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Abstract. In this paper, we define confluent Appell polynomials of class A®@ construct a generalization of
Szasz operators using these polyomials and derive some approximation properties of this generalization
on the semi infinite interval in a weighted function space. Finally, some graphical results are given to show
the approximation process of constructed operators to a given function f.

1. Introduction

Szész operators [15] are an extension of Bernstein operators to infinite intervals. These operators
have a significant impact in the field of approximation theory. Recently, there has been a significant
amount of research on the study of generalizations of Szdsz operators, particularly those defined using
polynomials and generating functions. These generalizations offer a variety of novel sequences of operators
for approximation theory. Jakimovski and Leviatan [10] proposed an extension of Szdsz operators using
Appell polynomials. Ismail [7] introduced an additional form of Szdsz operators and also established
Jakimovski and Leviatan operators using Sheffer polynomials. On the other hand, Kazmin [11] has defined
that a sequence of polynomials {P, (z)}, PS’) (z) = c,, where ¢, # 0 are constants, n = 0,1,2, ..., is called
a system of generalized Appell polynomials ( or a system of polynomials of class A®) if any one of the
following equivalent conditions holds:

1. P/ (z) = Py—2 (2);
2. There exist two formal power series

Ab) = %tk and B() = %tk,
k=0 k=0

which formally satisfy the identity

AB)e +B(f) e = ipn @)t

n=0
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The requirement that the n-th Appell polynomial P, (z) have degree n is equivalent to requiring that
a2 — b3 # 0. Various properties of polynomials in the class A® were studied by Ozhegov [13]. Then, Varma
and Sucu [16] have introduced a generalization of Szdsz operators with the help of the Appell polynomials
of class A® defined by Kazmin [11];

1 - k
Llfix) = oA M o8 (1)2” k() f (2)

k=0

where A(1) > 0,B(1) 20, px (x) > 0 and x € [0, 00). Ozarslan and Cekim [14] have introduced the confluent
Appell polynomials {P,(f’b) (x)}n=0 ,

00 . ¢
AOF @it = ) PiY ()

n=0

where A (t) is an analytic function in the disc [{| < R, R > 1,

At) = ax—, ag#0
k!
k=0
and
v @,z
1F1 (a/ blz) - o (b)n n! .

Subsequently, Ozarslan and Cekim [14] have developed approximation operators utilizing confluent Appell
polynomials, facilitating the approximation of a function defined on the semi-infinite interval within a
weighted function space. One can find more generalizations of Szdsz operators using similar methods in
the literature [5],[8],[9],[12] and [17].

Now, we introduce confluent Appell polynomials of class A® and utilize them to develop a generalized
form of Sz(é)sz operators. This is accomplished by leveraging the properties of confluent Appell polynomials
of class A,

2. The Confluent Appell Polynomials of Class A®

In this chapter, we introduce univariate confluent Appell polynomials of class A?. We give them the
generating function and properties we have obtained for them.

Definition 2.1. A polynomial system {Pﬁ,’l’b) (x)}
function of the form

is called confluent Appell of class A® if there exists a generating

(o8]
n=0

AB1F1 (@b;xt) + B()1Fy (a;b; —xt) = Y P (x) —

n!’
n=0

where A (t) and B (t) are an analytic functions in the disc [{| < R, R > 1, a% - bS #0

AW =) mg B =) bigy
k=0 k=0
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and

Fih2) = Y o @
n=0 " "

is the confluent hypergeometric function. This function is convergent for all finite z and the Pochhammer symbol is

defined by

a@+1)..a+n-1) ;n>1
o2

Theorem 2.2. Let {P(’Z ) (x)} be a confluent polynomial system where b ¢ {0, -1, 2, ...}. The following assertions
are equivalent.

1. {P,(f’b) (x)}:)=0 is a set of confluent Appell of class A® polynomial system.
2. There exists a sequence {cy}sq independent of n with co # 0 such that

PO =Y e, (1) ©

k=0
where ¢y = Ay_i + (—1)k b«

Proof. (1) © (2) : Let {Pﬁ,ﬂ’b) (x)}:;o be a sequence of confluent Appell polynomials of class A®). If we use
series expansions and Cauchy product in generating functions, we obtain the equality

YR @ s = AWE @b+ B©)1F @b

R
o ! (b) k!
- () (=xt)
Lo 265

(a) "
(@ + (1) bn_k)( )(b)k "]

- (@) il
Ocn k( )(b)k ]

and from this equality is obtained.
0

+
TR

I
ek
N
=

Theorem 2.3. Let {P(“ ) (x)}m0 be a confluent polynomial system where b ¢ {0,-1,-2,...}. If PP (x) holds

properties of given in (3) then it satisfies the following equality

(P ) = Sy n = P ), > 2 @

and P& (0) is independent of a and b.
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Proof. If we take twice derivate of both sides of equation (3) with respect to x, we get

