

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Confluent Appell polynomials of class $A^{(2)}$ and generalization to Szász operators

Fatih Rıza Çelika,*, Gürhan İçözb

^aGraduate School of Natural and Applied Sciences, Gazi University, Teknikokullar, 06500, Ankara, Turkey ^bDepartment of Mathematics, Faculty of Science, Gazi University, Teknikokullar, 06500, Ankara, Turkey

Abstract. In this paper, we define confluent Appell polynomials of class $A^{(2)}$, construct a generalization of Szász operators using these polyomials and derive some approximation properties of this generalization on the semi infinite interval in a weighted function space. Finally, some graphical results are given to show the approximation process of constructed operators to a given function f.

1. Introduction

Szász operators [15] are an extension of Bernstein operators to infinite intervals. These operators have a significant impact in the field of approximation theory. Recently, there has been a significant amount of research on the study of generalizations of Szász operators, particularly those defined using polynomials and generating functions. These generalizations offer a variety of novel sequences of operators for approximation theory. Jakimovski and Leviatan [10] proposed an extension of Szász operators using Appell polynomials. Ismail [7] introduced an additional form of Szász operators and also established Jakimovski and Leviatan operators using Sheffer polynomials. On the other hand, Kazmin [11] has defined that a sequence of polynomials $\{P_n(z)\}$, $P_n^{(n)}(z) \equiv c_n$, where $c_n \neq 0$ are constants, n = 0, 1, 2, ..., is called a system of generalized Appell polynomials (or a system of polynomials of class $A^{(2)}$) if any one of the following equivalent conditions holds:

- 1. $P''_n(z) = P_{n-2}(z)$;
- 2. There exist two formal power series

$$A(t) = \sum_{k=0}^{\infty} \frac{a_k}{k!} t^k \text{ and } B(t) = \sum_{k=0}^{\infty} \frac{b_k}{k!} t^k,$$

which formally satisfy the identity

$$A(t)e^{zt} + B(t)e^{-zt} = \sum_{n=0}^{\infty} P_n(z)t^n.$$

2020 Mathematics Subject Classification. Primary 41A10; Secondary 41A25, 41A36.

Keywords. confluent Appell polynomials of class $A^{(2)}$, Százs operators, modulus of continuity

Received: 23 March 2024; Revised: 19 July 2024; Accepted: 27 September 2024

Communicated by Miodrag Spalević

* Corresponding author: Fatih Rıza Çelik

Email addresses: friza.celik@gazi.edu.tr (Fatih Rıza Çelik), gurhanicoz@gazi.edu.tr (Gürhan İçöz)

The requirement that the n-th Appell polynomial $P_n(z)$ have degree n is equivalent to requiring that $a_0^2 - b_0^2 \neq 0$. Various properties of polynomials in the class $A^{(2)}$ were studied by Ozhegov [13]. Then, Varma and Sucu [16] have introduced a generalization of Szász operators with the help of the Appell polynomials of class $A^{(2)}$ defined by Kazmin [11];

$$T_n(f; x) = \frac{1}{e^{nx} A(1) + e^{-nx} B(1)} \sum_{k=0}^{\infty} p_k(nx) f\left(\frac{k}{n}\right)$$

where A(1) > 0, $B(1) \ge 0$, $p_k(x) > 0$ and $x \in [0, \infty)$. Özarslan and Çekim [14] have introduced the confluent Appell polynomials $\left\{P_n^{(a,b)}(x)\right\}_{n=0}^{\infty}$,

$$A(t) {}_{1}F_{1}(a;b;xt) = \sum_{n=0}^{\infty} P_{n}^{(a,b)}(x) \frac{t^{n}}{n!},$$

where A(t) is an analytic function in the disc |t| < R, R > 1,

$$A(t) = \sum_{k=0}^{\infty} a_k \frac{t^k}{k!}, \quad a_0 \neq 0$$

and

$$_{1}F_{1}(a;b;z) = \sum_{n=0}^{\infty} \frac{(a)_{n}}{(b)_{n}} \frac{z^{n}}{n!}.$$

Subsequently, Özarslan and Çekim [14] have developed approximation operators utilizing confluent Appell polynomials, facilitating the approximation of a function defined on the semi-infinite interval within a weighted function space. One can find more generalizations of Szász operators using similar methods in the literature [5],[8],[9],[12] and [17].

Now, we introduce confluent Appell polynomials of class $A^{(2)}$ and utilize them to develop a generalized form of Szász operators. This is accomplished by leveraging the properties of confluent Appell polynomials of class $A^{(2)}$.

2. The Confluent Appell Polynomials of Class $A^{(2)}$

In this chapter, we introduce univariate confluent Appell polynomials of class $A^{(2)}$. We give them the generating function and properties we have obtained for them.

