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Abstract. In this paper, we introduce the derivative parallelism, a novel concept of parallelism closely
related to the g-angle, and demonstrate its fundamental properties of homogeneity, transitivity, and right-
sided continuity. Notably, we establish that derivative parallelism coincides with linear dependence and
possesses additivity exclusively in strictly convex spaces. Furthermore, we assert that derivative parallelism
coincides with normed parallelism precisely when it exhibits symmetry and/or left-sided continuity. Our
results reveal that derivative parallelism is in general stronger than normed parallelism. Moreover, we
establish several characterizations of derivative parallelism, both in general normed spaces and in Hilbert
C∗-modules.

1. Introduction

Throughout this paper, we assume that X is a normed space over the field F ∈ {R,C}, BX,SX denote the
closed unit ball and the unit sphere of X, respectively, and T := {λ ∈ F : |λ| = 1}.

The concept of norm parallelism, initially introduced by Seddik [7], defines an element x ∈ X as being
norm parallel to y ∈ X, denoted as x ∥ y, if there exists λ ∈ T such that the condition ∥x+λy∥ = ∥x∥+∥y∥ holds.
The norm parallelism generalizes the notion of linear dependence, in that linearly dependent elements are
necessarily norm parallel. However, the reverse holds only in strictly convex spaces ([4, Theorem 2.8]).
Zamani and Moslehian [12, 13] developed several characterizations of the norm parallelism in Hilbert
C∗-modules. Furthermore, Zamani [11] investigated the characterization of norm parallelism in certain
spaces of continuous functions. Wojcik [8] provided characterizations of the norm parallelism for bounded
linear operators between Banach spaces and presented an interesting application to the invariant subspace
problem. For a deeper understanding of norm parallelism, readers are advised to refer to the references
[6, 9, 10].

The P-angle, introduced in [3], is related to Phythagorean orthogonality and is defined as

∠P(x, y) = arccos
(
∥x∥2 + ∥y∥2 − ∥x − y∥2

2∥x∥∥y∥

) (
x, y ∈ X \ {0}

)
.

A simple calculation reveals that, for x, y ∈ X \ {0} and λ ∈ T, the condition ∥x+λy∥ = ∥x∥+ ∥y∥ is equivalent
to ∠P(x,−λy) = π. Thus, the P-angle characterizes norm parallelism. Specifically, for x, y ∈ X \ {0}, x ∥ y is
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equivalent to the existence of λ ∈ T such that ∠P(x,−λy) = π. This observation inspires us to introduce a
novel concept of parallelism associated with a specific angle.

In Section 2, we introduce the concept of derivative parallelism and establish a characterization. The
crucial results are some necessary and sufficient conditions for derivative parallelism to exhibit favorable
properties.

In Section 3, we delve into the characterization of derivative parallelism in Hilbert C∗-modules. As
practical applications, we derive several characterizations of derivative parallelism in certain algebra of
continuous functions as well as in the algebra of Hilbert space operators.

2. Derivative parallelism and its basic properties

The g-angle ([3]) is defined as

∠1(x, y) = arccos
(D+y ∥x∥ +D−y ∥x∥

2∥y∥

) (
x, y ∈ X \ {0}

)
,

where

D±y ∥x∥ := lim
t→0±

∥x + ty∥ − ∥x∥
t

.

The convexity of t 7→ ∥x + ty∥ guarantees the existence of these one-sided derivatives and implies that
D+y ∥x∥ ≥ D−y ∥x∥. Initially, we attempted to define parallelism as ∠1(x, y) = 0 or π. However, in complex
normed spaces, this definition faces challenges as linearly dependent elements may not adhere to the
parallelism criterion, e.g., ∠1(x, ix) = π/2 for any nonzero x. To address this limitation, observe that in real
normed spaces, a straightforward calculation shows that D±

−y∥x∥ = −D±y ∥x∥. Consequently, ∠1(x,−y) = 0 if
and only if ∠1(x, y) = π, revealing the fact that our initial parallelism definition is equivalent to the existence
of λ ∈ T such that ∠1(x, λy) = 0 holds. Motivated by this observation, we define parallelism by declaring
the existence of λ ∈ T such that ∠1(x, λy) = 0 holds, which is equivalent to D+λy∥x∥+D−λy∥x∥ = 2∥y∥. Since the
inequalities D−λy∥x∥ ≤ D+λy∥x∥ ≤ ∥y∥ hold, we conclude that D−λy∥x∥ = ∥y∥. Conversely, this condition implies
that ∠1(x, λy) = 0. This leads to our definition.

Definition 2.1. Let X be a normed space and x, y ∈ X. Then x is said to be derivative parallel to y, denoted by
x ∥D y, if either x = 0 or there exists λ ∈ T satisfying the condition:

lim
t→0−

∥x + tλy∥ − ∥x∥
t

= ∥y∥.

