8 10 12 14 16 18 20
X
4 Interpolation with Neural Network
2F = O"'O .
o
> o
1t & .
& 1 Neural Network
Real function
ol—e— L L L L L L L L
0 2 4 6 8 10 12 14 16 18 20

X

Figure 7: Comparison of the Lagrange polynomial with three-neuron artificial neural network and dis-

tributed samples for training, test and validation (70%; 15%; 15%).

Lagrange Interpolating Polynomial

4 o
i I e —
ot i
>
-2 _
Interpolating Polynomial
-4t — Real function 1
0 5 10 15 20
X
% Interpolation with Neural Network
BDTS" oaeE
2 -
o &
= o
1 (5]]
o Neural Network
— Real function
00— - <
0) 10 15 20
X

Figure 8: Comparison of Lagrange polynomial with an artificial neural network with three neurons and

distributed samples for training, test and validation (100%; 0%; 0%).

K. Yotov et al. / Filomat 38:32 (2024), 1155311582 11566

Approximation Close Distant
Method || execution time || Interpolation prediction prediction
(seconds) error error (at x=11) || error (at x=20)
Lagrange polynomial 0.0064 0 0.0354 1.829¢e+3
Artificial neural network 0.1261 5.0592e-5 8.7503e-3 0.508

Table 2: Comparison between Lagrange polynomial and an artificial neural network with three neurons in
the hidden layer and sampling distribution training/test/validation (100%j/0%/0%).

Approximation Close Distant
Method || execution time | Interpolation prediction prediction
(seconds) error error (at x=11) || error (at x=20)
Lagrange polynomial 0.6634 0 3.7211e+ 12 1.5536¢ + 25
Artificial neural network 0.2621 0.033 0.0055 0.0042

Table 3: Comparison between Lagrange polynomial and artificial neural network with 33 neurons in the
hidden layer and sample volume n = 100

network fails to pass successfully and precisely through these same nodes. However, if we force the neural
network to use all the samples only for training (100%/0%/0%), things change in several aspects (Fig. 8).

The change in the neural network’s ability to interpolate the given sample nodes is immediately notice-
able. Even though it cannot be compared to the zero error of the polynomial at these nodes, the artificial
network error has become much smaller than in the previous case. The increased ability of the network to
make predictions near the end of the sample is also impressive — now its error is smaller than that of the
Lagrange polynomial. There is also a slight degradation of the neural network’s ability to predict far beyond
the sample boundaries, which is explained by the fact that there are no separate samples for validation and
independent tests during the execution of the training algorithm.

Even so, the artificial neural network still predicts much more successfully than the polynomial in these
distant regions (Table 2).

3.1.2. Increased number of nodes (n = 100)

As the sample size increases, the performance of the Lagrange polynomial begins to lag behind that of
the ANN. The increased number of nodes leads to an increase in the degree of the polynomial, which is
related to the used computing power and memory, the implementation of the algorithm slows down, and
the errors, compared to those of the ANN, become larger and larger (Fig. 9).

In the case of 100 training samples and one input neuron, according to formula (1) we used a neural
network with 33 neurons in the hidden layer. In the experiment, the increasingly unstable behavior of
the polynomial at its boundaries is immediately noticeable as the sample volume increases. In contrast,
the neural network approximation maintains stability, and it is clear from the look of the graph that its
prediction errors will be much smaller. The blue graph of the approximation made by the neural network
almost completely coincides with the green one — that of the real function. The numerical values of the
comparative analysis made under these circumstances can be viewed in Table 3.

Due to the principles on which the mathematical model of the Lagrange polynomial is built, it is forced
to pass through all nodes of the sample, and this is its only advantage over the artificial neural network. The
performance of the neural network in the approximation is better than that of the polynomial, starting from
the execution time of the algorithm and reaching the prediction close and far from the sample boundaries.
Here we have only described the comparative analysis between the Lagrange polynomial and an artificial
neural network. In the course of the study, similar comparisons were sought for different types of functions:

n

Linear : y = Z a;ix; (18)

i=1

K. Yotov et al. / Filomat 38:32 (2024), 11553-11582

<10™ Lagrange Interpolating Polynomial
0 — -
>.2 .
-4 4
6 Interpolating Polynomial 1
— Real function
-8) : : E
0 10 20 30 40 50 60 70 80 90 100 110
X
4 -
3 -
=y
[#
| Neural Network | |
@ — Real function
0 : 1 1 1 1 1
0 20 40 60 80 100 120
X

11567

Figure 9: Comparison of a Lagrange polynomial with an artificial neural network with three neurons and

sample size n = 100

n

Power : y = Z a;x;

i=1

n n
Trigonometric: y = Z a;sinx;, y = Z a; COS X;
=1 i=1
n n
y= Z aitgx;, y = Z a;cotgx;
i=1 i=1

n
Logarithmic : y = Z a;log x;

i=1

n
Exponential : y = aie

i=1

Xi

(19)

(20)

(1)

(22)

(23)

3.1.3. Conclusions from the comparative analysis of function approximation with Lagrange polynomials and with

artificial neural networks

The comparison of the approximation capabilities of the Lagrange polynomial and the artificial neural

networks leads to several important conclusions:

1. Interpolation: Due to the mathematical principles on which the Lagrange polynomial is built, it
always passes through the sample nodes, making it more convenient when we are only looking for
a small interpolation error. However, it should be noted that with an appropriate choice of transfer

functions and type of training, artificial neural networks have relatively small errors.

K. Yotov et al. / Filomat 38:32 (2024), 1155311582 11568

2. Speed: For small samples, the speed of the function approximation algorithm using the Lagrange
polynomial is higher than that of the artificial neural network. However, with an increased sample
volume, due to an increase in the degree of the polynomial, the computational resources increase
and so does the execution time. Thus, for larger volumes of data, the artificial neural network has
apparent superiority in terms of approximation speed.