Definition 2.1. A polynomial system $\left\{P_n^{(a,b)}(x)\right\}_{n=0}^{\infty}$ is called confluent Appell of class $A^{(2)}$ if there exists a generating function of the form

$$A(t) {}_{1}F_{1}(a;b;xt) + B(t) {}_{1}F_{1}(a;b;-xt) = \sum_{n=0}^{\infty} P_{n}^{(a,b)}(x) \frac{t^{n}}{n!},$$

$$(1)$$

where A (t) and B (t) are an analytic functions in the disc |t| < R, R > 1, $a_0^2 - b_0^2 \neq 0$

$$A(t) = \sum_{k=0}^{\infty} a_k \frac{t^k}{k!}, B(t) = \sum_{k=0}^{\infty} b_k \frac{t^k}{k!}$$

and

$$_{1}F_{1}(a;b;z) = \sum_{n=0}^{\infty} \frac{(a)_{n}}{(b)_{n}} \frac{z^{n}}{n!}$$
 (2)

is the confluent hypergeometric function. This function is convergent for all finite z and the Pochhammer symbol is defined by

$$(a)_n = \left\{ \begin{array}{ll} a\left(a+1\right) \ldots \left(a+n-1\right) & ; \ n \geq 1 \\ 1 & ; \ n = 0 \end{array} \right.$$

Theorem 2.2. Let $\left\{P_n^{(a,b)}(x)\right\}_{n=0}^{\infty}$ be a confluent polynomial system where $b \notin \{0,-1,-2,...\}$. The following assertions are equivalent.

- 1. $\left\{P_n^{(a,b)}(x)\right\}_{n=0}^{\infty}$ is a set of confluent Appell of class $A^{(2)}$ polynomial system.
- 2. There exists a sequence $\{c_k\}_{k>0}$ independent of n with $c_0 \neq 0$ such that

$$P_n^{(a,b)}(x) = \sum_{k=0}^{n} c_{n-k} \binom{n}{k} \frac{(a)_k}{(b)_k} x^k$$
(3)

where $c_{n-k} = a_{n-k} + (-1)^k b_{n-k}$

Proof. (1) \Leftrightarrow (2) : Let $\left\{P_n^{(a,b)}(x)\right\}_{n=0}^{\infty}$ be a sequence of confluent Appell polynomials of class $A^{(2)}$. If we use series expansions and Cauchy product in generating functions, we obtain the equality

$$\begin{split} \sum_{n=0}^{\infty} P_{n}^{(a,b)}\left(x\right) \frac{t^{n}}{n!} &= A\left(t\right) {}_{1}F_{1}\left(a;b;xt\right) + B\left(t\right) {}_{1}F_{1}\left(a;b;-xt\right) \\ &= \left(\sum_{n=0}^{\infty} a_{n} \frac{t^{n}}{n!}\right) \left(\sum_{k=0}^{\infty} \frac{(a)_{k}}{(b)_{k}} \frac{(xt)^{k}}{k!}\right) \\ &+ \left(\sum_{n=0}^{\infty} b_{n} \frac{t^{n}}{n!}\right) \left(\sum_{k=0}^{\infty} \frac{(a)_{k}}{(b)_{k}} \frac{(-xt)^{k}}{k!}\right) \\ &= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \left(a_{n-k} + (-1)^{k} b_{n-k}\right) \binom{n}{k} \frac{(a)_{k}}{(b)_{k}} x^{k}\right) \frac{t^{n}}{n!} \\ &= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} c_{n-k} \binom{n}{k} \frac{(a)_{k}}{(b)_{k}} x^{k}\right) \frac{t^{n}}{n!} \end{split}$$

and from this equality is obtained.

Theorem 2.3. Let $\left\{P_n^{(a,b)}(x)\right\}_{n=0}^{\infty}$ be a confluent polynomial system where $b \notin \{0,-1,-2,...\}$. If $P_n^{(a,b)}(x)$ holds properties of given in (3) then it satisfies the following equality

$$\left(P_n^{(a,b)}(x)\right)'' = \frac{a(a+1)}{b(b+1)}n(n-1)P_{n-2}^{(a+2,b+2)}(x), \ n \ge 2.$$

$$\tag{4}$$

and $P_n^{(a,b)}(0)$ is independent of a and b.

Proof. If we take twice derivate of both sides of equation (3) with respect to *x*, we get

$$(P_n^{(a,b)}(x))'' = \sum_{k=2}^n c_{n,k}(a,b) \frac{(a)_k}{(b)_k} k(k-1) x^{k-2}$$

$$= \sum_{k=0}^{n-2} c_{n,k+2}(a,b) \frac{(a)_{k+2}}{(b)_{k+2}} (k+1) (k+2) x^k$$

$$= \frac{a(a+1)}{b(b+1)} n(n-1) \sum_{k=0}^{n-2} c_{n-k-2} \binom{n-2}{k} \frac{(a+2)_k}{(b+2)_k} x^k$$

$$= \frac{a(a+1)}{b(b+1)} n(n-1) P_{n-2}^{(a+2,b+2)}(x)$$

where

$$c_{n,k+2} = \frac{n}{k+2} \frac{n-1}{k+1} \dots \frac{n-k-1}{1} c_{n-k-2,0} (a,b) = \binom{n-2}{k} c_{n-k-2,0} (a,b) = \binom{n-2}{k} c_{n-k-2}.$$

3. Construction of Operators ζ_n

Let $P_n^{(a,b)}(x)$ be confluent Appell polynomials of class $A^{(2)}$. We define a new generalization of Szász operators by

$$\zeta_n(f;x) = \frac{1}{A(1) \,_1 F_1(a;b;nx) + B(1) \,_1 F_1(a;b;-nx)} \sum_{k=0}^{\infty} \frac{p_k^{(a,b)}(nx)}{k!} f\left(\frac{k}{n}\right) \tag{5}$$

where $f \in C[0, \infty)$, $x \ge 0$, $n \in \mathbb{N}$, b > a > 0.

