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Stretching Double Sequences by ”Blocks”

Sami M. Hamida,∗, Richard F. Pattersona
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Abstract. This paper introduces the ”Stretching by Blocks” method, a new approach for stretching double
sequences that extends Patterson’s method by allowing block repetition. We prove several theorems,
including the Extended Copy Theorem and the preservation of Pringsheim limit points under RH-regular
matrix transformations.

1. Introduction.

Double sequences and their convergence properties have been widely studied, with the notion of
Pringsheim convergence being a fundamental concept [6]. Various methods for manipulating double
sequences have been proposed, including traditional stretching method [4], which creates a new double
sequence by repeating rows and columns of the original sequence according to certain rules. In this
article, we introduce a new stretching method called the “Stretching by Blocks” method, which extends the
traditional method by providing a more general and flexible approach to stretching double sequences. Our
method constructs a new double sequence by repeating blocks of entries from the original sequence, with
block sizes determined by two sequences of positive integers.

We investigate the properties of the “Stretching by Blocks” method and prove several important theo-
rems, including the Extended Copy Theorem, preservation of Pringsheim limit points under RH-regular
matrix transformations, and the Extended Copy Theorem for subsequences.

The rest of the article is organized as follows: Section 2 defines the “Stretching by Blocks” method and
provides a detailed example. We also compare our method with traditional stretching method. Section 3
presents the main theorems related to the properties of the “Stretching by Blocks” method. Finally, Section
4 summarizes the main findings of the article.

2. Stretching by Blocks Method.

We begin by recalling the traditional stretching method for double sequences.

Definition 2.1 ([4]). The double sequence y is a stretching of x provided that there exist two increasing index
sequences {Ri}

∞

i=0 and {S j}
∞

j=0 of integers such that

R0 = S0 = 1,
yn,k = xi, j, if Ri−1 ≤ k < Ri and S j−1 ≤ n < S j, i, j = 1, 2, . . .
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Building upon this concept, we now introduce the “Stretching by Blocks” method for constructing new
double sequences from existing ones.

Definition 2.2 (Stretching by Blocks). Let x = [xi, j] be a double sequence and {ai}
∞

i=1, {b j}
∞

j=1 be sequences of
positive integers. Define

Ri = a1 + a2 + · · · + ai (with R0 = 0)
S j = b1 + b2 + · · · + b j (with S0 = 0)

The stretched double sequence y = [yn,k] obtained by stretching x by blocks is induced by {ai}
∞

i=1 and {b j}
∞

j=1 and defined
as:

yn,k = xi, j if Ri−1 < n ≤ Ri and S j−1 < k ≤ S j.

In other words, the (n, k)-entry of y is equal to the (i, j)-entry of x, where i and j are the unique indices
satisfying the above inequalities. The construction of y can be visualized as follows:

1. The first a1 × b1 block of y is filled with the value x1,1.
2. The next a2 × b2 block (starting at position (R1 + 1,S1 + 1)) is filled with x2,2.
3. The a1 × b2 block to the right of the first block is filled with x1,2.
4. The a2 × b1 block below the first block is filled with x2,1.

This process continues, with each (i, j)-block of y having dimensions ai × b j and being filled with the
value xi, j. In this way, the sequences {ai}

∞

i=1 and {b j}
∞

j=1 control the sizes of the repeated blocks in the stretched
double sequence y, with larger values of ai or b j resulting in larger blocks of repeated entries from x.

To find the value of a specific entry yn,k without constructing the entire stretched sequence y, we can use
the defining inequalities:

1. Find the unique indices i and j satisfying Ri−1 < n ≤ Ri and S j−1 < k ≤ S j.
2. The value of yn,k is then equal to xi, j.

Let us illustrate this notion using the following example.

Example 2.3. Let x = [xi, j] =


x1,1 x1,2 x1,3 · · ·

x2,1 x2,2 x2,3
x3,1 x3,2 x3,3
...

. . .

