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Abstract. In this article, some of the main results of the paper“An abstract version of the Korovkin theorem
via A-summation proces” [2] are re-stated and proved. A Korovkin type theorem is given on a compact
Hausdorff space.

1. Introduction

One of the most important theorems in Approximation Theory is no doubt Korovkin’s Theorem, which
one version can be stated as follows: Let C([0, 1]) be the Banach space of continuous functions from the
interval [0, 1] to R with pointwise algebraic operations and the norm under usual

|| f || = supx∈[a,b] | f (x)|,

fi : [0, 1]→ R be continuous functions defined by

fi(x) = xi,

where i = 1, 2, 3 and (Tn) be a sequence of positive operators from C([0, 1]) into C([0, 1]) satisfying for each
i = 1, 2, 3,

||Tn( fi) − fi|| → 0 (n −→ ∞) .

Then for each f ∈ C([0, 1]) one has

||Tn( f ) − f || → 0 (n −→ ∞) ,

for all f ∈ C([0, 1]).
Recall that a map from C([0, 1]) into C([0, 1]) is called a positive operator if it is linear and T( f ) ≥ 0

whenever f ≥ 0 (the latter meaning that f (x) ≥ 0 for all x ∈ [0, 1]). It can be easily observed that a proof
of Korovkin’s Theorem follows from the following fact: for each ϵ > 0 there exist constants C1, C2, C3 ≥ 0
such that
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||Tn( f ) − f || ≤ ϵ + C1||Tn( f0) − f0|| + C2||Tn( f1) − f1|| + C3||Tn( f2) − f2||

holds for all f ∈ C([0, 1]). A proof of this inequality can be found in [1].
For a topological space X, as usual, C(X) denotes the vector space of all continuous functions from X into

Rwith the pointwise algebraic operations. The vector subspace Cb(X), the space of all bounded real-valued
continuous functions of C(X) is a Banach space under the norm

|| f || = supx∈X || f (x)||.

2. On the Statement of the Paper [2]

One could be interested in generalizations of the Korovkin’s theorem for the space Cb(X). The best way
for this is to start with C(X), where X is compact. This is well done in [2], but unfortunately in the statement
of [2] all lemmas and theorems involve the termA-summation process on C(X) for a sequence of positive
operators (L j), which is not necessary. Those were given more or less, in the following form:

“∀ f ∈ C(X), limk ||B
(n)
k ( f ) − f || = 0→ limk ||B

(n)
k (1) − f || = 0 for some 1 ∈ C(X)”.

The reason for this, we believe, is that the authors of [2] are ignored the fact that if

||B(n)
k ( f ) − f || → 0 (k→∞)

for all f ∈ C(X) and n, then B(n)
k ( f ) ∈ C(X) and the operator B(n)

k is positive operator into C(X). It should also
be noted that Lemma 4 is incorrect. Indeed, for each n, let Tn : C([0, 1])→ C([0, 1]) be defined by

Tn( f ) = 1
n f (0) + f .

Then Tn is a positive operator and Tn( f )→ f for all f ∈ C(X). For each x ∈ [0, 1] \ { 1
n : n ∈ N}, let fx = 0

and for n ∈N, let f 1
n
∈ C([0, 1]) such that

f 1
n
(0) = n and f 1

n
( 1

n ) = 0.

Now it is obvious that

1 ≤ supx∈[0,1] |Tn( fx)(x)|.

Also in the proof of this Lemma 4 of [2] m and M defined depend on x ∈ X, contrary to the situation in
the proof which assumes their independence from x. Despite the above-mentioned facts, using similar lines
of thought of the paper, we can restate the lemmas and theorems with simpler and more natural proofs.

3. Restatement of Theorems of [2]

We will restate and reprove in this section results of [2] using similar ideas. Let

f1, f2, 11, 12 ∈ C(X)

with the following properties:
i) P(x, y) = 0 if and only if x = y,
ii) P(x, y) ≥ 0
for all x, y ∈ X, where P ∈ C(X × X) defined by,

P(x, y) = 11(x) f1(y) + 12(x) f2(y).

In particular for each x ∈ X we define Px ∈ C(X) by
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Px(y) = P(x, y).

Throughout the paper s, t ∈ X with s , t and we let

Q = Ps + Pt.