The proposition below justifies the rationality of our definition.

Proposition 2.2. Let X be a normed space and x, y ∈ X be linearly dependent. Then x ∥D y.

Proof. Without loss of generality, we can assume that x , 0. It follows that y = αx for some α ∈ F. Observe
that sgnα ∈ T and

lim
t→0−

∥x + t(sgnα)y∥ − ∥x∥
t

= lim
t→0−

∥x + t|α|x∥ − ∥x∥
t

= |α|∥x∥ = ∥y∥.

Thus x ∥D y.

We now present a characterization of derivative parallelism in terms of duality mapping, which is defined
as

J(x) := {x∗ ∈ SX∗ : x∗(x) = ∥x∥}

for any element x ∈ X, where X∗ is the dual of X. Recall that a smooth point is defined as a point whose
duality mapping is a singleton, and that a normed space is smooth precisely when its unit sphere consists
entirely of such smooth points.
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Theorem 2.3. Let X be a normed space and x, y ∈ X. Then x ∥D y if and only if either x = 0 or there exists λ ∈ T
such that J(x) ⊂ λJ(y).

Proof. Suppose that x ∥D y and x , 0. Then there exists λ ∈ T such that

lim
t→0−

∥x + tλy∥ − ∥x∥
t

= ∥y∥.

For any x∗ ∈ J(x), we have

∥y∥ = lim
t→0−

∥x + tλy∥ − ∥x∥
t

≤ lim
t→0−

Re x∗(x + tλy) − x∗(x)
t

= Reλx∗(y) ≤ |x∗(y)| ≤ ∥y∥.

It follows that λx∗(y) = ∥y∥, leading to λx∗ ∈ J(y). Thus J(x) ⊂ λJ(y), which establishes the necessity.
To prove the sufficiency, we assume, without loss of generality, that x , 0 and there exists λ ∈ T such

that J(x) ⊂ λJ(y). For every n ∈ Z≥0, the Hahn-Banach theorem yields x∗n ∈ SX∗ such that∥∥∥x − n−1λy
∥∥∥ = x∗n

(
x − n−1λy

)
.

Then
x∗n(x) =

∥∥∥x − n−1λy
∥∥∥ + n−1x∗n(λy)→ ∥x∥

and there exists a subsequence {x∗nm
} of {x∗n} such that x∗nm

(λy) converges to some α ∈ F. Since BX∗ is weak*-
compact, as established in the Banach-Alaoglu theorem, there is a subnet

〈
x∗nmi

〉
i∈I

of the sequence {x∗nm
} that

converges to some x∗ ∈ BX∗ with respect to the weak*-topology. As a result, we have

x∗(x) = ∥x∥, λx∗(y) = x∗(λy) = α.

Hence x∗ ∈ J(x) ⊂ λJ(y), which entails that

α = λx∗(y) = ∥y∥.

Observe that

∥y∥ ≥ lim
t→0−

∥x + tλy∥ − ∥x∥
t

= lim
m→∞

∥x − n−1
m λy∥ − ∥x∥
−n−1

m

= − lim
m→∞

nm

[
Re x∗nm

(
x − n−1

m λy
)
− ∥x∥

]
= lim

m→∞

[
Re x∗nm

(λy) + nm

(
∥x∥ − Re x∗nm

(x)
)]

≥ lim
m→∞

Re x∗nm
(λy) = Reα = ∥y∥,

which implies that

lim
t→0−

∥x + tλy∥ − ∥x∥
t

= ∥y∥.

Consequently, x ∥D y holds.

Based on the previous theorem, some properties of derivative parallelism are derived immediately and
listed below without proof.

Corollary 2.4.
(i) Derivative parallelism possesses homogeneity, which means that if x, y ∈ X satisfy x ∥D y, then αx ∥D βy for

all α, β ∈ F.
(ii) Derivative parallelism possesses transitivity, that is, if x, y, z ∈ X \ {0} satisfy x ∥D y and y ∥D z, then x ∥D z

holds.
(iii) Derivative parallelism is continuous on the right, i.e., if x ∈ X and the sequence {yn} ⊂ X satisfy x ∥D yn for

all n ∈ Z≥1 and yn → y ∈ X, then x ∥D y.
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Corollary 2.5. Derivative parallelism implies norm parallelism.

Proof. Let X be a normed space and x, y ∈ X satisfy x ∥D y. To prove x ∥ y, we assume x , 0 without loss
of generality. Then Theorem 2.3 ensures the existence of λ ∈ T such that J(x) ⊂ λJ(y). The Hahn-Banach
theorem yields x∗ ∈ J(x). Thus λx∗ ∈ J(y). It follows that

∥x∥ + ∥y∥ ≥ ∥x + λy∥ ≥ x∗(x + λy) = ∥x∥ + ∥y∥,

leading to ∥x + λy∥ = ∥x∥ + ∥y∥. Consequently, x ∥ y holds.