, {ai}
∞

i=1 = {1, 3, 2, . . .} and {b j}
∞

j=1 = {2, 1, 4, . . .}. Then

{Ri}
∞

i=0 = {0, 1, 4, 6, . . .} and {S j}
∞

j=0 = {0, 2, 3, 7, . . .}.
To construct the stretched matrix y = [yn,k], we follow these steps:
Step 1: Start with the first diagonal entry x1,1. Create a block of size a1 × b1 = 1 × 2, filled with the value x1,1.

y =
[

x1,1 x1,1

]
Step 2: Move to the next diagonal entry x2,2 of the original sequence. Create a block of size a2 × b2 = 3 × 1, filled

with the value x2,2. Place this block diagonally adjacent to the previous block.

y =


x1,1 x1,1

x2,2
x2,2
x2,2


Step 3: Fill the gap to the right of the first block with a block of size a1 × b2 = 1 × 1, using the entry x1,2 from the

original sequence.

y =


x1,1 x1,1 x1,2

x2,2
x2,2
x2,2


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Step 4: Fill the gap below the first block with a block of size a2 × b1 = 3 × 2, using the entry x2,1 from the original
sequence.

y =


x1,1 x1,1 x1,2

x2,1 x2,1 x2,2
x2,1 x2,1 x2,2
x2,1 x2,1 x2,2


Step 5: Move to the next diagonal entry x3,3 of the original sequence. Create a block of size a3 × b3 = 2 × 4, filled

with the value x3,3. Place this block diagonally adjacent to the previous diagonal block.

y =



x1,1 x1,1 x1,2
x2,1 x2,1 x2,2
x2,1 x2,1 x2,2
x2,1 x2,1 x2,2

x3,3 x3,3 x3,3 x3,3
x3,3 x3,3 x3,3 x3,3


Step 6: Fill the gap to the right of the second diagonal block with a block of size a2 × b3 = 3 × 4, using the entry

x2,3 from the original sequence.

y =



x1,1 x1,1 x1,2

x2,1 x2,1 x2,2 x2,3 x2,3 x2,3 x2,3
x2,1 x2,1 x2,2 x2,3 x2,3 x2,3 x2,3
x2,1 x2,1 x2,2 x2,3 x2,3 x2,3 x2,3

x3,3 x3,3 x3,3 x3,3
x3,3 x3,3 x3,3 x3,3


Step 7: Fill the gap to the right of the first block with a block of size a1 × b3 = 1 × 4, using the entry x1,3 from the

original sequence

y =



x1,1 x1,1 x1,2 x1,3 x1,3 x1,3 x1,3

x2,1 x2,1 x2,2 x2,3 x2,3 x2,3 x2,3
x2,1 x2,1 x2,2 x2,3 x2,3 x2,3 x2,3
x2,1 x2,1 x2,2 x2,3 x2,3 x2,3 x2,3

x3,3 x3,3 x3,3 x3,3
x3,3 x3,3 x3,3 x3,3


Step 8: Fill the gap below the second diagonal block with a block of size a3 × b2 = 2 × 1, using the entry x3,2 from

the original sequence.

y =



x1,1 x1,1 x1,2 x1,3 x1,3 x1,3 x1,3

x2,1 x2,1 x2,2 x2,3 x2,3 x2,3 x2,3
x2,1 x2,1 x2,2 x2,3 x2,3 x2,3 x2,3
x2,1 x2,1 x2,2 x2,3 x2,3 x2,3 x2,3

x3,2 x3,3 x3,3 x3,3 x3,3
x3,2 x3,3 x3,3 x3,3 x3,3


Step 9: Fill the gap below the first diagonal block with a block of size a3 × b1 = 2× 2, using the entry x3,1 from the

original sequence.

y =



x1,1 x1,1 x1,2 x1,3 x1,3 x1,3 x1,3

x2,1 x2,1 x2,2 x2,3 x2,3 x2,3 x2,3
x2,1 x2,1 x2,2 x2,3 x2,3 x2,3 x2,3
x2,1 x2,1 x2,2 x2,3 x2,3 x2,3 x2,3

x3,1 x3,1 x3,2 x3,3 x3,3 x3,3 x3,3
x3,1 x3,1 x3,2 x3,3 x3,3 x3,3 x3,3


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Now, let’s find, for example, the value of y6,2:
Step 1: Find i and j such that Ri−1 < 6 ≤ Ri and S j−1 < 2 ≤ S j. For i: R0 = 0 < 6; R1 = 1 < 6; R2 = 4 < 6;

R3 = 6 ≥ 6. So, R2 < 6 ≤ R3, which means i = 3. For j: S0 = 0 < 2; S1 = 2 ≥ 2. So, S0 < 2 ≤ S1, which means
j = 1.