With the help of following assumptions

- (i) A(t) and B(t) are analytics functions given in (1),
- (ii) A(1) > 0 and $B(1) \ge 0$,
- (iii) $p_k^{(a,b)}(x) > 0$ for all k = 0, 1, ... such that $0 \le k \le n$, $c_{n-k} = a_{n-k} + (-1)^k b_{n-k} > 0$.

It is clear that these operators defined in (5) are linear positive operators.

We note that in the special case A(t) = 1 and B(t) = 0, ζ_n operators will be reduced to confluent Szász operators in [14]. In the special case A(t) = 1, B(t) = 0 and a = b, we discover the well-known Szász operators.

Lemma 3.1. For the function given in (1), we have the following equalities

1.
$$\sum_{k=0}^{\infty} \frac{p_{k+1}^{(a,b)}(nx)}{k!} = A(1) {}_{1}F_{1}(a;b;nx) + B(1) {}_{1}F_{1}(a;b;-nx),$$
2.
$$\sum_{k=0}^{\infty} \frac{p_{k+1}^{(a,b)}(nx)}{k!} = A'(1) {}_{1}F_{1}(a;b;nx) + B'(1) {}_{1}F_{1}(a;b;-nx) + nx \frac{a}{b} [A(1) {}_{1}F_{1}(a+1;b+1;nx) - B(1) {}_{1}F_{1}(a+1;b+1;-nx)],$$
3.
$$\sum_{k=0}^{\infty} \frac{p_{k+2}^{(a,b)}(nx)}{k!} = A''(1) {}_{1}F_{1}(a;b;nx) + B''(1) {}_{1}F_{1}(a;b;-nx) + 2nx \frac{a}{b} [A(1) {}_{1}F_{1}(a+1;b+1;nx) - B(1) {}_{1}F_{1}(a+1;b+1;-nx)] + n^{2}x^{2} \frac{a(a+1)}{b(b+1)} [A(1) {}_{1}F_{1}(a+2;b+2;nx) + B(1) {}_{1}F_{1}(a+2;b+2;-nx)].$$

Lemma 3.2. Let $\zeta_n(f;x)$ be the operator introduced in (5). By using Lemma 3.1, we get

- 1. $\zeta_n(1;x) = 1$,
- 1. $\zeta_{n}(t,x) = t$, 2. $\zeta_{n}(t;x) = x \frac{1}{b} \frac{A(1)_{1}F_{1}(a+1;b+1;nx) B(1)_{1}F_{1}(a+1;b+1;-nx)}{A(1)_{1}F_{1}(a;b;nx) + B(1)_{1}F_{1}(a;b;-nx)} + \frac{1}{n} \frac{A'(1)_{1}F_{1}(a;b;nx) + B'(1)_{1}F_{1}(a;b;-nx)}{A(1)_{1}F_{1}(a;b;-nx)},$ 3. $\zeta_{n}(t^{2};x) = x^{2} \frac{a(a+1)}{b(b+1)} \frac{A(1)_{1}F_{1}(a+2;b+2;nx) + B(1)_{1}F_{1}(a+2;b+2;-nx)}{A(1)_{1}F_{1}(a;b;nx) + B(1)_{1}F_{1}(a;b;-nx)} + \frac{x}{n} \frac{a}{b} \frac{(2A'(1) + A(1))_{1}F_{1}(a+1;b+1;nx) (2B'(1) + B(1))_{1}F_{1}(a+1;b+1;-nx)}{A(1)_{1}F_{1}(a;b;nx) + B(1)_{1}F_{1}(a;b;-nx)} + \frac{1}{n^{2}} \frac{(A''(1) + A'(1))_{1}F_{1}(a;b;nx) + B(1)_{1}F_{1}(a;b;-nx)}{A(1)_{1}F_{1}(a;b;nx) + B(1)_{1}F_{1}(a;b;-nx)}.$