3. Memory and computing resources. Scalability: As with the speed of the algorithm, it should be
noted here that an increase in the volume of samples is accompanied by an increase in used memory
and computational resources, which is especially noticeable in the case of Lagrange polynomials.
When we add this fact to the speed decrease with large samples as well as Runge’s phenomenon,
it becomes clear that Lagrange polynomials, as an approximation algorithm, have poorer scalability
than artificial neural networks whose behavior remains stable under the appropriate form of training.

4. Prediction: In the general case, Lagrange polynomials deteriorate sharply in their predictive qualities
beyond the boundaries of the samples (Runge). In both near-range and farther-range predictions,
artificial neural networks have an apparent advantage.

3.2. Comparison of the efficiency of approximation using Newton'’s polynomials and artificial neural networks.

Experimenting with Newton’s polynomials and artificial neural networks was similar to comparing
La-grange polynomials with artificial neurons. The results are quite similar. Newton’s polynomials can
also be affected by Runge’s phenomenon when approximating functions. Large oscillations and “warps”
of the approximating polynomial near the boundaries of the interpolation interval were observed. This
means that when used for prediction, polynomials expand beyond the boundaries of the samples with large
deviations from the real functions. Furthermore, since Newton’s polynomial is expressed in terms of basic
polynomials associated with the interpolation points, and since when interpolating samples of volume n,
each interpolation point is used as a node of the polynomial and provides its own basic polynomial when
all basic polynomials are combined, we obtain Newton’s polynomial of degree n-1 that passes through
all interpolation points. This high degree of Newton’s polynomial in large samples, just like with the
Lagrange polynomial, is accompanied by an increase in the speed of the approximation and the required
computing resources, which means very poor scalability of the method. After experimenting with many
different functions, the results we obtained point to the superiority of ANNs in most of the selected criteria
for approximation efficiency.

3.3. Comparison of the efficiency of approximation using Hermite polynomials and artificial neural networks

Experimenting with a Hermite polynomial was a bit different from that associated with the Lagrange

and Newton polynomials. The differences arose from the application of the Hermite polynomial, which
proves useful in the following situations:

1. Interpolation with smooth curves: The Hermite polynomial can be used to interpolate data when
we want the resulting curve to be smooth and without sharp changes. This is achieved through the
inclusion of information about the derivatives of the function in the interpolation process.

2. Approximation of complex functions: The Hermite polynomial can be used to approximate functions
that are complex and difficult to represent with simple analytical formulas. By including information
about the derivatives of the function, we can approximate its behavior to the real function at various
points.

3. Solving optimization tasks: The Hermite polynomial is also used in optimization tasks where we
want to find the function’s extrema. The use of information on the derivatives helps us trace the
behavior and identify critical points where the respective extrema can occur.

In the present study, we conducted a number of experiments related to each of these trends in the
application of Hermite polynomials. Here we will present some of the examples that were used to compare
the approximation of these polynomials with artificial neural networks.

Often, the Hermite polynomial interpolation uses data on both the behavior of the objective function
that is known up to a point and its speed and acceleration. One example is the following. Observations
were made of the temperature (in degrees Celsius), its rate of change, and the acceleration with which it was changing
(Table 4).

K. Yotov et al. / Filomat 38:32 (2024), 1155311582

Moment || Temperature | Temperature | Temperature
in time T=T(t) speed acceleration
t dT/dt dT?/dt?
0 10.0 0.0 1.00
2 9.5 2.50 2.50
4 8 7.0 2.75
6 6.5 9.5 1.5
8 5 9.5 0.5

11569

Table 4: Measurements of temperature, speed, and acceleration as it changes

The task is to build a Hermite polynomial that approximates the temperature.
The main part of the script with which the task was accomplished consists of building the polynomial itself.

% A sample of tempera
T = [0.0, 2.0, 4.0, €.0,
temperature = [10.0, 9.5,

dT dt = [0.00, 2.50, 7.00, 9.50, 9.501;

d2T dt2 = [1.00, 2.50, 2.75, 1.50, 0.501;

% Calculation of the Hermite polynomial

SYmsx;

H = hermite interpolation rate (T, temperature, dT _dt, d2T dt2, x);

The function hermite_interpolation_rate building the polynomial model itself is as follows.

function H = hermite interpolation skorost (T, temperature, dT dt, d2T dt2, =)

n = length(T);
H = sym(0); % Zero Hermite polynomial
for 1 = 1:n
term = temperature(i);
for j = 1:n
if j ~= 1
term = term * ((x — T(3)) / (T(i) - T(3)));
end
end

H=H+tem * (1 - 2 * (x - T(i)) * diff(dT dt(i), ®)) + term * (x — T(i))
* (2 — T(i)) * d2T dtz2(i);
end
end

To build the Hermite polynomial, both the temperature values and the parameters of its change (such
as speed and acceleration) are used. The degree of the constructed polynomial is 9 (2n — 1, where 7 is the
sample volume), and part of its graph is shown in Fig. 10.a.

The mean absolute error of the Hermite polynomial interpolation is:

MAE =0

To compare the interpolation capability of this polynomial with an artificial neural network, a single-
layer network is built, with 10 neurons in the hidden layer. The transfer function in the bodies of the hidden
neurons was a hyperbolic tangent and the network was trained with the Levenberg-Marquardt algorithm.
It should be noted that due to the small amount of data in the sample, training was performed using all
samples. Since the goal is to approximate the behavior of the temperature, the moment in time, speed,

K. Yotov et al. / Filomat 38:32 (2024), 1155311582

11570

and acceleration of change in temperature fluctuations were used as training input data. The results of the
interpolation of the network show the mean absolute error in the sampled nodes (Fig. 10.b):

-20 \

-25

Temperature

MAE = 3.65E - 15

Approximation with Hermite Polynomial

/N

Hermite Polynomial
O Original points

4
t

5 6 7

(a) Figure 10a. Approximation of the sample
from Table 6 with a Hermite polynomial.