Step 2: The value of y6,2 is equal to x3,1, which can be verified from the stretched matrix y.

The “Stretching by Blocks” method introduced in this article is an extension of the traditional stretching
method. While both methods aim to create a new double sequence by stretching an original sequence
according to certain rules, there are some key differences between them:

1. Construction: In traditional method, the stretching is performed by repeating rows and columns of
the original sequence x according to the increasing index sequences {Ri}

∞

i=0 and {S j}
∞

j=0. The stretched
sequence y is constructed by placing the repeated rows and columns in a specific order, as described
in Remark 3 of [5]. In contrast, our new method constructs the stretched sequence y by repeating
blocks of entries from x, with the block sizes determined by the sequences {ai}

∞

i=1 and {b j}
∞

j=1.

2. Index sequences: The traditional method uses two increasing index sequences {Ri}
∞

i=0 and {S j}
∞

j=0 to
control the stretching process, with the condition that R0 = S0 = 1. Our method uses two sequences of
positive integers {ai}

∞

i=1 and {b j}
∞

j=1, which may or may not be increasing, to determine the block sizes.
We define the cumulative sums Ri and S j based on these sequences, with R0 = S0 = 0.

3. Entry mapping: In the traditional method, the entry yn,k of the stretched sequence is equal to xi, j if
Ri−1 ≤ k < Ri and S j−1 ≤ n < S j. In our method, yn,k = xi, j if Ri−1 < n ≤ Ri and S j−1 < k ≤ S j. The
difference in the inequalities arises from the different constructions of the stretched sequences.

The block repetition method extends the traditional method by providing a more general way to
stretch double sequences. By allowing the block sizes to be determined by arbitrary sequences of positive
integers, rather than just increasing index sequences, which offers more flexibility in constructing stretched
sequences. Despite these differences, both methods share the same goal of creating a new double sequence
by stretching an original sequence.

3. Properties of the Stretching by Blocks Method.

In this section, we present and prove theorems analogous to those in [3], but applied to the “Stretching
by Blocks” method introduced in this article.

First, we recall some necessary definitions and results.

Definition 3.1 ([6]). A double sequence x = [xk,l] is said to converge in the Pringsheim sense (or P-convergent) to a
limit L if for every ε > 0, there exists an N ∈N such that |xk,l − L| < ε whenever k, l > N. We write P-lim x = L.

Definition 3.2 ([4]). A double sequence y is a double subsequence of the sequence x provided that there exist two
increasing double index sequences {n j} and {k j} such that if z j = xn j,k j , then y is formed by

z1 z2 z5 z10
z4 z3 z6 −

z9 z8 z7 −

− − − −

Definition 3.3 ([7]). The four-dimensional matrix A is said to be RH-regular if it maps every bounded P-convergent
sequence into a P-convergent sequence with the same P-limit.
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Theorem 3.4 ([2, 7]). The four-dimensional matrix A is RH-regular if and only if

RH1 : P- lim
m,n

am,n,k,l = 0 for each k and l;

RH2 : P- lim
m,n

∞∑
k,l=1

am,n,k,l = 1;

RH3 : P- lim
m,n

∞∑
k=1

|am,n,k,l| = 0 for each l;

RH4 : P- lim
m,n

∞∑
l=1

|am,n,k,l| = 0 for each k;

RH5 :
∞∑

k,l=1

|am,n,k,l| is P-convergent; and

RH6 : there exist finite positive integers A and B such that
∑
k,l>B

|am,n,k,l| ≤ A.

Definition 3.5 ([4]). A double sequence y contains an ε-Pringsheim-copy of x if there exists a subsequence yni,k j of
y such that |yni,k j − xi, j| < εi, j, for all i, j ∈ N, where {εi, j} is a double sequence converging to zero in the Pringsheim
sense.

Theorem 3.6 (Copy Theorem [1]). If each of T and A is a regular matrix, x is any complex sequence (bounded or
not), and ε is any positive term null sequence, then there exists a stretching u of x such that T(Ay) exists and contains
an ε-copy of x.