Remark 2.6. We will see below in Example 2.13 that derivative parallelism may fail to coincide with norm parallelism.

After establishing the homogeneity, transitivity, and right-sided continuity of the derivative parallelism
in Corollary 2.4, we are motivated to investigate its symmetry, additivity, and left-sided continuity. One of
the principal results in this section is the characterization of its additivity, which we present as follows.

Theorem 2.7. Let X be a normed space. The following statements are equivalent:
(i) X is strictly convex.
(ii) Derivative parallelism in X coincides with the linear dependence, that is, x ∥D y if and only if x and y are

linearly dependent.
(iii) Derivative parallelism in X is additive on the left, which means that if x, y, z ∈ X satisfy x ∥D z and y ∥D z,

then x + y ∥D z holds.
(iv) Derivative parallelism in X is additive on the right, which means that if x, y, z ∈ X satisfy x ∥D y and x ∥D z,

then x ∥D y + z holds.

To establish this theorem, we need to perform some preliminary work.

Lemma 2.8. Let X be a normed space. If x0, x1 ∈ SX are distinct elements with the line segment between them
entirely in SX, define xt := (1 − t)x0 + tx1 for all t ∈ (0, 1). The conclusion is, for all t ∈ (0, 1), xt ∥D x1 holds, and
neither x1 − x0 ∥D xt nor xt ∥D x1 − x0 holds.

Proof. Fix t ∈ (0, 1). For any x∗ ∈ J(xt), we have

(1 − t)x∗(x0) + tx∗(x1) = x∗(xt) = 1.

This leads to x∗(x0) = x∗(x1) = 1 and hence x∗(x1 − x0) = 0. Thus J(xt) ⊂ J(x1), and J(xt) ∩ (λJ(x1 − x0)) = ∅ for
all λ ∈ T. Consequently, we can invoke Theorem 2.3 to obtain the desired conclusion.

The subsequent proposition focus on rotund points, defined as elements of SX that do not lie within any
line segment contained in SX. Recall that X is strictly convex precisely when SX consists entirely of rotund
points.

Proposition 2.9. Let X be a normed space and x ∈ SX. Then the following conditions are equivalent:
(i) x is a rotund point.
(ii) If y ∈ X satisfies x ∥D y or y ∥D x, then x and y are linearly dependent.
(iii) If y ∈ X satisfies y ∥D x, then x and y are linearly dependent.

Proof. (i)⇒ (ii): Without loss of generality, we assume that y , 0. Let

u =
{

x, x ∥D y,
y/∥y∥, y ∥D x, v =

{
y/∥y∥, x ∥D y,

x, y ∥D x.

Then by the homogeneity of derivative parallelism, we have u ∥D v. It suffices to show that u and v are
linearly dependent. By Theorem 2.3, there exists λ ∈ T such that J(u) ⊂ λJ(v). The Hahn-Banach theorem
yields u∗ ∈ J(u). Thus λu∗ ∈ J(v), leading to

2 ≥ ∥u + λv∥ ≥ u∗(u + λv) = ∥u∥ + ∥v∥ = 2.
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It follows that ∥∥∥∥∥1
2
λu +

1
2

v
∥∥∥∥∥ = ∥∥∥∥∥1

2
u +

1
2
λv

∥∥∥∥∥ = 1.

Since x is a rotund point, either u or v must also be a rotund point. Consequently, u = λv holds, as desired.
(ii)⇒ (iii): Clearly.
(iii) ⇒ (i): Suppose for contrary that x is not a rotund point. then there exists a distinct z ∈ SX with

the line segment between x and z entirely in SX. Let y = (x + z)/2, then x and y are linearly independent.
Moreover, Lemma 2.8 asserts that y ∥D x, which contradicts (iii).

Now it is time to prove Theorem 2.7.

Proof. (i)⇒ (ii): Since linear dependence implies derivative parallelism, as established in Proposition 2.2,
it suffices to prove the converse implication. Suppose that x, y ∈ X satisfy x ∥D y. By the homogeneity of
derivative parallelism, we can assume, without loss of generality, that y ∈ SX. Then y is a rotund point.
Applying Proposition 2.9, we conclude that x and y are linearly dependent.

(ii)⇒ (iii) and (ii)⇒ (iv): These implications are evident.
(iii)⇒ (i) and (iv)⇒ (i): Suppose for contrary that X is not strictly convex. Then there exists x ∈ SX that

is not a rotund point. As a result, we deduce the existence of a distinct y ∈ SX with the line segment joining
x and y lies entirely in SX. Let

z =
1
3

x +
2
3

y, w =
2
3

x +
1
3

y.