-25

Temperature

-20

Approximation with Hermite Polynomial and ANN

/ \\\ /y \\‘\

Hermite Polynomial
Neural network
O Original points

2 3 4 5 6 7
t

(b) Figure 10b. Approximation of the sample
from Table 6 with a Hermite polynomial and an ANN.

It must be admitted that the error of the artificial neural network during interpolation of the sample is
larger than that of the polynomial, yet it should be noted that as a representative of artificial intelligence,
the neural network was trained using 5 samples only. When trying to increase the sample volume, an
increased delay was noticed in the performance of the Hermite polynomial due to an increase in degree,
which in turn is associated with additional difficulties in the calculation algorithms.

For sets consisting of several hundred samples, in addition to the large delay, the interpolation errors
started to become comparable to those of artificial neural structures.
For a more in-depth comparative analysis, we again used samples of different sizes to approximate
different types of functions: linear, power functions, logarithmic, exponential, trigonometric and mixed.
We will summarize the results of all conducted experiments with different functions into two groups:

1. Experimentation with small volume samples (17 < 100). For these small data samples, the Hermite
polynomial definitely outperforms the ANN approximation. The method is faster, and the interpola-
tion error is zero. Although this type of polynomials also suffers from the effect caused by Runge’s
phenomenon, the model they produce for small samples is excellently adapted for prediction both

near and far from the boundaries of the samples.

For large volume samples (1 > 500). As the sample size increases, the approximation qualities of the

polynomial deteriorate and the efficiency of the neural network improves. For samples with volume
n > 100, deviations from the decent indicators for the polynomials gradually begin. The gradual
increase of the sample is first reflected in the implementation time of the algorithm, followed by

deterioration in the near and far prediction. For samples with volume n > 500, the polynomial errors
observed in the interpolation nodes are larger than those of artificial neurons.

3.3.1. Conclusions from the comparative analysis of approximation of functions using Hermite polynomials and

artificial neural networks.

The comparative analysis of function approximation using Hermite polynomials and artificial neural
networks leads to several important conclusions:

K. Yotov et al. / Filomat 38:32 (2024), 1155311582 11571

1. Interpolation: For small samples, the Hermite polynomial always passes through the sample nodes
with zero error. Just like the other types of polynomials, this makes it more convenient when we are
only looking for a small error in the interpolation of the given data sample.

2. Speed: For small samples, the speed of the algorithms for approximation of functions with the
Hermite polynomial is higher than that of the artificial neural network. However, with an increased
sample size, due to an increase in the polynomial degree, the computational resources increase and
so does the execution time. Thus, with larger data, the artificial neural network has superiority in
terms of approximation speed.

3. Memory and computing resources. Scalability: Anincrease in the volume of samples is accompanied
by an increase in the used memory and computer resources, which is particularly noticeable for all
polynomials, including the Hermite one. It should be noted that as an approximation algorithm,
Hermite polynomials have a poorer scalability than artificial neural networks whose behavior remains
stable under the appropriate form of training.

4. Predicting: For small sample volumes, Hermite polynomials have better predictive qualities than
neural networks, both near and far from the sample boundary. This is somewhat related both to the
low degree of the polynomial (resp. leading to smaller errors) and to the lack of sufficient samples
to properly train the neural structures. However, with larger volumes of data samples trained with
larger amounts of specimens and competing with a slow, imprecise polynomial of a very high degree,
which is also affected by Runge’s phenomenon, especially with highly oscillating objective functions,
neural networks outperform in terms of prediction.

3.4. Comparison of the efficiency of approximation using Chebyshev polynomials and artificial neural networks

Chebyshev polynomials are used in several different situations. Below are some of the tasks in which
its use is preferred:

1. Approximation of functions with large variations in input data: The Chebyshev polynomial can
be effective when approximating functions that have large variance or contain different modes of
behavior. This includes tasks such as signal approximation, financial data, kinetic models, and more.

2. Minimizing the maximum approximation error: The Chebyshev polynomial has the ability to min-
imize the maximum approximation error in a given interval. It is therefore used in tasks where it is
important to ensure that the approximation error is as small as possible over the entire interval.

3. Solving tasks having samples with randomly distributed data: The Chebyshev polynomial is use-
ful when approximating functions that have randomly distributed data or when robustness of the
approximation to data deviations is required.

4. Approximation of nonlinear functions: The Chebyshev polynomial can be used to approximate
non-linear functions with a more complex structure, where standard polynomials are not suitable or
have a high error.

In the present study, a comparative analysis was carried out of the approximation capabilities of Cheby-
shev polynomials and artificial neural networks, both in the indicated areas and for the approximation of
individual functions of different characters.

The example that we will point out here is related to the approximation of the non-linear function with
a more complex character, for which the other studied polynomials are associated with large errors:

1
f(x) =0,3xcos(1,3nx +0,3) + Tro> (24)

e—2x
An approximation of the function with a Chebyshev polynomial and artificial neural networks in the
segment [—1, 1] was tracked.
First-order Chebyshev polynomials and different degrees (3,5,6,12 and 20) were used in the experiments.

K. Yotov et al. / Filomat 38:32 (2024), 1155311582 11572

clear; clec;

%Polynomial order

order = 20; %Low = 3, Med = 5, Med 1=6 high 1 = 12 high 2=20;
%Points used

nData = 5000;

$Region

d=[-1,1];

$Target function

testFun = @(x) 0.3*x.*cos(1.3*pi*x + 0.3) + 1./ (l+exp(-2*=x));
noiseAmpl = 0.05;% Noise wvalue

t = linspace(d(l),d(2),nData); % arguments of the objective function
% functional wvalues of the cbjective function

y = testFun(t);

vSample = y + noiselAmpl*randn(size(y));

%Chebyshev nodes

chebPts = chebyshevPoints (order+1,d);

$Approximation

f = chebFitLs(t, ySample,d,order) ;

yFit = chebEval (£,t,d);

The chebyshevPoints function is used to create the Chebyshev points, and the nodes are built using the
function:

x = sin (E) (25)

where 7 is the polynomial degree, and k = —n: 2 : n.