The following theorem, which we call the Extended Copy Theorem for the “Stretching by Blocks”
method, is inspired by the Copy Theorem in [1]. While the original Copy Theorem deals with the preserva-
tion of sequence structure under matrix transformations, our Extended Copy Theorem specifically addresses
the preservation of sequence structure when using the “Stretching by Blocks” method in conjunction with
RH-regular matrices.

Theorem 3.7. If A and T are RH-regular matrices, x is a bounded double complex sequence, and ε is a bounded
positive term double sequence with P − lim

i, j
εi, j = 0, then there exists a block stretching y of x such that T(Ay) exists

and contains an ε-Pringsheim-copy of x.

Proof. Let x be a bounded double complex sequence, and let ε be a bounded positive term double sequence
with P − lim

i, j
εi, j = 0. Define the sequences {ai}

∞

i=1 and {b j}
∞

j=1 as follows: For each i, j ∈ N, choose ai and b j

large enough so that ∑
p>ai

∞∑
q=1

|tm,n,p,q| <
εi, j

8M
and

∞∑
p=1

∑
q>b j

|tm,n,p,q| <
εi, j

8M
,

where M = sup
i, j
|xi, j| and T = [tm,n,p,q].

Now, construct the stretching y of x using the “Stretching by Blocks” method with the sequences {ai}
∞

i=1 and
{b j}

∞

j=1. Let Ri = a1 + a2 + · · · + ai (with R0 = 0) and S j = b1 + b2 + · · · + b j (with S0 = 0). The stretched double
sequence [y] = [yn,k] is defined by:

yn,k = xi, j, if Ri−1 < n ≤ Ri and S j−1 < k ≤ S j.

We will now show that T(Ay) exists and contains an ε-Pringsheim-copy of x. Let M = sup
i, j
|xi, j|, and let

N1 ∈N be such that ∑
p,q>N1

|am,n,p,q| <
εi, j

8M
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for all m,n ∈ N. The existence of such an N1 is guaranteed by the RH-regularity of the matrix A. For each
i, j ∈N, let Ni, j = max{Ri,S j,N1}. We will show that for all m,n > Ni, j,∣∣∣∣∣∣∣∣

∞∑
p,q=1

tm,n,p,q

 ∞∑
k,l=1

ap,q,k,lyk,l

 − xi, j

∣∣∣∣∣∣∣∣ < εi, j.

Consider the following:∣∣∣∣∣∣∣∣
∞∑

p,q=1

tm,n,p,q

 ∞∑
k,l=1

ap,q,k,lyk,l

 − xi, j

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
Ri∑

p=1

S j∑
q=1

tm,n,p,q

 ∞∑
k,l=1

ap,q,k,lyk,l

 − xi, j

∣∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣∣
∑
p>Ri

∞∑
q=1

tm,n,p,q

 ∞∑
k,l=1

ap,q,k,lyk,l


∣∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣∣

Ri∑
p=1

∑
q>S j

tm,n,p,q

 ∞∑
k,l=1

ap,q,k,lyk,l


∣∣∣∣∣∣∣∣ .

We will now estimate each of the three terms on the right-hand side of the inequality.
For the first term, we have: ∣∣∣∣∣∣∣∣

Ri∑
p=1

S j∑
q=1

tm,n,p,q

 ∞∑
k,l=1

ap,q,k,lyk,l

 − xi, j

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
Ri∑

p=1

S j∑
q=1

tm,n,p,q

 ∞∑
k,l=1

ap,q,k,lxi, j

 − xi, j

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
Ri∑

p=1

S j∑
q=1

tm,n,p,q

 ∞∑
k,l=1

ap,q,k,l

 xi, j − xi, j

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
Ri∑

p=1

S j∑
q=1

tm,n,p,q

 ∞∑
k,l=1

ap,q,k,l

 − 1

∣∣∣∣∣∣∣∣ |xi, j|

≤

∣∣∣∣∣∣∣∣
∞∑

p=1

∞∑
q=1

tm,n,p,q

 ∞∑
k,l=1

ap,q,k,l

 − 1

∣∣∣∣∣∣∣∣M.
By the RH-regularity of the matrices A and T, we have P − lim

m,n

∞∑
p,q=1

tm,n,p,q

 ∞∑
k,l=1

ap,q,k,l

 = 1. Therefore, there

exists N2 ∈N such that for all m,n > N2,∣∣∣∣∣∣∣∣
∞∑

p=1

∞∑
q=1

tm,n,p,q

 ∞∑
k,l=1

ap,q,k,l

 − 1

∣∣∣∣∣∣∣∣ < εi, j

4M
.