Lemma 3.3. By using Lemma 3.2 and by the linearty of operators ζ_n , we can compute the following central moments values:

$$1. \ \zeta_n(t-x;x) = x \frac{a}{b} \left[\frac{A(1)_1 F_1(a+1;b+1;nx) - B(1)_1 F_1(a+1;b+1;-nx)}{A(1)_1 F_1(a;b;nx) + B(1)_1 F_1(a;b;-nx)} - 1 \right] + \frac{1}{n} \frac{A'(1)_1 F_1(a;b;nx) + B'(1)_1 F_1(a;b;-nx)}{A(1)_1 F_1(a;b;nx) + B(1)_1 F_1(a;b;-nx)} + \frac{1}{n} \frac{A'(1)_1 F_1(a;b;nx) + B'(1)_1 F_1(a;b;-nx)}{A(1)_1 F_1(a;b;-nx) + B(1)_1 F_1(a;b;-nx)} + \frac{1}{n} \frac{A'(1)_1 F_1(a;b;nx) + B'(1)_1 F_1(a;b;-nx)}{A(1)_1 F_1(a;b;-nx) + B(1)_1 F_1(a;b;-nx)} + \frac{1}{n} \frac{A'(1)_1 F_1(a;b;nx) + B'(1)_1 F_1(a;b;-nx)}{A(1)_1 F_1(a;b;-nx) + B(1)_1 F_1(a;b;-nx)} + \frac{1}{n} \frac{A'(1)_1 F_1(a;b;-nx) + B'(1)_1 F_1(a;b;-nx)}{A(1)_1 F_1(a;b;-nx) + B(1)_1 F_1(a;b;-nx)} + \frac{1}{n} \frac{A'(1)_1 F_1(a;b;-nx) + B'(1)_1 F_1(a;b;-nx)}{A(1)_1 F_1(a;b;-nx) + B'(1)_1 F_1(a;b;-nx)} + \frac{1}{n} \frac{A'(1)_1 F_1(a;b;-nx) + B'(1)_1 F_1(a;b;-nx)}{A(1)_1 F_1(a;b;-nx) + B'(1)_1 F_1(a;b;-nx)} + \frac{1}{n} \frac{A'(1)_1 F_1(a;b;-nx) + B'(1)_1 F_1(a;b;-nx)}{A(1)_1 F_1(a;b;-nx) + B'(1)_1 F_1(a;b;-nx)} + \frac{1}{n} \frac{A'(1)_1 F_1(a;b;-nx) + B'(1)_1 F_1(a;b;-nx)}{A(1)_1 F_1(a;b;-nx) + B'(1)_1 F_1(a;b;-nx)} + \frac{1}{n} \frac{A'(1)_1 F_1(a;b;-nx) + B'(1)_1 F_1(a;b;-nx)}{A(1)_1 F_1(a;b;-nx) + B'(1)_1 F_1(a;b;-nx)} + \frac{1}{n} \frac{A'(1)_1 F_1(a;b;-nx) + B'(1)_1 F_1(a;b;-nx)}{A(1)_1 F_1(a;b;-nx) + B'(1)_1 F_1(a;b;-nx)} + \frac{1}{n} \frac{A'(1)_1 F_1(a;b;-nx) + B'(1)_1 F_1(a;b;-nx)}{A(1)_1 F_1(a;b;-nx) + B'(1)_1 F_1(a;b;-nx)} + \frac{1}{n} \frac{A'(1)_1 F_1(a;b;-nx) + B'(1)_1 F_1(a;b;-nx)}{A(1)_1 F_1(a;b;-nx) + B'(1)_1 F_1(a;b;-nx)} + \frac{1}{n} \frac{A'(1)_1 F_1(a;b;-nx) + B'(1)_1 F_1(a;b;-nx)}{A(1)_1 F_1(a;b;-nx) + B'(1)_1 F_1(a;b;-nx)} + \frac{1}{n} \frac{A'(1)_1 F_1(a;b;-nx) + B'(1)_1 F_1(a;b;-nx)}{A(1)_1 F_1(a;b;-nx) + B'(1)_1 F_1(a;b;-nx)} + \frac{1}{n} \frac{A'(1)_1 F_1(a;b;-nx) + B'(1)_1 F_1(a;b;-nx)}{A(1)_1 F_1(a;b;-nx) + B'(1)_1 F_1(a;b;-nx)} + \frac{1}{n} \frac{A'(1)_1 F_1(a;b;-nx) + B'(1)_1 F_1(a;b;-nx)}{A(1)_1 F_1(a;b;-nx) + B'(1)_1 F_1(a;b;-nx)} + \frac{1}{n} \frac{A'(1)_1 F_1(a;b;-nx) + B'(1)_1 F_1(a;b;-nx)}{A(1)_1 F_1(a;b;-nx) + B'(1)_1 F_1(a;b;-nx)} + \frac{1}{n} \frac{A'(1)_1 F_1(a;b;-nx) + B'(1)_1 F_1(a;b;-nx)}{A(1)_1 F_1(a;b;-nx) + B'(1)_1 F_1(a;b;-nx)} + \frac$$