function [x, w] = chebyshevPoints (n,d)

if n ==1, x = 0; return, end% Special case at n=1, x=0
% Calculation of Chebyshev points in the segment[-1,1]:
m= n—-1;

® = sin{pi* (- (m+1))}:2:m+1)/(2*%m)) ;
ifnargin~=1
% = (diff(d)*x + sum(d))/2;

end
ifnargout==
w = weights(n)*diff(d)/2;
end
end
function w = weights (n)
ifn=1
w = 2;
else
n =n-1;

uld = 1/ (n*2-1+mod(n, 2)) ;
= 0:n-1; r = 2./(1-4*min(L,n-L)."2);
w = [ifft (r-u0) ull;

=
|

As for the number of neurons in the hidden layers of the artificial neural networks — it was determined
depending on the number and size of the input-output training samples whose training was carried out
using the Levenberg-Marquardt algorithm, and a hyperbolic tangent was used for the transfer function in
the hidden layers.

The experiments carried out included checking the stability of the two approximation approaches in the
presence of noise « in the data (e.g. random errors in data collection or measurement) leading to the wrong

K. Yotov et al. / Filomat 38:32 (2024), 1155311582 11573

The noise-free measured data and the real function The measured data with noise and the real function
0.8 0.8
Real function .' Real function
+ Data without noise . * Data with noise 0.05
4 0.7
0.7 .
R / 06
0.6 va Py
0.5
0.5
04r,
04 g .
03[
0.3 T 02
0.2 0.1
-1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 -1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
(a) Figure 11a. Data measured with no noise (b) Figure 11b. Example of data measured with noise
and the real function. (o = 0.05) and the real function.
Chebyshev - Data Fit - order 6 Chebyshev - Data Fit - order 20
0.9 08 s
O Chebyshev Nodes O Chebyshev Nodes é‘)
Interpolant Interpolant o)
0.8 Real function 0.7 Real function /
Data Data = @
AT .
06 o g
0.5 O‘
0. /
04 e . /
A ol
s, v
0.3 D
0.2 0.2
-1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 -1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
(a) Figure 12a.Comparison of interpolation using (b) Figure 12b. Comparison of interpolation using
ANN and Chebyshev polynomial of degree 6. ANN and Chebyshev polynomial of degree 20.

idea about the objective function (24):

f(x) = f(x) +ap, (26)

where p is a random number in the interval [0, m],m-the sample volume.
The noise values experimented with are a = 0; 0.001; 0.005; 0,01 and 0.05, and the sample volume is
m = 100.

3.4.1. Comparative analysis of the approximation in the absence of noise (a = 0).

In the absence of noise in the observed data that provides the sample, the higher the Chebyshev
polynomial degree, the better it performs (Fig. 12).

At a higher degree of the polynomial (1), the number of Chebyshev nodes (3) is larger, due to the larger
range of the interval for k = —n : 2 : n. The respective mean absolute interpolation error also decreases, and
from 0.0086 for a polynomial of degree 6, becomes 4.22e-8 — for a polynomial of degree 20. However, it is
interesting to note that there is almost no change in the abilities of the two polynomials to predict correctly
near and far from the sample boundaries. For both degrees of the polynomial, the absolute error when
predicting the functional target value at a distance of 0.1 from the sample boundary is about 0.14, and for a
distant prediction (at 40 units beyond the sample boundary) the error is about 11.68.

K. Yotov et al. / Filomat 38:32 (2024), 1155311582 11574

B Attificial Neural Network Interpolation - order 6 - Artificial Neural Network Interpolation - order 20
ANN Interpolant ANN Interpolant
Real function Real function
0.8 Chebyshev polinomial 0.7 Chebyshev polinomial
*® Data *® Data

0.2 0.2

1 0.8 0.6 0.4 0.2 0 02 0.4 0.6 0.8 1 1 0.8 0.6 0.4 0.2 0 02 0.4 0.6 0.8 1
(a) Figure 13a. Comparison of interpolation using (b) Figure 13b.Comparison of interpolation using
ANN and Chebyshev polynomial of degree 6. ANN and Chebyshev polynomial of degree 20.
Chebyshev - Data Fit - order 6 Chebyshev - Data Fit - order 20

0.8 . 0.9

O Chebyshev Nodes
Interpolant

0.7 Real function
Data

0.2 0.2

O Chebyshev Nodes
0.8 Inlerpolanl‘

Real function
Data

01 01
-1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 -1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
(a) Figure 14a. Interpolation of the objective function (b) Figure 14b. Interpolation of the objective function
with a Chebyshev polynomial of degree 6. with a Chebyshev polynomial of degree 20.

For the ANN, a network with 33 neurons in the hidden layer is selected. The number of neurons is chosen
based on the number of training samples (7 = 100) and the number of input neurons, according to [38].
The comparison checking the network’s ability to approximate the sample was performed with Chebyshev
polynomials of different degrees. Fig. 13 shows the graph for data interpolation using polynomials of 6'h
and 20'h degree and the artificial neural network.

The mean absolute error of the neural network with interpolation is 2.74e-6 and its graph has almost
merged with the graph of the objective function, whereas the graph of the polynomial (in black) deviates.
The network error is smaller than the error of the degree-6 polynomial but greater than the Chebyshev
degree-20 polynomial. The network prediction near and far from the sample boundaries at the same points
- pt. x = 1.1 and pt.x = 40 the errors are respectively: 0.11 and 11.64 — almost matching those of the
degree-20 polynomial.

3.4.2. Comparative analysis of the approximation in the presence of noise (o = 0.005)

In this case, experiments show that in the presence of noise, the Chebyshev polynomial of higher degree
does a slightly better job of interpolating the objective function than the one of lower degree (Fig. 14).