Hence, for all m,n > max{Ni, j,N2},∣∣∣∣∣∣∣∣
Ri∑

p=1

S j∑
q=1

tm,n,p,q

 ∞∑
k,l=1

ap,q,k,lyk,l

 − xi, j

∣∣∣∣∣∣∣∣ < εi, j

4
.
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For the second term, we have: ∣∣∣∣∣∣∣∣
∑
p>Ri

∞∑
q=1

tm,n,p,q

 ∞∑
k,l=1

ap,q,k,lyk,l


∣∣∣∣∣∣∣∣

≤

∑
p>Ri

∞∑
q=1

|tm,n,p,q|

∣∣∣∣∣∣∣
∞∑

k,l=1

ap,q,k,lyk,l

∣∣∣∣∣∣∣
≤M

∑
p>Ri

∞∑
q=1

|tm,n,p,q|

∞∑
k,l=1

|ap,q,k,l|

≤M
∑
p>Ri

∞∑
q=1

|tm,n,p,q|.

By the choice of ai, we have
∑
p>Ri

∞∑
q=1

|tm,n,p,q| <
εi, j

8M
. Hence, for all m,n > Ni, j,

∣∣∣∣∣∣∣∣
∑
p>Ri

∞∑
q=1

tm,n,p,q

 ∞∑
k,l=1

ap,q,k,lyk,l


∣∣∣∣∣∣∣∣ < εi, j

8
.

For the third term, we have: ∣∣∣∣∣∣∣∣
Ri∑

p=1

∑
q>S j

tm,n,p,q

 ∞∑
k,l=1

ap,q,k,lyk,l


∣∣∣∣∣∣∣∣

≤

Ri∑
p=1

∑
q>S j

|tm,n,p,q|

∣∣∣∣∣∣∣
∞∑

k,l=1

ap,q,k,lyk,l

∣∣∣∣∣∣∣
≤M

Ri∑
p=1

∑
q>S j

|tm,n,p,q|

∞∑
k,l=1

|ap,q,k,l|

≤M
Ri∑

p=1

∑
q>S j

|tm,n,p,q|.

By the choice of b j, we have
Ri∑

p=1

∑
q>S j

|tm,n,p,q| <
εi, j

8M
. Hence, for all m,n > Ni, j,

∣∣∣∣∣∣∣∣
Ri∑

p=1

∑
q>S j

tm,n,p,q

 ∞∑
k,l=1

ap,q,k,lyk,l


∣∣∣∣∣∣∣∣ < εi, j

8
.

Combining the estimates for the three terms, we have for all m,n > max{Ni, j,N2},∣∣∣∣∣∣∣∣
∞∑

p,q=1

tm,n,p,q

 ∞∑
k,l=1

ap,q,k,lyk,l

 − xi, j

∣∣∣∣∣∣∣∣ < εi, j

4
+
εi, j

8
+
εi, j

8
< εi, j.

Thus, T(Ay) contains an ε-Pringsheim-copy of x.
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Using the Extended Copy Theorem, we can prove the following result about the preservation of Pring-
sheim limit points under the action of RH-regular matrices and the “Stretching by Blocks” method.

Theorem 3.8. Let T and A be RH-regular matrices, x a bounded double complex sequence, and ε a bounded positive
term double sequence with P- lim

n,k
εn,k = 0. Then there exists a block stretching y of x such that T(Ay) exists and each

P-limit point of x is a P-limit point of T(Ay).