$$2. \ \zeta_n((t-x)^2;x) = x^2 \left[\frac{a(a+1)}{b(b+1)} \frac{A(1)_1 F_1(a+2;b+2;nx) + B(1)_1 F_1(a+2;b+2;-nx)}{A(1)_1 F_1(a;b;nx) + B(1)_1 F_1(a;b;-nx)} - 2 \frac{a}{b} \frac{A(1)_1 F_1(a+1;b+1;nx) - B(1)_1 F_1(a+1;b+1;-nx)}{A(1)_1 F_1(a;b;nx) + B(1)_1 F_1(a;b;-nx)} + 1 \right] \\ + \frac{x}{n} \left[\frac{a}{b} \frac{(2A'(1) + A(1))_1 F_1(a+1;b+1;nx) - (2B'(1) + B(1))_1 F_1(a+1;b+1;-nx)}{A(1)_1 F_1(a;b;nx) + B(1)_1 F_1(a;b;-nx)} - 2 \frac{(A'(1) + A(1))_1 F_1(a;b;nx) + (B'(1) + B(1))_1 F_1(a;b;-nx)}{A(1)_1 F_1(a;b;nx) + B(1)_1 F_1(a;b;-nx)} \right] \\ + \frac{1}{n^2} \frac{(A''(1) + A'(1))_1 F_1(a;b;nx) + (B''(1) + B'(1))_1 F_1(a;b;-nx)}{A(1)_1 F_1(a;b;nx) + B(1)_1 F_1(a;b;-nx)}.$$

4. Rate of Convergence for Operators ζ_n

In this section, we elucidate the rate of convergence of the operators ζ_n , leveraging the definitions of various tools.

Theorem 4.1. Let f be continuous on $[0, \infty)$ and

$$H^* = \left\{ f : \frac{f(x)}{1+x^2} \text{ is convergent as } x \to \infty \right\}.$$

Then, sequence of operators in (5) converges uniformly on the each compact subset on $[0, \infty)$, i.e.

$$\lim_{n\to\infty}\zeta_n(f;x)=f\left(x\right).$$

Proof. Now, fix c>0 and consider the lattice homomorphism $T_c:C[0,\infty)\to C[0,c]$ defined by $T_c(f)=f|_{[0,c]}$ for every $f\in C[0,\infty)$. It is apparent from ${}_1F_1(a;b;z)\sim \Gamma(b)\left(\frac{e^zz^{a-b}}{\Gamma(a)}-\frac{(-z)^{-a}}{\Gamma(b-a)}\right)$ for large |z| and $-\frac{3\pi}{2}< arg(z)\leq \frac{\pi}{2}$ [1] and Lemma 3.2 that

$$\lim_{n\to\infty}T_c\left(\zeta_n(t^i;x)\right)=T_c\left(t^i\right),\ i=0,1,2,$$

uniformly on [0,c] for every $f \in C[0,\infty)$. Applying the Korovkin-type property ([2], Theorem 4.1.4 (vi)), the proof is completed.

Theorem 4.2. The operators ζ_n defined in (5) satisfy the following inequality

$$\left|\zeta_n(f;x)-f(x)\right|\leq 2\omega\left(f;\sqrt{\zeta_n((t-x)^2)}\right)$$

where $f \in H^*$ and ω is the modulus of continuity of the function f [3] defined by

$$\omega\left(f;\delta\right) := \sup_{\substack{x,y \in [0,\infty)\\|x-y| \le \delta}} \left| f\left(x\right) - f\left(y\right) \right|.$$

Proof. The modulus of continuity of function $f \in H^*$ satisfies the below inequality in [2]

$$\left| f(x) - f(t) \right| \le \omega(f; \delta) \left(1 + \frac{|t - x|}{\delta} \right). \tag{6}$$

From the inequality (6), we get

$$\left|\zeta_{n}(f;x) - f(x)\right| \leq \zeta_{n}(\left|f(t) - f(x)\right|;x) \leq \left(1 + \frac{1}{\delta}\zeta_{n}(\left|t - x\right|;x)\right)\omega\left(f;\delta\right). \tag{7}$$

Using the Cauchy-Schwarz inequality leads us to

$$\zeta_{n}(|t-x|;x) = \sum_{k=0}^{\infty} \sqrt{\left(\frac{1}{A(1) \,_{1}F_{1}(a;b;nx) + B(1) \,_{1}F_{1}(a;b;-nx)}\right)^{2} \left(\frac{p_{k}^{(a,b)}(nx)}{k!}\right)^{2} \left(\frac{k}{n} - x\right)^{2}} \\
\leq \left[\sqrt{\sum_{k=0}^{\infty} \left(\frac{1}{A(1) \,_{1}F_{1}(a;b;nx) + B(1) \,_{1}F_{1}(a;b;-nx)}\right) \left(\frac{p_{k}^{(a,b)}(nx)}{k!}\right) \left(\frac{k}{n} - x\right)^{2}}\right] \\
\times \left[\sqrt{\sum_{k=0}^{\infty} \left(\frac{1}{A(1) \,_{1}F_{1}(a;b;nx) + B(1) \,_{1}F_{1}(a;b;-nx)}\right) \left(\frac{p_{k}^{(a,b)}(nx)}{k!}\right)}\right].$$

We can write the following inequality,

$$\zeta_n(|t-x|;x) \le \sqrt{\zeta_n((t-x)^2;x)} \sqrt{\zeta_n(1;x)} = \sqrt{\zeta_n((t-x)^2;x)}$$
(8)

Using the inequality (8) in (7), we obtain

$$\left|\zeta_n(f;x) - f(x)\right| \le \left(1 + \frac{1}{\delta}\sqrt{\zeta_n((t-x)^2;x)}\right)\omega(f;\delta). \tag{9}$$