The mean interpolation error (MAE) of the polynomial of degree 6 is 0.0149, whereas that of the
polynomial of order 20 has increased from 4.22e-8 (in the absence of noise) to 0.0136, in the presence of
noise a = 0.005. To summarize: the presence of noise in the input dataleads to an increase in the errors of

K. Yotov et al. / Filomat 38:32 (2024), 1155311582 11575

08r -
ANN Interpolant
Real function 2

i .
0.7 Data ’:/\
».

Py
0.5} f

Figure 15: Interpolation of the sample with ANN in the presence of noise a = 0.005.

the Chebyshev polynomials in the interpolation. Regarding prediction, it should be noted that with this
level of noise, the absolute errors of the polynomial of degree 6 for near and far prediction are respectively:
0.1798 and 11.72. For the polynomial of degree 20 these values are: 0.1293 and 11.67, i.e. very slightly better
predictive ability.

However, it is interesting what happens to the approximating properties of the neural network. It
turns out that the presence of noise significantly worsens its interpolation and prediction (Fig. 15). Unlike
the Chebyshev polynomial for which the Chebyshev nodes are key, the artificial neural network seeks
to traverse all the sample data, which, however, is associated with errors in the measurements or the
collection of data itself, with noise a = 0.005. The network interpolation error is larger than that of the two
polynomials:

MAE = 0.0318.

The absolute errors of the artificial neural network in near and far prediction (for x = 1.1 and x =
40 respectively) are respectively: 2.5424 and 14.0798. In both cases, the neural network gives poorer
predictions than the Chebyshev polynomials. This means that with incorrectly measured data, errors
in data collection, or other circumstances that worsen the input reliability, the artificial neural network
performs significantly worse than Chebyshev polynomials. Similar experiments were again done with
different types of objective functions: linear, power functions, logarithmic, exponential, trigonometric, and
mixed. The results were similar. In the absence of noise, neural networks are comparable to high-degree
Chebyshev polynomials in their accuracy for interpolation and prediction. The presence of noise, however,
turn artificial neural structures into a more unreliable approximation mechanism. Experiments have shown
that these conclusions hold as the sample size increases.

K. Yotov et al. / Filomat 38:32 (2024), 1155311582 11576

Interpolation Close Distant
Method error prediction prediction
error (atx = 1.1) || error (at x = 40)
Chebyshev polynomial of order 20 0.0022 0.1413 11.6787
Artificial neural network 0.0036 0.1364 11.6738

Table 5: Chebyshev polynomials and artificial neural network interpolation and prediction errors for a
sample size of 5000

3.4.3. Conclusions from the comparative analysis of approximation of functions using Chebyshev polynomials and
artificial neural networks
The comparative analysis of function approximation using first-order Chebyshev polynomials and
artificial neural networks leads to the following conclusions:

1. Interpolation: The experiments done indicate that in the absence of noise, the sample interpola-
tion errors of both the Chebyshev polynomials and artificial neural networks are almost the same.
However, when the data is accompanied by a certain amount of noise, it becomes clear that neural
networks become an unreliable tool for interpolating the real function, as they try to track all nodes,
including the noisy ones. In contrast, the Chebyshev polynomial, relying primarily on Chebyshev
nodes, performs significantly better.

2. Speed, memory, and computing resources: The speed, memory occupied and computational re-
sources needed for approximating functions using either of the two methods are comparable, both
for small samples and for a larger volume of data.

3. Scalability: As the sample size increases, a minimal increase in errors related to interpolation and
prediction is observed in both approaches. It is interesting to note that as the number of input-output
training samples increases, the errors hardly change, with a slight advantage of neural networks in
predictions. Thus, for a sample of 5000 specimens, the absolute mean errors for interpolation and
prediction are presented in Table 5.

4. Prediction: The Chebyshev polynomial prediction errors are comparable with those of the ANN. The
presence of noise is associated with worse results by the ANNSs. Still, in these conditions (presence
of noise) the increase in the volume of the sample leads to a decrease in the errors of the ANNS.
For example, even if the reliability of the input data remains at level @ = 0.005, the error of the
neural network when predicting far from the sample boundaries goes from 14.0798 for a sample
size of 100 elements to 11.6738 for a sample size of 5000. Interpolation errors in noisy conditions
go from 2.5424 for a sample size of 100 to 0.0036 for a sample size of 500. The conclusion that can
be made here is that for small samples and the presence of noise, the Chebyshev polynomial has an
advantage in interpolation and prediction. However, if large data is processed, the preferred means
of approximation should remain the ANN, regardless of the presence of noise.

4. Comparison of approximation in more complex tasks

For the needs of the study, additional tests were conducted on the approximation of polynomials and
artificial neural networks, focusing on more complex functions. We considered multidimensional functions
and discontinuous functions, as well as the possibility of approximating curves in three-dimensional
Euclidean space. Here, we present the results from attempts to approximate the trajectories of bodies that
describe a helical line in three-dimensional Euclidean space.

Let’s consider the trajectory of a material point moving with a uniform linear velocity d, 1 along a
generator of a right circular cylinder with radius 4, which rotates around its axis with angular velocity w.

c: xy=acoswt, xp =asinwt, x3=dt, te€R" (27)

Lines of this type are called helical (Fig. 16). They have many applications in various fields of science

K. Yotov et al. / Filomat 38:32 (2024), 1155311582 11577

Helix in three-dimensional space

-0.5

Figure 16: Helical line: a = 1, w =1;d = 0.5

and engineering. They are used in astronomy to describe the orbital motions of the planets around the sun,
in the aviation industry to model the trajectories of airplanes, and in electronics to describe the motion of
charge carriers in semiconductor devices.

Helix lines can be mathematically described through various methods and theories—differential equa-
tions, the theory of functions of complex variables, and analytic geometry. In general, they are fundamental
to understanding the motion and dynamics of objects in various contexts, and to extracting information
about their trajectory and direction of motion.

We experimented with the approximation of the helix line for parametersa =1, d = 0.5, and w = 1
in the three spatial directions. The best polynomial result was obtained through approximation with the
Lagrange polynomial (Fig. 17), with a mean squared error of 13.123.