(Pe? W) = Zcma B k- 1)

L, )
- nicn w2 (a,b) Eg’;i (k+1) (k +2) 2
e
LD
_ Z EZ i 3 (n— 1) P@*20%2) ()

where

n n—-1 n—-k-1 n-—2 n-—2
Cnke2 = T a1 1 Cnk20 (a,b) = ( r )Cn—k—Z,O (a,b) = ( r )Cn—k—z-

O

3. Construction of Operators (,

Let P%? (x) be confluent Appell polynomials of class A?. We define a new generalization of Szasz
operators by

’ 1 P <nx>
Culf32) = A()1F1 (@ b;nx) + B(1)1F1 @ b; —nx) & f(ﬁ) ©)

where f € C[0,00), x>0,n€ N, b>a>0.
With the help of following assumptions
(i) A(t) and B () are analytics functions given in (1),
(i) A(1)>0and B(1) =0,
(iif) p{” (x) > 0 forallk = 0,1,... such that 0 < k < 1, ¢yt = @y + (=1) by > 0.
It is clear that these operators defined in (5) are linear positive operators.
We note that in the special case A (f) = 1 and B(t) = 0, {, operators will be reduced to confluent Szész

operators in [14]. In the special case A(f) = 1, B(t) = 0 and a = b, we discover the well-known Szész
operators.

Lemma 3.1. For the function given in (1), we have the following equalities

oo (a, b)

z B2 = A(1)1F1 (a;b; %) + B (1)1 Fy (a;b; —nx),

©o _ (ab)

2. L = AT (11 @b + B (1)1Fs (@b

+nxp [A(D)1F1(@+ 1,0+ 1nx) —B(1)1F1(a+1;b+1;-nx)],
3. £ 5P = A7 ()3 1bym) + B (D1 F (=)

+2nxy [A(1)1F1(a+1;b+ 1;nx) = B(1)1F1 (@ + 1,0 + 1; —nx)]

+n222 S [A (1) 1Fy (@ + 2;b + 2;mx) + B(1)1Fy (a +2;b + 2; —nx)] .

Lemma 3.2. Let C,(f; x) be the operator introduced in (5). By using Lemma 3.1, we get
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1. Cn(lX) =1,
2. C t; a A(1)1F1(a+1;b+1;nx)—B(1)1 F1(a+1;b+1;,—nx) + 1 A'(D1 Fi(@bnx)+B’ (D1 Fi (a;6,—nx)
n(t;X) = X4 == 20 F @m0 7B F @b nm) 1 A@nF1 @b+ B Fr(ab—nx) *
3 C (t . X) xz a(a+1) A(1)1F1(a+2;b+2;nx)+B(1)1 F1(a+2;b+2;—nx) 4+ xa (QA’(1)+A(1))1F1(a+1;b+1;nx)— (2B’ (1)+B(1))1 F1 (a+1;b+1;—nx)
c on - b(b+1) A(1)1Fy(a;b;nx)+B(1)1 F1(a;b;—nx) nb A(1)1F1(a;b;nx)+B(1)1 F1(a;b;—nx)
1 (A”()+A’(1))1F1(a;b;nx)+(B” (1)+B’ (1)) F1(a;b; nx)
Tz A E1 @010+ B Fy (ab—nx)

Lemma 3.3. By using Lemma 3.2 and by the linearty of operators C,,, we can compute the following central moments
values;

. _ va [AQ1F1(a+1;b+1;nx)—B(1); F1 (a+1;b+1,—nx) 1 A’ (D1 Fi(@bnx)+B’ (D)1 Fi(a;b,—nx)
L Gt =% x) = xj AL Fr @b;nx) +B(L)1 Er (@bi—mx) - 1] 7 A1 (a0;10+ B0 Fr (a—nx) 7
. _ 2 [ata+1) A(1)1F1(a+2;b+2;nx)+B(1)1 F1(a+2;b+2;,—nx) a A(1)1F1(a+1;b+1;nx)—-B(1); F1 (a+1;b+1;,—nx)
2. Gu((t-2)"5x) = x bO+T)  A(DiE1(@b;nx)+B(1) Fy(@bi—mx) — 2 = A @) T B (D), Fr @) 1
x [a QA’(1)+A1))1F1(a+1;b+1;nx)—(2B' (1)+B(1))1 F1 (a+1;b+1; nx) 2 (A’ (1)+A(1))1F1(a;b;nx)+(B’ (1)+B(1))1 F1 (a;b;—nx)
+ n [E A(1)1F1(a;b;nx)+B(1), F1 (a;b;—nx) - A(1)1F1(a;b;nx)+B(1), F1 (a;b;—nx)
+1 1 (A”(1)+A’ (1)1 F1(a;b;nx)+(B” (1)+B’ (1)1 F1 (a;b; nx)
n2 A(1)1F1(a;b;nx)+B(1)1 F (a;b;—nx)

4. Rate of Convergence for Operators (,

In this section, we elucidate the rate of convergence of the operators (,, leveraging the definitions of
various tools.