Then z = w/2 + y/2, w = z/2 + x/2, z − w = (y − x)/3. By Lemma 2.8, we arrive at z ∥D w and w ∥D z hold,
and neither y − x ∥D w nor w ∥D y − x holds. We can invoke the homogeneity of derivative parallelism to
derive that neither z − w ∥D w nor w ∥D z − w holds, which contradicts (iii) and (iv).

Next, we introduce another key result characterizing the symmetry and left-side continuity of derivative
parallelism.

Theorem 2.10. Let X be a normed space. The following statements are equivalent:
(i) Derivative parallelism in X coincides with norm parallelism.
(ii) Derivative parallelism in X possesses symmetry, which means that y ∥D x holds whenever x, y ∈ X satisfy

x ∥D y.
(iii) Derivative parallelism in X is continuous on the left, i.e., if y ∈ X and the sequence {xn} ⊂ X satisfy xn ∥D y

for all n ∈ Z≥1 and xn → x ∈ X, then x ∥D y.
(iv) Every point x ∈ SX is a rotund point or a smooth point in any 2-dimensional subspace including x.

Proof. (i)⇒ (ii): It follows directly form the symmetry of norm parallelism.
(ii) ⇒ (iii): Suppose that the derivative parallelism in X possesses symmetry. Since the derivative

parallelism is continuous on the right, as established in Proposition 2.2, it must be continuous on the left.
(iii)⇒ (iv): It follows immediately form the proposition that follows.
(iv) ⇒ (i): Since derivative parallelism implies norm parallelism as established in Corollary 2.5, it

suffices to show the converse implication. Suppose that x, y ∈ X satisfy x ∥ y. By the homogeneity of norm
parallelism and derivative parallelism, we can assume, without loss of generality, that x ∈ SX. If x, y are
linearly dependent, then Proposition 2.2 ensures that x ∥D y. If x, y are linearly independent, then x is a
rotund point or a smooth point in span{x, y}. Applying the proposition that follows, we arrive at x ∥D y, as
desired.

Proposition 2.11. Let X be a 2-dimensional normed space and x ∈ SX. Then the following statements are equivalent:
(i) x is a rotund point or a smooth point.
(ii) If y ∈ X satisfies x ∥ y, then x ∥D y holds.
(iii) If y ∈ X satisfies y ∥D x, then x ∥D y holds.
(iv) If y ∈ X and the sequence {xn} ⊂ X satisfy xn ∥D y for all n ∈ Z≥1 and xn → x, then x ∥D y holds.
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Proof. (i)⇒ (ii): Suppose that y ∈ X satisfies x ∥ y. To prove x ∥D y, we assume, without loss of generality,
that x and y are linearly independent. Then there exists λ ∈ T such that

∥x + λy∥ = ∥x∥ + ∥y∥ = 1 + ∥y∥,

i.e., ∥∥∥∥∥ 1
1 + ∥y∥

x +
∥y∥

1 + ∥y∥
λy
∥y∥

∥∥∥∥∥ = 1. (1)

If x is a rotund point, then x = λy/∥y∥. By Proposition 2.2, we deduce that x ∥D y. If x is a smooth point,
then J(x) is a singleton. The Hahn-Banach theorem yields x∗ ∈ J(x + λy). Then

x∗(x) + λx∗(y) = x∗(x + λy) = ∥x + λy∥ = 1 + ∥y∥,

leading to x∗(x) = 1 and λx∗(y) = ∥y∥. Thus x∗ ∈ J(x)∩
(
λJ(y)

)
. Since J(x) is a singleton, J(x) ⊂ λJ(y). Applying

Theorem 2.3, we conclude that x ∥D y.
(ii)⇒ (iii): Suppose that y ∈ X satisfies y ∥D x. Then by Corollary 2.5, we have y ∥ x. Since the norm

parallelism is symmetry, x ∥ y holds, which implies that x ∥D y.
(iii)⇒ (i): If x ∈ SX is not a rotund point, then Proposition 2.9 guarantees the existence of y ∈ X such

that y ∥D x and x, y are linearly independent. As a result, Theorem 2.3 ensures the existence of λ ∈ T such
that every y∗ ∈ J(y) satisfies y∗(y) = ∥y∥ and y∗(x) = λ∥x∥. Since x and y are linearly independent, J(y) must
be a singleton. If, in addition, x is not a smooth point, then J(x) is not a singleton. In view of Theorem 2.3, x
is not derivative parallel to y, which contradicts (iii).