As expected, due to their ability to handle highly non-linear approximations, artificial neural networks
achieved an approximation result with a root mean square error of 6E-14 (Fig. 19). The network has a two-
layer architecture with 10 neurons in each layer. It is trained using the Levenberg-Marquardt algorithm.
In the body of neurons in the hidden layer, the transfer function is a hyperbolic tangent. For the transfer
functions in the three output neurons, a linear one, f(x) = x, is used. Remarkably, unlike the need for three
separate polynomials to approximate the line in the three directions, the artificial neural network utilized
just one model equipped with three output neurons, each indicating the development of the line along the
respective directions.

With respect to dependencies that are discontinuous in nature, ANNs again outperform polynomials.
One of the tasks we set, is the approximation of the distribution law of a binomially distributed discrete
random variable &, with the function:

P(E =k)=Puk) = Ctpfq"™*, g=1-p,k=0,1,...,n (28)

Both methods — polynomials and neural networks — attempt to represent the distribution function in
a continuous form, which, in a sense, is a shortcoming. However, unlike the most efficient polynomial
(Hermite) which has a squared error of 145.28 (for a specific Bernoulli scheme with n = 1000, p = 1/6),
ANNSs show results with squared errors smaller than 34.672.

K. Yotov et al. / Filomat 38:32 (2024), 11553-11582

Approximation of a helical line with a Lagrange polynomial

——Real Helix

- - ~Lagrange interpolating polynomial

Figure 17: Interpolation of the helix with three Lagrange polynomials for each of the axes

Approximation of a helical line with ANN

Figure 19: Architecture of the used artificial neural network

11578

K. Yotov et al. / Filomat 38:32 (2024), 1155311582 11579

Neural networks are increasingly used to solve various approximation tasks, but the appropriate method
must be carefully selected. For example, the task of researching the discretely monitored Barrier option
is interesting. In [47], a Multivariate Normal Distribution method was proposed, which outperforms
the Monte Carlo method—one of the most frequently used quantitative methods in finance—with higher
convergence. Comparisons with other numerical methods provide the basis for a motivated choice [48].
On the other hand, the use of neural networks to solve this task must take into consideration the fact that
the choice of network architecture is of great importance to accuracy and the training time of the machine
learning algorithm [49]. Thus, in-depth research, analysis, and comparisons need to be done between the
different approximation possibilities.

5. Conclusions

The conducted research has shown the importance of selecting an appropriate approximation method
when we have to choose between some polynomials and artificial neural networks. For small sample
volumes, due to the mathematical models on which the building of a polynomial is based, and due to
the fact that in suitable situations there are not enough samples for training neural networks, polynomials
should remain the preferred approach, especially when it comes to sample interpolation. But when it’s
about prediction, near and far from the boundaries of the available sample, we need to be particularly
careful about the type of polynomial. Due to Runge’s phenomenon which makes Lagrange, Newton,
and Hermite types of polynomials deviate sharply from the real functions or have many oscillations, the
preferred approach should be polynomials that are not strongly affected by this phenomenon. In such
situations, a preferred solution is to choose the Chebyshev polynomial.

When working with large samples, the Lagrange, Newton, and Hermite polynomials lead to larger
errors both in interpolation and prediction. These polynomials exhibit poorer scalability in terms of the
speed of the algorithms and computational resources used, due to the increased degree of the polynomial.
Thus, in the cases of larger samples, neural networks should remain the preferred approach. The case
with the Chebyshev polynomial is interesting. When predicting functions, the Chebyshev polynomial is
more stable and effective that the Lagrange, Newton, and Hermite polynomials, especially for more distant
predictions. Regarding their comparison with artificial neural networks, it turns out that when interpolating
functions in the absence of noise, the errors of those two approximation approaches are almost equal. In
the presence of noise in the input data, however, the Chebyshev polynomials perform better than ANNs
because they prefer to use Chebyshev nodes and do not attempt to take the noise into account. In contrast,
the neural network aims to get trained using the available data and tries to keep track of the noise which
leads to larger errors. On the other hand, the neural network stands out with its speed and scalability, which
offers advantages when working with large volumes of data. So, in the end, it should be noted that the
choice between the artificial neural network and the Chebyshev polynomial depends on the specific task
and the conditions of the research. For small samples and the presence of noise, the Chebyshev polynomial
is more suitable for interpolation and prediction. For large volumes of data and high speed and scalability
requirements, an artificial neural network is the preferred means of approximation. In summary:

1. For small samples: The mathematical models of polynomials allow them to go through all the sample
nodes without error. Their degree is small and the speed of execution is high. On the other hand,
neural networks do not have enough training samples and the interpolation and prediction errors
are either larger or comparable to those of polynomials. If the data is unreliable or noisy, the errors
become larger. Therefore, in cases of small sample sizes, polynomial approximations are the more
appropriate choice.

2. Forlarge samples, regardless of the presence or absence of noise in the data: For very large samples,
the degrees of the polynomials become very large. The speed of the algorithm shows down, more
computing resources are used, and errors become larger. In situations with large samples, on the
other hand, neural networks have enough training samples, and based on their adaptive nature, their
errors start to decrease regardless of the presence of noise in the input data. Thus, in large sample
settings, artificial neural networks are the natural choice for approximating the desired functional
dependence.

K. Yotov et al. / Filomat 38:32 (2024), 1155311582 11580

3. In more complex tasks characterized by multidimensionality of the objective functions and strong
non-linearity or discontinuity: In each of these cases, artificial neural networks have an advantage
over polynomials. The complexity of these tasks highlights the superior non-linear capabilities of
ensembles of neurons over those of commonly used polynomials. When trying to approximate
discontinuous functions, both methods tend to represent the target function as continuous; however,
artificial neural networks consistently demonstrate clear superiority.