Here, by choosing $\delta(t, x) = \sqrt{\zeta_n((t-x)^2; x)}$ in inequality (9), the proof is completed. \Box

Now, for $0 < \beta \le 1$ and $\eta_1, \eta_2 \in [0, \infty)$, let us introduce the following class of functions [6]:

$$Lip_{M}^{(\beta)} := \left\{ f \in C[0, \infty) : \left| f(\eta_{1}) - f(\eta_{2}) \right| \le M \left| \eta_{1} - \eta_{2} \right|^{\beta}, \ t, x \in [0, \infty) \right\}. \tag{10}$$

Theorem 4.3. Let ζ_n be operator defined in (5). Then for each $f \in Lip_M^{(\beta)}$ $(M > 0, 0 < \beta \le 1)$ satisfy (10). We have

$$\left|\zeta_n(f;x) - f(x)\right| \le M\left(\zeta_n((t-x)^2)^{\frac{\beta}{2}}.$$

Proof. We prove it by using (10) and Hölder's inequality. First, as in the proof of Theorem 4.2, we have

$$\left|\zeta_n(f;x) - f(x)\right| \le M\zeta_n\left(|t - x|^\beta; x\right). \tag{11}$$

Then, we can use Hölder's inequality ar the right-hand side of the inequality in (11), we get

$$\begin{aligned} \left| \zeta_n(f;x) - f(x) \right| & \leq & M \zeta_n \left(|t - x|^{\beta}; x \right) \\ & \leq & M \left(\zeta_n \left(\left((t - x)^2; x \right) \right)^{\frac{\beta}{2}} \left(\zeta_n(1;x) \right)^{\frac{2-\beta}{2}} \\ & \leq & M \left[\zeta_n \left((t - x)^2 \right]^{\frac{\beta}{2}}. \end{aligned}$$

Hereby, the proof is done. \Box

5. Approximation Properties in Weighted Space

Gadjiev has extended Korovkin's theorem, a pivotal result in approximation theory, to an unbounded interval within weighted function spaces [4]. Let function f be a monotone increased function, $\lim_{x\to\infty} f(x) = \infty$, $\rho(x) = 1 + x^2$ is a weighted function and M_f and γ_f are a positive constants that depend to function f. Accordingly, we recall the following weighted space of functions defined on $[0,\infty)$,

$$B_{\rho}[0,\infty) := \left\{ f \in [0,\infty) : \left| f(x) \right| \le M_f \cdot \rho(x) \right\},$$

$$C_{\rho}[0,\infty) := \left\{ f \in B_{\rho}[0,\infty) : f \text{ is continuous} \right\},$$

$$C_{\rho}^{\gamma}[0,\infty) := \left\{ f \in C_{\rho}[0,\infty) : \lim_{n \to \infty} \frac{f(x)}{\rho(x)} = \gamma_f < \infty \right\}.$$

It obvious that $C_{\rho}^{\gamma}[0,\infty) \subset C_{\rho}[0,\infty) \subset B_{\rho}[0,\infty)$. $B_{\rho}[0,\infty)$ is a normed space with the following norm:

$$||f||_{\rho} = \sup_{x \in [0,\infty)} \frac{|f(x)|}{\rho(x)}.$$

Theorem 5.1. [4] Let $(T_n)_{n\geq 1}$ be a sequence of linear positive operators. If $(T_n)_{n\geq 1}$ satisfy two conditions:

i) The operators T_n act from C_ρ $[0, \infty)$ to B_ρ $[0, \infty)$,

ii)
$$\lim_{n\to\infty} \left\| T_n\left(t^i;x\right) - x^i \right\|_{\rho} = 0$$
, $i = 0, 1, 2$, then for any function $f \in C^{\gamma}_{\rho}\left[0,\infty\right)$

$$\lim_{n\to\infty}\left\|T_n\left(f;x\right)-f\right\|_{\rho}=0.$$

Lemma 5.2. The operators ζ_n defined in (5) satisfy the following inequality

$$\zeta_n(\rho, x) \le C\rho(x), C > 0$$

where $\rho(x) = 1 + x^2$.

Theorem 5.3. *The operators* ζ_n *give in (5) confirm the following equality*

$$\lim_{n\to\infty} \left\| \zeta_n \left(f; x \right) - f \right\|_0 = 0$$

for $f \in C_{\rho}^{\gamma}[0, \infty)$ where $\rho(x) = 1 + x^2$.