(ii) ⇒ (iv): Suppose that y ∈ X and the sequence {xn} ⊂ X satisfy xn ∥D y for all n ∈ Z≥1 and xn → x.
Then by Corollary 2.5, we have y ∥ xn for all n ∈ Z≥1. In other words, for every n ∈ Z≥1, there exists λn ∈ T
such that ∥y+λnxn∥ = ∥y∥+ ∥xn∥. By passing to a subsequence, we may assume that {λn} converges to some
λ ∈ T. As a consequence,

∥y + λx∥ = lim
n→∞
∥y + λnxn∥ = ∥y∥ + lim

n→∞
∥xn∥ = ∥y∥ + ∥x∥,

leading to x ∥ y and hence x ∥D y.
(iv)⇒ (i): Suppose for contrary that x is neither a rotund point nor a smooth point. Then the implication

(ii) ⇒ (i) yields y ∈ X such that x ∥ y and x fails to be derivative parallel to y. Thus x, y are linearly
independent and there exists λ ∈ T such that (1) holds. In other words, the line segment between x and
λy/∥y∥ is entirely in SX. For each n ∈ Z≥1, let

xn =
n − 1

n
x +

λy
n∥y∥

.

Applying Lemma 2.8 and the homogeneity of derivative parallelism, we have xn ∥D y. However, xn → x
holds and x is not derivative parallel to y, a contradiction.

Corollary 2.12. In both strictly convex spaces and smooth spaces, derivative parallelism coincides with norm paral-
lelism, thereby possesses symmetry and left-side continuity.

Example 2.13. Let X be the F-vector space F2, where F = R or C, equipped with the norm of element (x, y) defined
by ∥(x, y)∥ = |x| + |y|. As is known, (1, 0) is neither a rotund point nor a smooth point. Consequently, derivative
parallelism in X is incompatible with the properties stated in Theorem 2.10 (i) − (iii).

3. Derivative parallelism in Hilbert C∗-modules

Let A be a nonzero C∗-algebra (not necessarily unital). An element a ∈ A is designated as positive,
denoted a ≥ 0, if there exists an element b ∈ A such that a = b∗b. A linear functional φ : A→ C is considered
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positive ifφ(a) ≥ 0 for any positive a ∈ A. Such a positive linear functionalφ is referred to as a state if ∥φ∥ = 1.
For a more profound exploration of C∗-algebras, we recommend readers refer to [1].

Let A be a C∗-algebra, an inner product A-module is a (C,A)-bimodule M, equipped with an A-valued
inner product ⟨·, ·⟩ : M ×M→ A satisfying the following axioms:

(i)
〈
x, y + z

〉
=

〈
x, y

〉
+ ⟨x, z⟩ for any x, y, z ∈M.

(ii)
〈
x, αya

〉
= α

〈
x, y

〉
a for any x, y ∈M, α ∈ C, a ∈ A.

(iii)
〈
y, x

〉
=

〈
x, y

〉∗ for any x, y ∈M.
(iv) ⟨x, x⟩ ≥ 0 for any x ∈M, and ⟨x, x⟩ = 0 if and only if x = 0.

It is not hard to verify that ∥x∥ := ∥ ⟨x, x⟩ ∥1/2 for x ∈ M defines a norm on M and that ∥
〈
x, y

〉
∥ ≤ ∥x∥∥y∥

holds for all x, y ∈ M. When M is complete with respect to this norm, it is termed a Hilbert A-module or a
Hilbert C∗-modules over A. As an illustrative example, A itself can be equipped with the structure of a Hilbert
A-module, where the inner product of elements a, b ∈ A is given by ⟨a, b⟩ := a∗b. For a deeper dive into the
theory of Hilbert C∗-modules, we suggest readers refer to [5].

In this section, we denote the C∗-algebra of bounded linear operators on a Hilbert space H by B(H), and
its C∗-subalgebra of compact operators is denoted asK(H).

Zamani and Moslehian, in their works [12, Theorem 4.1] and [13, Theorem 2.3], have offered several
characterizations of the norm-parallelism in Hilbert C∗-modules. Based on the Gelfand-Naimark theorem,
which establishes that every C∗-algebra can be identified with a C∗-subalgebra ofB(H) for a suitable complex
Hilbert space H, we introduce a characterization of derivative parallelism in Hilbert C∗-modules.

Theorem 3.1. Let (H, (·, ·)) be a complex Hilbert space, A a nonzero C∗-subalgebra of B(H), M a Hilbert A-module,
and x, y ∈M. Then the following statements are equivalent:

(i) x ∥D y holds.
(ii) There exist λ ∈ T and a sequence {vn} ⊂ SH such that(〈
λy, x − n−1λy

〉
vn, vn

)
= ∥y∥∥x − n−1λy∥ + o

(
n−1

)
as n→∞, (2)

where o
(
n−1

)
is an infinitesimal of higher order than n−1 as n→∞.

(iii) There exist a state φ on A and λ ∈ T such that

φ
(〈
λy, x + tλy

〉)
= ∥y∥∥x + tλy∥ + o (t) as t→ 0−, (3)

where o (t) is an infinitesimal of higher order than t as t→ 0−.