The conducted research has the following limitations: Although it covers many objective functions
of different natures, the scope and volume of the study do not allow for experimentation with all possible
objective functions or even classes. We have used univariate and multivariate functions, linear and highly
non-linear targets, and continuous and discontinuous dependencies. Nevertheless, there are many areas
that the scope of this study does not include. Such areas include, for example, fractal objective functions,
chaotic and dynamic systems, approximation and pulsation models, non-linear quantum models, and
functions represented as infinite series.

Future research can be conducted in various directions.

1. Bearing in mind the Chebyshev polynomials advantages when working with unreliable input data
and the disadvantage of neural networks using all provided nodes for training, regardless of the noise,
we set ourselves the additional task for a future study — to investigate the qualities of neural networks.
The task is related to studying and experimenting with artificial neural networks which do not use
noisy data in their training, but instead use a set of Chebyshev nodes previously formed on them.
Under these circumstances, it will be of genuine scientific interest to re-compare the approximation
qualities of Chebyshev polynomials and artificial neural networks.

2. In attempts to approximate discontinuous dependencies, both approaches strive to convey the con-
tinuous nature of the sought-after objective function. Finding an approach that preserves the discrete
nature of the objective remains a subject for future research.

3. Also of interest are experiments for comparison of approximation methods in areas too complex for
polynomials, such as:

e Fractal functions: For example, the Koch curve, the Cantor set, and the Menger sponge. Polynomial
approximation becomes increasingly inaccurate as the fractal detail increases.

e Dynamic systems: Chaotic systems, population models, climate models. Approximations with
polynomials can “mask” the chaotic behavior of the system, and here the use of other, more effective
approximation methods will be necessary.

e Functions with infinite series: Functions with infinite expansions are very difficult to approximate
using polynomials. Examples include the Dirac function and the Heaviside function. Polynomial
approximations will have errors at the discontinuity points, necessitating the use of other approaches
that must be compared with the effectiveness of artificial neural networks.

Acknowledgement: Kostadin Yotov and Emil Hadzhikolev are partially financed by the MUPD23-FMI-
021 project of the Research Fund of the University of Plovdiv “Paisii Hilendarski”. Stanka Hadzhikoleva
would like to thank project Ne BG-RRP-2.004-0001-C01, financed by the European Union-NextGenerationEU
through the National Recovery and Resilience Plan of the Republic of Bulgaria.

References

[1] N.L. Crothers, Approximation Theory - A Short Course. Department of Mathematics and Statistics, Bowling Green State University,
2000.

[2] I Kidron, Polynomial approximation of functions historical perspective and new tools, International Journal of Computers for Mathe-
matical Learning 8 (2004), 299-331.

[3] R.Santaeulalia-Llopis, Function Approximation Quantitative Macroeconomics, Barcelona: MOVE-UAB and Barcelona GSE, 2018.

[4] A.Chkifa, N. Dexter, H. Tran, C. Webster, Polynomial approximation via compressed sensing of high-dimensional functions on lower sets,
Mathematics of Computation 87(311) (2016), 1415-1450.

[5]
[6]
[7]
(8]
191

(10]
(11]

(12]

(13]
[14]

[15]
(16]
(17]
(18]
[19]

[20]
[21]
[22]
(23]
[24]
[25]
[26]
[27]
(28]
[29]
(30]
[31]

(32]
[33]

[34]
[35]
(36]
(371
(38]

(39]
[40]

(41]

[42]

[43]

K. Yotov et al. / Filomat 38:32 (2024), 1155311582 11581

E. Filbir, W. Themistoclakis, Polynomial approximation on the sphere using scattered data, Mathematische Nachrichten 281(5) (2008),
650-668.

Y. Zhou, H. Wu, Ch. Gu, Y. Song, Global optimal polynomial approximation for parametric problems in power systems, J. Mod. Power
Syst. Clean Energy 7(3) (2019), 500-511.

S. Regonda, B. Rajagopalan, U. Lall, Y. Moon, M. Clark, Local polynomial method for ensemble forecast of time series, Nonlinear
Processes in Geophysics 12(3) (2005), 397-406.

M. Lauretto, F. Nakano, C. Pereira,]. Stern, Hierarchical Forecasting with Polynomial Nets, New Advances in Intelligent Decision
Technologies, 2009.

F. Dikbas, Forecasting Extreme Precipitations by Using Polynomial Regression, Pamukkale University, 2022, DOI: 10.21203/rs.3.rs-
1918628/v1.

M. Reimer, Multivariate Polynomial Approximation, Birkhduser Basel, 2003, DOI: 10.1007/978-3-0348-8095-4.

L. Refethen, Multivariate polynomial approximation in the hypercube, Proceedings of the American Mathematical Society, ISSN
1088-6826 (2017), 837-4844.

R. Milldn, V. Peiris, N. Sukhorukova, J. Ugon, Multivariate approximation by polynomial and generalised rational functions, Optimiza-
tion 71(4) (2021), 1171-1187.

M. Aanjaneya, Polynomial, Lagrange, and Newton Interpolation (2017), 1-18.

R. L. Burden, J. D. Faires, Interpolation and Polynomial Approximation Lagrange Interpolating Polynomials In Numerical Analysis, by
R L Burden and J D Faires. Dublin: Brooks Cole, Cengage Learning, 2011.

S. Celik, H. Inci, T. Sengul, B. Sogut, A. Sengul, M. Taysi, Interpolation method for live weight estimation based on age in Japanese quails,
Revista Brasileira de Zootecnia 45(8) (2016), 445-450.

H. Zhou, T. Wang, H. Zhao, Z. Wang, Updated Prediction of Air Quality Based on Kalman-Attention-LSTM Network. Sustainability
15(1) (2023), https://doi.org/10.3390/su15010356.

C. Runge, Uber empirische Funktionen und die Interpolation zwischen iquidistanten Ordinaten, Zeitschrift fiir Mathematik und Physik
46 (1901), 224-243.