Proof. i) Let $f \in C_{\rho}[0, \infty)$, from Lemma 5.2, we obtain

$$\zeta_{n}(f,x) = \zeta_{n}\left(\frac{f}{\rho}\rho,x\right) \le \left\|f\right\|_{\rho} \zeta_{n}(\rho,x) \le \left\|f\right\|_{\rho} C \cdot \rho(x) \le M_{f} \cdot \rho(x) \tag{12}$$

where $M_f > 0$. From the inequality (12), it is $\zeta_n \in B_\rho[0,\infty)$. So, we get that the operators ζ_n act from $C_\rho[0,\infty)$ to $B_\rho[0,\infty)$.

ii) From Lemma 3.2, it is clear that

$$\lim_{n\to\infty}\|\zeta_n(1;x)-1\|_{\rho}=0.$$

Also, by using Lemma 3.3 and from ${}_1F_1(a;b;z) \sim \Gamma(b)\left(\frac{e^zz^{a-b}}{\Gamma(b-a)} - \frac{(-z)^{-a}}{\Gamma(b-a)}\right)$ for large |z| and $-\frac{3\pi}{2} < arg(z) \le \frac{\pi}{2}$ [1] ,we can write

$$\begin{split} \|\zeta_{n}(t;x) - x\|_{\rho} & \leq \sup_{x \in [0,\infty)} \frac{x}{1 + x^{2}} \left| \frac{a}{b} \frac{A(1) {}_{1}F_{1}(a+1;b+1;nx) - B(1) {}_{1}F_{1}(a+1;b+1;-nx)}{A(1) {}_{1}F_{1}(a;b;nx) + B(1) {}_{1}F_{1}(a;b;-nx)} - 1 \right| \\ & + \sup_{x \in [0,\infty)} \frac{\left| \frac{1}{n} \frac{A'(1) {}_{1}F_{1}(a;b;nx) + B'(1) {}_{1}F_{1}(a;b;-nx)}{A(1) {}_{1}F_{1}(a;b;nx) + B(1) {}_{1}F_{1}(a;b;-nx)} \right|}{1 + x^{2}} \\ & \leq \frac{1}{2} \left| \frac{2B(1)}{e^{2n}A(1) + (-1)^{a-b}B(1)} \right| + \frac{1}{n} \left| \frac{A'(1) e^{2n} + (-1)^{a-b}B'(1)}{A(1) e^{2n} + (-1)^{a-b}B(1)} \right| \end{split}$$

Thus, we get

$$\lim_{n\to\infty} \|\zeta_n(t;x) - x\|_{\rho} = 0.$$

Then,

$$\begin{split} \left\| \zeta_n \left(t^2; x \right) - x^2 \right\|_{\rho} & \leq \sup_{x \in [0, \infty)} \frac{x^2}{1 + x^2} \left| \frac{a(a+1)}{b(b+1)} \frac{A\left(1\right)_1 F_1\left(a+2; b+2; nx\right) + B\left(1\right)_1 F_1\left(a+2; b+2; -nx\right)}{A\left(1\right)_1 F_1\left(a; b; nx\right) + B\left(1\right)_1 F_1\left(a; b; -nx\right)} + 1 \right| \\ & - 2 \frac{a}{b} \frac{A\left(1\right)_1 F_1\left(a+1; b+1; nx\right) - B\left(1\right)_1 F_1\left(a+1; b+1; -nx\right)}{A\left(1\right)_1 F_1\left(a; b; nx\right) + B\left(1\right)_1 F_1\left(a; b; -nx\right)} + 1 \right| \\ & + \sup_{x \in [0, \infty)} \frac{x}{1 + x^2} \left| \frac{a}{b} \frac{(2A'\left(1\right) + A\left(1\right))_1 F_1\left(a+1; b+1; nx\right) - (2B'\left(1\right) + B\left(1\right))_1 F_1\left(a+1; b+1; -nx\right)}{n\left(A\left(1\right)_1 F_1\left(a; b; nx\right) + B\left(1\right)_1 F_1\left(a; b; nx\right) + B\left(1\right)_1 F_1\left(a; b; -nx\right)\right)} \right| \\ & - 2 \frac{(A'\left(1\right) + A\left(1\right))_1 F_1\left(a; b; nx\right) + (B'\left(1\right) + B\left(1\right))_1 F_1\left(a; b; -nx\right)}{n\left(A\left(1\right)_1 F_1\left(a; b; nx\right) + B\left(1\right)_1 F_1\left(a; b; -nx\right)\right)} \right| \\ & + \sup_{x \in [0, \infty)} \frac{1}{1 + x^2} \left| \frac{(A''\left(1\right) + A\left(1\right))_1 F_1\left(a; b; nx\right) + (B''\left(1\right) + B\left(1\right))_1 F_1\left(a; b; -nx\right)}{n^2\left(A\left(1\right)_1 F_1\left(a; b; nx\right) + B\left(1\right)_1 F_1\left(a; b; -nx\right)\right)} \right| \\ & \leq \left| \frac{4B\left(1\right)}{e^{2n}A\left(1\right) + (-1)^{a-b}B\left(1\right)} \right| + \frac{1}{n} \left| \frac{A\left(1\right) e^{2n} - (-1)^{a-b}\left(4B'\left(1\right) + B\left(1\right)\right)}{A\left(1\right) e^{2n} + (-1)^{a-b}B\left(1\right)} \right| \\ & + \frac{1}{n^2} \left| \frac{(A'''\left(1\right) + A'\right)\left(1\right) e^{2n} + (-1)^{a-b}\left(B''\left(1\right) + B'\left(1\right)\right)}{A\left(1\right) e^{2n} + (-1)^{a-b}B\left(1\right)} \right| \end{aligned}$$

Thus, we get

$$\lim_{n\to\infty} \left\| \zeta_n(t^2; x) - x^2 \right\|_{\rho} = 0.$$

As a result, we obtain

$$\lim_{n\to\infty} \|\zeta_n(t^k; x) - x^k\|_{\rho} = 0, \ k = 0, 1, 2.$$

If we apply the Theorem 5.1, we obtain the desired results. \Box

6. Graphical Results

Finally, in this section, we present graphical examples illustrating the convergence of Szász operators, including the confluent Appell polynomials of class $A^{(2)}$. These graphical examples provide a clearer understanding of how our operators converge to specific functions.