Proof. We first construct a double sequence containing all finite P-limit points of x. By the separability of
the metric space of complex numbers, we can write the finite P-limit points of x in a double sequence u
such that each P-limit point of x is either a term of u or a P-limit of u. We can achieve this by writing u as a
sequence of blocks, where each block consists of repeated entries of a specific P-limit point of x.

u =



u1,1 u1,1 u1,2 u1,2 u1,2 u1,2 · · · · · ·

u2,1 u2,1 u2,2 u2,2 u2,2 u2,2 · · · · · ·

u2,1 u2,1 u2,2 u2,2 u2,2 u2,2 · · · · · ·

u2,1 u2,1 u2,2 u2,2 u1,1 u1,1 u1,2 u1,2 u1,3 u1,3 u1,3 · · ·

u2,1 u2,1 u2,2 u2,2 u1,1 u1,1 u1,2 u1,2 u1,3 u1,3 u1,3 · · ·

...
... u2,3 u2,3 u2,3 u2,3 u1,1 u1,1 u1,1 · · ·

...
... u2,3 u2,3 u2,3 u2,3 u1,1 u1,1 u1,1 · · ·

...
... u3,1 u3,1 u3,2 u3,2 u3,3 u3,3 u3,3 · · ·

...
... u3,1 u3,1 u3,2 u3,2 u3,3 u3,3 u3,3 · · ·

...
...

...
... u3,1 u3,1 u3,2 · · ·

...
...

...
... u3,1 u3,1 u3,2 · · ·

...
...

...
...

...
...

...
. . .


We then relabel this sequence as

v = [vi, j] =


v1,1 v1,2 · · ·

v2,1 v2,2 · · ·

...
...
. . .

 .
Now we apply the “Stretching by Blocks” method to v. Let ε = [εk,l] be a bounded positive term double
sequence with P- lim

k,l
εk,l = 0. Choose sequences {ai}

∞

i=1 and {b j}
∞

j=1 such that for each i, j ∈N,

∑
p>ai

∞∑
q=1

|tm,n,p,q| <
εi, j

8M
and

∞∑
p=1

∑
q>b j

|tm,n,p,q| <
εi, j

8M
,

where M = supi, j |vi, j| and T = [tm,n,k,l]. Let Ri =

i∑
k=1

ak and S j =

j∑
k=1

bk. Define the ”block stretching” z = [zr,s]

by:
zr,s = vi, j, if Ri−1 < r ≤ Ri and S j−1 < s ≤ S j.

Using this newly constructed double sequence we now build a stretching y of x. For each block in z
determined by the indices (i, j), select a subsequence of x that converges to the P-limit point vi, j in the
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Pringsheim sense. Denote this subsequence by x(i, j) = [x(i, j)
n′k,m

′

k
]∞k=1, where {n′k}

∞

k=1 and {m′k}
∞

k=1 are increasing
sequences of positive integers. Define y = [yα,β] as follows:

yα,β = x(i, j)
n′k+p−1,m

′

l+q−1
, if Ri−1 + p < α ≤ Ri and S j−1 + q < β ≤ S j,

where, 1 ≤ p ≤ ai and 1 ≤ q ≤ b j determine the position within the block, k and l are chosen such that
n′k > Ni, j and m′l > Ki, j where Ni, j and Ki, j are indices that ensure the convergence of x(i, j) to vi, j in the
Pringsheim sense. This construction ensures that:
(1) each entry in y comes from the “tail” of the subsequence x(i, j), guaranteeing convergence to the P-limit
point vi, j.
(2) The entire block corresponding to (i, j) is filled, with size determined by ai and b j.
(3) The structure of y mirrors that of z, preserving the arrangement of P-limit points.
We will now show that z− y is a Pringsheim null sequence. Let ε > 0 be given. Since each subsequence x(i, j)

converges to vi, j in the Pringsheim sense, for each (i, j) there exist indices Ni, j and Ki, j such that

|x(i, j)
n′k ,m

′

l
− vi, j| < ε for all k > Ni, j and l > Ki, j.

Let N = maxi, j{Ni, j,Ki, j}, where the maximum is taken over all (i, j) corresponding to the blocks in z that
have been defined up to this point in the construction. This N ensures that for any block (i, j), if we choose
k, l > N, then x(i, j)

n′k ,m
′

l
is within ε of vi, j. Now, let M = max{RI,SJ}, where I and J are the largest indices such

that RI−1 < N and SJ−1 < N. This ensures that for any α, β >M, we are considering blocks in z and y where
the convergence condition is satisfied. Then for any α, β >M, there exist unique indices i > I and j > J such
that Ri−1 < α ≤ Ri and S j−1 < β ≤ S j. By the construction of y, we have

yα,β = x(i, j)
n′k+p−1,m

′

l+q−1

where 1 ≤ p ≤ ai, 1 ≤ q ≤ b j, and k, l are chosen such that n′k > Ni, j and m′l > Ki, j. Therefore, for α, β >M, we
have:

|zα,β − yα,β| = |vi, j − x(i, j)
n′k+p−1,m

′

l+q−1
| < ε.