G. Dahlquist, A. Bjork, Equidistant Interpolation and the Runge Phenomeno, Numerical Methods, ISBN 0-13-627315-7, 1974.

N. Belanger, External Fake Constraints Interpolation: the end of Runge phenomenon with high degree polynomials relying on equispaced
nodes — Application to aerial robotics motion planning, Proceedings of the 5th Institute of Mathematics and its Applications Conference
on Mathematics in Defence, Camberley, UK: The Royal Military Academy Sandhurst (2017).

R. Muthumalai, Note on Newton Interpolation Formula, International Journal of Mathematical Analysis 6(50) (2012), 2459 - 2465.
M. Floater, Newton interpolation (2014).

C. Hermite, Sur un nouveau développement en série de fonctions, Comptes Rendus Acad. Sci. Paris 58 (1864), 93-100.

F. Qi, B-N. Guo, Some properties of the Hermite polynomials, Georgian Mathematical Journal 28(6) (2021), DOI: 10.1515/gm;j-2020-2088,
925-935.

J. C. Mason, D. C. Handscomb, Chebyshev polynomials, Boca Raton, London, New York, Washington, D.C.: CHAPMAN and
HALL CRC A CRC Press Company, 2003.

W. Van Assche, Chebyshev polynomials in the 16th century, KU Leuven, Belgium, 2022.

M. Hagan, H. Demuth, M. Beale, O. Jesus, Neural Network Design, Stillwater, Oklahoma, ISBN: 0971732116, 2014.

S. Haykin, Neural Networks And Learning Machines, Pearson India, ISBN-10: 9789332570313, 2016.

C. Aggarwal, Neural Networks and Deep Learning: A Textbook, Springer, SBN-10: 3319944622, 2018.

B. T. Zhang, Artificial Neural Networks, Seoul: School of Computer Science and Engineering, Seoul National University, 2001.

J. Stastny, V. Skorpil, Neural networks learning methods comparison, University of Technology, 2005.

A. Lunardi, F. Rodrigues, L. Junior, Comparison of artificial neural networks learning methods to evaluate supply chain performance,
Curitiba, PR, Brasil, 2020.

C. Bishop, Neural Networks for Pattern Recognition, Oxford, Clarendon Press, 1995.

O. Abdel-Hamid, A.R. Mohamed, H. Jiang, L. Deng, G. Penn, D. Yu, Convolutional Neural Networks for Speech Recognition,
IEEE/ACM Transactions on Audio, Speech, and Language Processing 22(10) (2014), 1533-1545.

Y. Goldberg, Neural Network Methods for Natural Language Processing, SYNTHESIS LECTURES ON HUMAN LANGUAGE TECH-
NOLOGIES, ISBN: 9781627052986, Toronto: Morgan and cLaypool publishers, 2017.

X. Li, Application of Neural Networks in Financial Time Series Forecasting Models, Mathematical Modeling for Next-Generation Big
Data Technologies (2022), Article ID 7817264, https://doi.org/10.1155/2022/7817264.

D. Janglova, Neural Networks in Mobile Robot Motion, International Journal of Advanced Robotic Systems 1(1) (2004), DOI:
10.5772/5615.

A.Egba, O. Okonkwo, Artificial Neural Networks for Medical Diagnosis: A Review of Recent Trends International Journal of Computer
Science and Engineering Survey 11(3) (2020), 1-11.

R. Ahmed, NEURAL NETWORKS IN FINANCE: A DESCRIPTIVE SYSTEMATIC REVIEW, Indian Journal of Finance and Banking
5(2) (2021), DOTI: 10.46281/ijfb.v5i2.997.

M. Martin, On-line Support Vector Machines for Function Approximation, Technical Report LSI-02-11-R, 2002.

B. Hammer, K. Gersmann, A Note on the Universal Approximation Capability of Support Vector Machines, Neural Processing Letters
17 (2003), 43-53.

K. Balaskas, G. Zervakis, K. Siozios, M. Tahoori, J. Henkel, Approximate Decision Trees For Machine Learning Classification on Tiny
Printed Circuits, 23rd International Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, USA (2022), pp. 1-6,
https://doi.org/10.1109/ISQED54688.2022.9806213.

M. Bressan, M. Sozio, Fully-Dynamic Approximate Decision Trees With Worst-Case Update Time Guarantees, arXiv:2302.03994 (2023),
DOI: https://doi.org/10.48550/ ARXIV.2302.03994.

G. Acampora, A. Chiatto, A. Vitiello, Genetic algorithms as classical optimizer for the Quantum Approximate Optimization Algorithm,

(44]
(45]
[46]
[47]
(48]

(49]

K. Yotov et al. / Filomat 38:32 (2024), 1155311582 11582

Applied Soft Computing 142 (2023), https://doi.org/10.1016/j.asoc.2023.110296.

G. Yi, Z. Wenhao, Optimal operation of urban tidal drainage pumping station based on genetic algorithm coupled with head-water level
successive approximation, Frontiers in Energy Research 10 (2022), https://doi.org/10.3389/fenrg.2022.1074529.

K. Yotov, E. Hadzhikolev, S. Hazdhikoleva, Determining the Number of Neurons in Artificial Neural Networks for Approximation,
Trained with Algorithms Using the Jacobi Matrix, TEM Journal 9(4) (2020), 1320-1329.

K. Yotov, E. Hadzhikolev, S. Hadzhikoleva, S. Cheresharov, Finding the Optimal Topology of an Approximating Neural Network,
Mathematics 11(1) (2023), https://doi.org/10.3390/math11010217.

S.Kabaivanov, A. Malechkova, A. Marchev, M. Milev, V. Markovska, K. Nikolova, A step beyond the Monte Carlo method in economics:
Application of multivariate normal distribution, AIP Conference Proceedings 1690 (1) (2015) https://doi.org/10.1063/1.4936693.

Y. Honga, S. Leeb, T. Li, Numerical method of pricing discretely monitored barrier option, Journal of Computational and Applied
Mathematics 278 (2015), 149-161.

L. Mieghem, A. Papapantoleon, J. Papazoglou-Hennig, Machine learning for option pricing: an empirical investigation of network
architectures (2023), Papers 2307.07657, arXiv.org.