Example 6.1. The first illustration demonstrates the convergence of the operators ζ_n depending on n. Here, taken $a = \frac{1}{2}$ and $b = \frac{4}{5}$ values and approximating function $f(x) = \frac{\cos(7x)}{2+\cos(x)}$, we see the operators respectively for n = 50, n = 100 and n = 200 values in Figure 1.

Example 6.2. Another example is illustrated in Figure 2 to show impact of shape parameters b. For a = 1 and n = 100 are fixed and b = 2, b = 4 and b = 8 approximation ζ_n convergence to $f(x) = \frac{\cos(7x)}{2+\cos(x)}$.

Example 6.3. The last example is illustrated in Figure 3 to demonstrate the impact of the shape parameters a. For b = 10 and n = 100 are fixed and a = 1, a = 3 and a = 9 approximation ζ_n convergence to $f(x) = \frac{\cos(7x)}{2+\cos(x)}$.

Figure 1:

Figure 2:

Figure 3:

References

- [1] M. Abramowitz, I.A. Stegun, [June 1964]. Chapter 13, in: *Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables*, in: Applied Mathematics Series, vol. 55, United States Department of Commerce, National Bureau of Standards; Dover Publications, Washington D.C.; New York, ISBN: 978-0-486-61272-0, 1983, p. 504, (Ninth reprint with additional corrections of tenth original printing with corrections (1972); first ed.).
- [2] F. Altomare.; M. Campiti, Korovkin-type approximation theory and its applications. De Gruyter Studies in Mathematics; Walter de Gruyter & Co.: Berlin, Germany, 1994.
- [3] R. A. DeVore, G. G. Lorentz, Constructive approximation. Springer Science Business Media; 1993 Nov 4.
- [4] A. D. Gadjiev, The convergence problem for a sequence of positive linear operators on unbounded sets and theorems analogues to that of PP. Korovkin. Doklady Akademii Nauk SSSR 1974; 218 (5):1001-1004
- [5] P. Gupta, A.M. Acu, P.N. Agrawal, *Jakimovski–Leviatan operators of Kantorovich type involving multiple Appell polynomials*. Georgian Mathematical Journal. 2021 Feb 1;28(1):73-82.
- [6] V. Gupta, R. P. Agarwal, Convergence estimates in approximation theory. Cham: Springer; 2014 Jan 8.
- [7] M. E. Ismail, On a generalization of Szász operators. Mathematica (Cluj). 1974;39(2):259-267.
- [8] G. İçöz, S. Varma, S. Sucu, Approximation by operators including generalized Appell polynomials. Filomat. 2016 Jan 1;30(2):429-440.
- [9] G. İçöz, Z. Tat, A generalization of Szász operators with the help of new kind Appell polynomials. Mathematical Foundations of Computing. 2023 Sep 18:0-0.
- [10] A. Jakimovski, D. Leviatan, Generalized Szász operators for the approximation in the infinite interval. Mathematica (Cluj). 1969;11(34):97-103.
- [11] Y. A. Kazmin, Expansions in series of Appell polynomials. Mathematical notes of the Academy of Sciences of the USSR, 1969 May;5:304-311.
- [12] M. Nasiruzzaman, K.J. Ansari, M. Mursaleen, Weighted and Voronovskaja type approximation by q-Szász-Kantorovich operators involving Appell polynomials. Filomat. 2023;37(1):67-84.
- [13] V. B. Ozhegov, Some extremal properties of generalized Appell polynomials, Doklady Akademii Nauk, Russian Academy of Sciences, 1964 (Vol. 159, No. 5, pp. 985-987).
- [14] M.A. Özarslan, B. Çekim, Confluent Appell polynomials. Journal of Computational and Applied Mathematics. 2023 May 1;424:114984.
- [15] O. Szász, Generalization of S. Bernstein's polynomials to the infinite interval. J. Res. Nat. Bur. Standards. 1950 Sep;45(3):239-245.
- [16] S. Varma, S. Sucu, A generalization of Szász operators by using the Appell polynomials of class $A^{(2)}$. Symmetry. 2022 Jul 9;14(7):1410.
- [17] S. Yazıcı, F.T. Yeşildal, B. Çekim, On a generalization of Szász-Mirakyan operators including Dunkl-Appell polynomials. Turkish Journal of Mathematics. 2022;46(6):2353-2365.