Lemma 3.1. Let X be a compact Hausdorff space and let f ∈ C(X) be given. For each ϵ > 0 there exists K > 0 such
that

| f − f (x)| ≤ ϵ + KPx (x ∈ X).

In particular, if for x ∈ X, hx ∈ C(X) with

hx(x) = 0 and sup
x∈X
||hx|| < ∞

then there exists K > 0 such that for all x,

|hx| ≤ ϵ + KPx,

where K is independent of x ∈ X.

Proof. Let x ∈ X be given. Since | f − f (x)|(x) = 0, from the continuity of f − f (x), there exists an open set Ux
containing x such that

| f − f (x)|(y) ≤ ϵ

for all y ∈ Ux. Let

mx = infy∈Ux P(x, y) and M = 2|| f ||.

Since Px is continuous, X \ Ux is compact and P(x, y) > 0 for all y ∈ X \ Ux we have mx > 0. Since X is
compact and (Ux)x∈X is an open cover of X there exist x1,. . . ,xn ∈ X such that

X =
⋃n

i=1 Uxi .

Let

m = min{mx1 , ...,mxn } > 0.

Set K = M
m . Now the required inequality is obvious.

Lemma 3.2. Let X be a topological space and T : Cb(X)→ Cb(X) be a linear map. Then there is M ≥ 0 such that for
each x ∈ X, one has

|T(Px)(x)| ≤M[|T( f1) − f1|(x) + |T( f2) − f2|(x)]
≤M

[
||T( f1) − f1|| + ||T( f2) − f2||

]
.

Proof. Let M = ||11|| + ||12||. For each x ∈ X, it follows from the definition of Px that Px(x) = 0, and from the
equality

T(Px) = 11(x)[T( f1) − f1(x)] + 12(x)[T( f2) − f2(x)]

that we have the required inequality.
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Corollary 3.3. Let X be a compact Hausdorff space, (Tn) be a sequence of positive operators from C(X) into C(X)
satisfying

Tn( f1)→ f1 and Tn( f2)→ f2 (n→∞).

Then

sup
x∈X
||Tn(Px)|| → 0.

Proof. Follows immediately from Lemma 3.2.

Lemma 3.4. Let X be a compact Hausdorff space, (Tn) is a sequence of positive operators from C(X) into C(X). If

Tn( f1)→ f1 and Tn( f2)→ f2 (n→∞)

then

i) Tn(Q)→ Q (n→∞)
ii) sup ||Tn(1)|| < ∞.

Proof. i) This is obvious.
ii) Since for each x ∈ X, Q(x) > 0 and X is compact there exists ϵ > 0 such that ϵ ≤ Q. Then ϵTn(1) ≤ Tn(Q)
and we have

ϵ||Tn(1)|| ≤ ||Tn(Q)|| → ||Q||,

whence

sup ||Tn(1)|| < ∞.

Lemma 3.5. Let X be a compact Hausdorff space. For each f ∈ C(X), x ∈ X there exists fx ∈ C(X) with fx(x) = 0
such that

[Tn( f ) − f ](x) = Tn(hx) +
f (x)

Q(x)
[Tn(Q) −Q](x)

for all x ∈ X.

Proof. It is enough to take

hx = f − f (x)
Q(x) Q.

Theorem 3.6. Let X be a compact Hausdorff space and (Tn) be a sequence of positive operators from C(X) into C(X).
If

Tn( fi)→ fi (i = 1, 2) (n→∞) ,

then

Tn( f )→ f for all f ∈ C(X).

Proof. Let f ∈ C(X) be given. By Lemma 3.5 for each x ∈ X there exits hx ∈ C(X) such that

hx(x) = 0, supx∈X ||hx|| < ∞

and

[Tn( f ) − f ](x) = Tn(hx) + f (x)
Q(x) [Tn(Q) −Q].
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This implies that

||Tn( f ) − f || ≤ supx∈X ||Tn(hx)|| + || f
Q ||||Tn(Q) −Q||.

We know that

supx∈X ||Tn( fx)|| ≤ supx∈X ||Tn(Px)|| → 0 (Corollary 3.3)

and

M||Tn(Q) −Q|| → 0 (Lemma 3.4)

Hence we have

Tn( f )→ f .

This completes the proof.
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