Theorem 4.1. Let f be continuous on [0, oo) and

x
H = {f 1f_f x)2 is convergent as x — oo},

Then, sequence of operators in (5) converges uniformly on the each compact subset on [0, 00) ,i.e.
limC,(f52) = f ().

Proof. Now, fixc > 0and consider the lattice homomorphism T, : C[0, 00) — CJ0,c] deﬁnedbyT (f) = f o
for every f € C[0, ). It is apparent from 1F; (a;b;z) ~ I (b) (eﬁ;)h é(h a)) for large |z| and -5 <arg(z) < 5
[1] and Lemma 3.2 that

lim T, (Co(t %)) = T (F), i =0,1,2,
uniformly on [0, c] for every f € C[0, ). Applying the Korovkin-type property ([2], Theorem 4.1.4 (vi)),
the proof is completed.

O

Theorem 4.2. The operators C,, defined in (5) satisfy the following inequality

|Ca (i) - ﬂﬂ<m& ga—w)
where f € H* and w is the modulus of continuity of the function f [3] defined by

w(f;0):= sup |[f(x)~f().
x,y€[0,00)
[x-y|<o
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Proof. The modulus of continuity of function f € H* satisfies the below inequality in [2]

Fe0-f 0] <w(ro)1+5H). ©

From the inequality (6), we get

) < (1+§<:n (1t = 31;3)) 0 (£9). @)

|Cu(fs2) = f )] < G

Using the Cauchy-Schwarz inequality leads us to

I 1 2(p0 )\ [k
Cut =xlix) = ZJ(A(l)lFl(abnx)+B(1)1F1(ab nx))[ Kl (Z_x)

k=

1 P () ’
A(l F1 (@ b;nx) + B(1)1Fy @b nx)) Kl (Z_x)

= 1 pe” (nx)
x ;(A(l)ll-"l(a;b;nx)+B(1)1F1(a;b;—nx)) |

We can write the following inequality,

Cu (It = 215%) < Gt =070 VG0 = Y8t =255 8)
Using the inequality (8) in (7), we obtain

ICa(fi0 — £ ()] < (1+—\/cn<<t—x) x))w(f 5). 9)

Here, by choosing & (t,x) = /G ((t — x)*; %) in inequality (9), the proof is completed. [

Now, for 0 < f <1 and 11, 2 € [0, ), let us introduce the following class of functions [6]:

txelo, oo)}. (10)

Lip® = {feC[O 00) : [f (1) = f ()| < M| -

Theorem 4.3. Let C, be operator defined in (5). Then for each f € sz(ﬁ) (M > 0,0 < B < 1) satisfy (10). We have

[N

G52 = £ )] < M(Cul(t = 0)%)7 .

Proof. We prove it by using (10) and Hoélder’s inequality. First, as in the proof of Theorem 4.2, we have
|Culfix) = £ ()] < MT, (1t = 21 ;). (11)

Then, we can use Holder’s inequality ar the right-hand side of the inequality in (11), we get
Cu(fi0) = F] < MG (It - ;x)

M (Cu(((t =2 ;x))g (HETES s

M [Cu((t - x7] .
Hereby, the proof is done. [

IA

IA

IA
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5. Approximation Properties in Weighted Space

Gadjiev has extended Korovkin’s theorem, a pivotal result in approximation theory, to an unbounded
interval within weighted function spaces [4]. Let function f be a monotone increased function, lim f (x) =
X—00

p(x) = 1+ x* is a weighted function and My and y; are a positive constants that depend to function f.
Accordingly, we recall the following weighted space of functions defined on [0, o),

Bpl0,00) @ ={fel0,00):|f@)|<Msp@)},
Cp0,00) @ = {fe B,[0,00): f is continuous},
Cl[0,00) : {fec [0, c0) : hmf(x) y <oo}.
p LY e p (x) f

It obvious that C% [0,00) € C, [0, 0) C B, [0, 00). B, [0, ) is a normed space with the following norm:

Al = s S5

Theorem 5.1. [4] Let (T,,),»1 be a sequence of linear positive operators. If (T,),s1 satisfy two conditions:
i) The operators T, act from C, [0, o) to B, [0, o),

if) 7}1_1)1; T, (ti; x) - x’“ =0,i=0,1,2, then for any function f € C’; [0, 00)
lim [T (£~ £, = 0.