Proof. (i)⇒ (ii): If either x = 0 or y = 0, then the proof will be trivial. Suppose that x ∥D y and that ∥x∥∥y∥ , 0.
Then there exists λ ∈ T such that

lim
t→0−

∥x + tλy∥ − ∥x∥
t

= ∥y∥ (4)

holds, which is equivalent to

∥x∥ − ∥x − n−1λy∥ = n−1
∥y∥ + o

(
n−1

)
as n→∞. (5)

Since ⟨x, x⟩ ≥ 0, we have
∥⟨x, x⟩∥ = sup {(⟨x, x⟩ v, v) : v ∈ SH} .

Then there exists a sequence {vn} ⊂ SH such that

(⟨x, x⟩ vn, vn) = ∥⟨x, x⟩∥ + o
(
n−1

)
= ∥x∥2 + o

(
n−1

)
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as n→∞. It follows that

(⟨x, x⟩ vn, vn) − n−2
∥∥∥y

∥∥∥2
−

∥∥∥x − n−1λy
∥∥∥2

=∥x∥2 − n−2
∥∥∥y

∥∥∥2
−

∥∥∥x − n−1λy
∥∥∥2
+ o

(
n−1

)
=2n−1

∥y∥
∥∥∥x − n−1λy

∥∥∥ + o
(
n−1

)
as n→∞. Observe that

(⟨x, x⟩ vn, vn) − n−2
∥∥∥y

∥∥∥2
−

∥∥∥x − n−1λy
∥∥∥2

≤ (⟨x, x⟩ vn, vn) −
(〈

n−1λy,n−1λy
〉

vn, vn

)
−

(〈
x − n−1λy, x − n−1λy

〉
vn, vn

)
=

(〈
n−1λy, x − n−1λy

〉
vn, vn

)
+

(〈
x − n−1λy,n−1λy

〉
vn, vn

)
=

(〈
n−1λy, x − n−1λy

〉
vn, vn

)
+

(〈
n−1λy, x − n−1λy

〉∗
vn, vn

)
=2Re

(〈
n−1λy, x − n−1λy

〉
vn, vn

)
≤2

∣∣∣ (〈n−1λy, x − n−1λy
〉

vn, vn

) ∣∣∣ ≤ 2n−1
∥y∥

∥∥∥x − n−1λy
∥∥∥

holds for all n ∈ Z≥1. Thus

Re
(〈

n−1λy, x − n−1λy
〉

vn, vn

)
=
∣∣∣ (〈n−1λy, x − n−1λy

〉
vn, vn

) ∣∣∣ + o
(
n−1

)
=n−1

∥y∥
∥∥∥x − n−1λy

∥∥∥ + o
(
n−1

)
as n→∞, which entails that(〈

λn−1y, x − n−1λy
〉

vn, vn

)
= n−1

∥y∥
∥∥∥x − n−1λy

∥∥∥ + o
(
n−1

)
,

i.e., (〈
λy, x − n−1λy

〉
vn, vn

)
= ∥y∥

∥∥∥x − n−1λy
∥∥∥ + o (1) = ∥y∥∥x∥ + o (1)

as n→∞. This leads to(〈
λy, x

〉
vn, vn

)
=

(〈
λy, x − n−1λy

〉
vn, vn

)
− n−1 (〈

λy, λy
〉

vn, vn
)

=∥y∥∥x∥ + o (1)→ ∥y∥∥x∥

as n→∞. By passing to a subsequence, we can assume that(〈
λy, x

〉
vn, vn

)
= ∥y∥∥x∥ + o

(
n−1

)
as n→∞. (6)

Moreover, by the Schwarz inequality for the (degenerate) inner product (⟨·, ·⟩ vn, vn) on M, we have

∥y∥2∥x∥2 ≥
(〈
λy, λy

〉
vn, vn

)
∥x∥2

≥
(〈
λy, λy

〉
vn, vn

)
(⟨x, x⟩ vn, vn)

≥

∣∣∣ (〈λy, x
〉

vn, vn
) ∣∣∣2 → ∥y∥2∥x∥2.

Thus (〈
λy, λy

〉
vn, vn

)
= ∥y∥2 + o (1) as n→∞. (7)

By (5)-(7), we arrive at(〈
λy, x − n−1λy

〉
vn, vn

)
=

(〈
λy, x

〉
vn, vn

)
− n−1 (〈

λy, λy
〉

vn, vn
)

= ∥y∥∥x∥ − n−1
∥y∥2 + o

(
n−1

)
= ∥y∥

∥∥∥x − n−1λy
∥∥∥ + o

(
n−1

)
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as n→∞.
(ii)⇒ (iii): Without loss of generality, we may assume that ∥x∥∥y∥ , 0. Suppose that there exist λ ∈ T

and a sequence {vn} ⊂ SH such that (2) holds. By a similar argument as in the proof of the implication (i)⇒
(ii), we can show that (7) holds. By (2) and (7), we have