Thus, z − y is a Pringsheim null sequence. With this P-null sequence, we will show that each P-limit point
of x is a P-limit point of T(Ay). We have:

T(Ay) = T(A(y − z)) + T(Az).

Since A and T are RH-regular matrices and z − y is a Pringsheim null sequence, T(A(y − z)) is also a
Pringsheim null sequence. Moreover, T(Az) contains an ε-Pringsheim-copy of v, which means that for each
P-limit point vi, j of x, there exists a subsequence of T(Az) that converges to vi, j in the Pringsheim sense.
Therefore, each P-limit point of x is a P-limit point of T(Ay).

As a corollary, we obtain an Extended Copy Theorem for subsequences.

Theorem 3.9. Let T and A be RH-regular matrices, x a bounded double complex sequence, and ε a bounded positive
term double sequence with P-lim

n,k
εn,k = 0. Then there exists a subsequence y of x such that T(Ay) exists and each

P-limit point of x is a P-limit of T(Ay).

Proof. The proof is similar to that of the previous theorem, with the difference that we choose y to be a
subsequence of x such that z − y is a Pringsheim null sequence, where z is the stretching constructed in the
proof of the previous theorem. Let T(Ay) = T(A(y− z))+T(Az). Note that T(Ay) is the sum of a Pringsheim
null sequence and a sequence that contains an ε-Pringsheim-copy of v. Therefore, each P-limit point of x is
a P-limit of T(Ay).
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These results demonstrate that the main properties and theorems related to the preservation of P-limit
points under RH-regular matrix transformations can be extended to the “Stretching by Blocks” method
introduced in this article.
Here are some examples to support the theorems and illustrate their implications:

Example 3.10. Let x = [xi, j] be a bounded double sequence defined by:

xi, j =

1, if i = j,
0, otherwise.

Let ε = [εi, j] be a bounded positive term double sequence with P-lim
i, j
εi, j = 0, defined by:

εi, j =
1

i + j
.

Consider the stretching y of x using the “Stretching by Blocks” method with the sequences {ai}
∞

i=1 = {1, 2, 3, . . .} and
{b j}

∞

j=1 = {1, 2, 3, . . .}. Then, according to the Extended Copy Theorem, for any RH-regular matrices A and T, T(Ay)
exists and contains an ε-Pringsheim-copy of x.

The implication of this example is that even if the original sequence x has a simple structure (e.g., only the diagonal
entries are non-zero), its stretching y can have a more complex structure while still preserving the essential properties
of x under RH-regular matrix transformations.

Example 3.11. Let x = [xi, j] be a bounded double sequence with P-limit points 0 and 1, defined by:

xi, j =

1, if i + j is even,
0, if i + j is odd.

Let ε = [εi, j] be a bounded positive term double sequence with P-lim
i, j
εi, j = 0, defined by:

εi, j =
1

2i+ j .

Consider any stretching y of x using the “Stretching by Blocks” method. According to the theorem on the preservation
of Pringsheim limit points, for any RH-regular matrices A and T, T(Ay) exists and each P-limit point of x (i.e., 0 and
1) is a P-limit point of T(Ay).

This example illustrates that the “Stretching by Blocks” method, combined with RH-regular matrix transforma-
tions, preserves the P-limit points of the original sequence, even if the original sequence has a more complex structure
(e.g., alternating entries).

4. Conclusion.

In this article, we introduced the “Stretching by Blocks” method, a new approach for stretching double
sequences. This method constructs a new double sequence by repeating blocks of entries from the original
sequence, with block sizes determined by two sequences of positive integers. We compared this method
with traditional existing stretching method [4] and highlighted its advantages in terms of generality and
flexibility. We proved several important theorems, including the Extended Copy Theorem, preservation
of Pringsheim limit points under RH-regular matrix transformations, and the Extended Copy Theorem for
subsequences.
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