Lemma 5.2. The operators C, defined in (5) satisfy the following inequality
Cu(p,x)<Cp(x), C>0
where p (x) = 1+ x%.

Theorem 5.3. The operators C,, give in (5) confirm the following equality
lim ||Ca (f;x) - f|| =0

for f € C, [0, c0) where p (x) =1+ x%.
Proof. i) Let f € C, [0, o), from Lemma 5.2, we obtain

LU0 =G, (gp) <[, G (o < 1], € - p ) <My - (12)

where My > 0. From the inequality (12), it is G, € B, [0, ). So, we get that the operators C, act from
Cp [0/ OO) to Bp [0/ OO) .
ii) From Lemma 3.2, it is clear that

lim ||C,(1;%) - 1]}, = 0.
n—oo

Also, by uging Lemma 3.3 and from {F; (a;b;z) ~ T (b) (f} Z(; )” gh a)) for large |z| and - < arg(z) < 5 [1]
,we can write

aA (1)1F1(@a+1;b+1;nx)—B(1)1F1(a+1;b+1; —nx)
b A(1)1F1 (a;b;nx) + B(1) 1F1 (a; b; —nx)

1 A’ D)1 Fr(a;b;n0)+B’ (1)1 F1 (a;b,—nx)
n A(1F1(a;b;nx)+B(1)1 F1(a;b;—nx)
+ sup

xe[0,00) 1+ x?
2B(1) ‘
e A (1) + (-1 " B(1)

X
1+ x2

ICatx) ~xll, < sup - 1‘

x€[0,00)

1A @) +(=1)""B (1)
A e+ (-1)""B(1)

1
S_
2
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Thus, we get
lim [1C, (£;%) - xll, = 0.
n—oo

Then,
C (tz'x)—xzn sup x ala+1)AM)1F1(@a+2,b+2;nx)+B(1)1F1(a+2,b+ 2, —nx)
A P ol #2220 +1) A (1) 1F; (a; b; nx) + B(1)1F; (a; b; —nx)
EA(1)1F1 @+1,b+1;nx)—B(1)1F1(a+1;b+1; —nx)
b A(1)1F1 (a;b;nx) + B(1) 1F1 (a;b; —nx)
+ sup x_|a RA M) +AA)1Fi(@a+1,b+1;nx)— 2B (1) +B(1))1F1(a+ 1,0+ 1; —nx)
rel0,00) L T+ x2 |b n (A (1)1F1 (a; b;nx) + B(1)1F1 (a; b; —nx))
(A" (1) + A(1))1F1 (@;b;nx) + (B" (1) + B(1)) 1F1 (a; b; —nx)
n(A(1)1F1 (a;b;nx) + B(1) 1F (a; b; —nx))
(A" (1) + A(1))1F1 (a;b;nx) + (B” (1) + B(1))1F1 (a; b; —nx)
n% (A (1) 1F1 (a; b; nx) + B (1)1F1 (a; b; —nx))
4B (1) N 1A (1) — (=1)"? (4B’ (1) + B(1))
A1)+ (-1)"B@)| n A e +(-1)""B(1)
L1 (@ ®)+4a9@) e+ (=1 (B” (1) + B’ (1))
n? AQ)er +(-1)""B(1)

2

A

-2 + 1‘

-2

1
+ sup
x€[0,00) 1+x2

IA

Thus, we get
lim [|C (%) = 7| = 0.

As a result, we obtain
lim ||C, (%) = || =0, k=0,1,2.
n—00 p

If we apply the Theorem 5.1, we obtain the desired results. [

6. Graphical Results

Finally, in this section, we present graphical examples illustrating the convergence of Szadsz operators,
including the confluent Appell polynomials of class A?. These graphical examples provide a clearer
understanding of how our operators converge to specific functions.

Example 6.1. The first illustration demonstrates the convergence of the operators C, depending on n. Here, taken
a =3 and b = £ values and approximating function f(x) = 2?5«522)' we see the operators respectively for n = 50,n =
100 and n = 200 values in Figure 1.

Example 6.2. Another example is illustrated in Figure 2 to show impact of shape parameters b. For a = 1 and

n =100 are fixed and b = 2, b = 4 and b = 8 approximation C,, convergence to f(x) = %(Zﬁ)

Example 6.3. The last example is illustrated in Figure 3 to demonstrate the impact of the shape parameters a. For

b =10and n = 100 are fixed and a = 1, a = 3 and a = 9 approximation C, convergence to f(x) = zif’csgg)
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Function f === "~ n=50 = "= n=100 = n=200

Figure 1:

Function f === =" b=2 == * == ph=o = = h=§

Figure 2:
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Function f = === * a=] = == g=3 —— = a=9

Figure 3:
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