∥y∥∥x∥ ≥
∥∥∥〈λy, x

〉∥∥∥ ≥ ∣∣∣(〈λy, x
〉

vn, vn
)∣∣∣ ≥ Re

(〈
λy, x

〉
vn, vn

)
= Re

(〈
λy, x − n−1λy

〉
vn, vn

)
+ n−1Re

(〈
λy, λy

〉
vn, vn

)
= ∥y∥∥x − n−1λy∥ + n−1

∥y∥2 + o
(
n−1

)
≥ ∥y∥∥x∥ + o

(
n−1

)
as n→∞. As a consequence,(〈

λy, x
〉

vn, vn
)
= ∥y∥∥x∥ + o

(
n−1

)
as n→∞. (8)

For each n ∈ Z≥1, let
φn : A→ C, a 7→ (avn, vn).

Then φn is a positive functional on A with ∥φn∥ ≤ 1. Since BA∗ is weak*-compact, as established in the
Banach-Alaoglu theorem, there is a subnet

〈
φni

〉
i∈I of the sequence {φn} that converges to some φ ∈ BA∗ with

respect to the weak*-topology. As a result, φ is a positive functional that satisfies

φ
(〈
λy, λy

〉)
= ∥y∥2, φ

(〈
λy, x

〉)
= ∥y∥∥x∥ ≥

∥∥∥〈λy, x
〉∥∥∥ .

Thus ∥φ∥ ≥ 1. Since the opposite inequality holds, we show that φ is a state on A. Furthermore, by (2), (7)
and (8), we obtain

φ
(〈
λy, x − n−1λy

〉)
= φ

(〈
λy, x

〉)
− n−1φ

(〈
λy, λy

〉)
= ∥y∥∥x∥ − n−1

∥y∥2

=
(〈
λy, x

〉
vn, vn

)
− n−1 (〈

λy, λy
〉

vn, vn
)
+ o

(
n−1

)
=

(〈
λy, x − n−1λy

〉
vn, vn

)
+ o

(
n−1

)
= ∥y∥∥x − n−1λy∥ + o

(
n−1

)
as n→∞. Notice that the map

f : R→ R, t 7→ ∥y∥∥x + tλy∥ − Reφ
(〈
λy, x + tλy

〉)
is convex as t 7→ ∥x + tλy∥ is convex and t 7→ Reφ

(〈
λy, x + tλy

〉)
is affine. We conclude that

lim
t→0−

f (t) − f (0)
t

exists. Thus

lim
t→0−

f (t) − f (0)
t

= lim
n→∞

f (−n−1) − f (0)
−n−1 ,

i.e.,

lim
t→0−

∥y∥∥x + tλy∥ − Reφ
(〈
λy, x + tλy

〉)
t

= lim
n→∞

∥y∥∥x − n−1λy∥ − Reφ
(〈
λy, x − n−1λy

〉)
−n−1 = lim

n→∞

o
(
n−1

)
n−1 = 0,
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which implies that
Reφ

(〈
λy, x + tλy

〉)
= ∥y∥∥x + tλy∥ + o (t)

as t→ 0−. Observe that

∥y∥∥x + tλy∥ ≥
∥∥∥〈λy, x + tλy

〉∥∥∥ ≥ ∣∣∣φ (〈
λy, x + tλy

〉)∣∣∣
≥ Reφ

(〈
λy, x + tλy

〉)
= ∥y∥∥x + tλy∥ + o (t)

as t→ 0−. Therefore, (3) holds.
(iii)⇒ (i): Without loss of generality, we may assume that ∥x∥∥y∥ , 0. By (3), we haveφ

(〈
λy, x

〉)
= ∥y∥∥x∥.

By the Schwarz inequality for the (degenerate) inner product φ (⟨·, ·⟩) on M, we obtain

∥y∥2∥x∥2 = φ
(〈
λy, x

〉)2
≤ φ

(〈
λy, λy

〉)
φ (⟨x, x⟩) ≤ ∥y∥2∥x∥2.

Since the equality is satisfied in the aforementioned inequalities, we deduce that

φ
(〈
λy, λy

〉)
= ∥y∥2.

It follows that

∥y∥∥x + tλy∥ − ∥y∥∥x∥ = φ
(〈
λy, x + tλy

〉)
− φ

(〈
λy, x

〉)
+ o (t)

= tφ
(〈
λy, λy

〉)
+ o (t) = t∥y∥2 + o (t) ,

i.e., ∥x + tλy∥ − ∥x∥ = t∥y∥ + o (t) as t→ 0−. Consequently, (4) holds, yielding x ∥D y.

Drawing upon the preceding theorem, our subsequent result, analogous to [11, Theorem 2.5], provides a
characterization of derivative parallelism in the space C0(Ω) of continuous functions f : Ω→ C that vanish
at infinity (i.e., for every ϵ > 0 there exists a compact set K such that | f (x)| ≤ ϵ for all x ∈ K), equipped with
the uniform norm, where Ω is a nonempty locally compact Hausdorff space.

Corollary 3.2. Let Ω be a nonempty locally compact Hausdorff space and f , 1 ∈ C0(Ω). Then f ∥D 1 if and only if
there exist a Radon probability measure µ on Ω and λ ∈ T such that the following condition holds:∫

λ1
(

f + tλ1
)

dµ = ∥1∥∥ f + tλ1∥ + o (t) as t→ 0−.

Proof. By observing the involution h 7→ h on C0(Ω), we discern that C0(Ω) constitutes a C∗-algebra and
thereby a Hilbert C0(Ω)-module, equipped with the C0(Ω)-valued inner product defined as

〈
x, y

〉
:= xy for

x, y ∈ C0(Ω). According to the Riesz representation theorem (cf. [2, 7.17]), a state on C0(Ω) is characterized
by

h 7→
∫

h dµ,

where µ represents a Radon probability measure onΩ. Consequently, the conclusion follows directly from
the previous theorem.

Applying Theorem 3.1, we can establish the following characterization of derivative parallelism inB(H).

Corollary 3.3. Let (H, (·, ·)) be a complex Hilbert space and T,S ∈ B(H). Then T ∥D S if and only if there exist a
sequence {vn} ⊂ SH and λ ∈ T such that the following condition holds:((

T − n−1λS
)

vn, λSvn

)
=

∥∥∥T − n−1λS
∥∥∥ ∥S∥ + o

(
n−1

)
as n→∞.

Proof. Observe that B(H) is a C∗-algebra, and thus it naturally forms a Hilbert B(H)-module equipped with
the B(H)-valued inner product defined as ⟨T,S⟩ := T∗S for T,S ∈ B(H). As a consequence, the conclusion
follows immediately from Theorem 3.1.
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Finally, we derive a necessary and sufficient condition for a bounded operator on a Hilbert space H to be
derivative parallel to a compact operator.

Proposition 3.4. Let (H, (·, ·)) be a complex Hilbert space, T ∈ B(H) and S ∈ K(H). Then T ∥D S if and only if there
exist v ∈ SH and λ ∈ T such that the following condition holds:

((T + tλS) v, λSv) = ∥T + tλS∥ ∥S∥ + o (t) as t→ 0−.

Proof. Without loss of generality, we may assume that ∥T∥∥S∥ , 0. Suppose that T ∥D S. Then there exists
λ ∈ T such that

lim
t→0−

∥T + tλS∥ − ∥T∥
t

= ∥S∥

holds, which is equivalent to

∥T + tλS∥ − ∥T∥ = t∥S∥ + o (t) as t→ 0−. (9)

We can proceed as in the proof of Theorem 3.1 to show that there exists a sequence {vn} ⊂ SH such that(
λS∗Tvn, vn

)
→ ∥S∥∥T∥, (S∗Svn, vn)→ ∥S∥2.

Since BH is weakly sequentially compact, by passing to a subsequence, we can assume that {vn} converges
weakly to some v ∈ BH. Since S is compact, λS∗T and S∗S must also be compact. Thus λS∗Tvn → λS∗Tv and
S∗Svn → S∗Sv hold, leading to∣∣∣ (λS∗Tvn, vn

)
−

(
λS∗Tv, v

) ∣∣∣
≤

∣∣∣ (λS∗Tvn − λS∗Tv, vn

) ∣∣∣ + ∣∣∣ (λS∗Tv, vn − v
) ∣∣∣→ 0,∣∣∣ (S∗Svn, vn) − (S∗Sv, v)

∣∣∣
≤

∣∣∣ (S∗Svn − S∗Sv, vn)
∣∣∣ + ∣∣∣ (S∗Sv, vn − v)

∣∣∣→ 0.

It follows that
(
λS∗Tv, v

)
= ∥S∥∥T∥ and (S∗Sv, v) = ∥S∥2. As a result,

∥S∗S∥ = ∥S∥2 = (S∗Sv, v) ≤ ∥S∗S∥∥v∥2,

which implies that ∥v∥ ≥ 1. Since the opposite inequality holds, we conclude that v ∈ SH. Moreover, by (9),
we deduce that

((T + tλS) v, λSv) = (Tv, λSv) + t (λSv, λSv) =
(
λS∗Tv, v

)
+ t (S∗Sv, v)

= ∥S∥∥T∥ + t∥S∥2 = ∥T + tλS∥∥S∥ + o (t)

as t → 0−. This establishes the necessity. The sufficiency, on the other hand, is an immediate consequence
of the preceding corollary.
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