Filomat 38:32 (2024), 11275-11294
https://doi.org/10.2298/F1L2432275B

Published by Faculty of Sciences and Mathematics,
University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

e/ A
) @

i &

gy as’

Do,

5
TIprpor®

Fiedler linearizations of multivariable state-space systems and its
associated system matrix
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Abstract. Linearization is a standard method in the computation of eigenvalues and eigenvectors of
matrix polynomials. In the last decade a variety of linearization methods have been developed in order
to deal with algebraic structures and in order to construct efficient numerical methods. An important
source of linearizations for matrix polynomials are the so called Fiedler pencils, which are generalizations
of the Frobenius companion form and these linearizations have been extended to regular rational matrix
function which is the transfer function of LTI State-space system in [20, 25]. We consider a multivariable
state-space system and its associated system matrix S(A). We introduce Fiedler pencils of S(1) and describe
an algorithm for their construction. We show that Fiedler pencils are linearizations of the system matrix

S().

1. Introduction

We denote by C[A], C"™", and C[A]™", the polynomial ring over the complex field C, the vector spaces
of m X n matrices and matrix polynomials over C, respectively.

Consider a matrix polynomial P(1) = Z;”:O /UAj, where A; € C™". Then P(A) is said to be regular if
detP(A) is not identically zero. A matrix polynomial U(A) is said to be unimodular if det U(A) is a nonzero
constant, independent of A. Two matrix polynomials P(A) and Q(A) are said to be equivalent if there
exist unimodular matrix polynomials U(A) and V(A), such that Q(A) = U(A)P(A)V(A). If U(A), V(A) are
constant matrices, then P(1) and Q(A) are said to be strictly equivalent [7]. Let P(A) be an n X n matrix
polynomial (regular or singular) of degree m. Then linearization is a common procedure to solve the
polynomial eigenvalue problem P(A)x = 0. That is, a matrix pencil L(A) := X + AY € C[A]"™"" is said to be
a linearization [14] of P(A) if there exist unimodular matrix polynomials U(A), V(A) € C[A]" ™" such that

UMLA)V(A) = diag(-yn, P(1))

for all A € C, where I, denotes the r X r identity matrix. In [7, 14] and references therein, linearizations of
matrix polynomials have been studied extensively and Fiedler linearizations of matrix polynomial have
been studied in [8, 9] and references therein. One of the important properties of a Fiedler pencil L(A) of
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the matrix polynomial P(A) is that its construction is operation free, that means, block entries of the Fiedler
pencil L(A) are either I, or the coefficient matrices A; of P(A) or 0,. Also, the Fiedler pencil L(A) allows an
easy recovery of eigenvectors of P(A) from the eigenvectors of L(A). That is, one can recover the eigenvectos
of P(A) from those of Fiedler pencils [8, 9].

There are many different ways to do linearization. Their advantages and disadvantages with respect to
backward error (determines the smallest perturbation for which a computed solution is an exact solution
of the perturbed problem), conditioning, (sensitivity of eigenvalues under perturbations) have received a
lot of attention in recent years, see e.g. [5,7, 11, 19, 23, 24].

In this paper we extend the concept of Fiedler linearization from LTI state-space system to general
multivariable state-space system and associated system matrix. In particular, in this paper we discuss the
solution (finding eigenvalues A € C and eigenvectors v € C") of multivariable state-space system L

A (%) x(t) = Bu(t),
p 1
y(t) = Cx(t) + D(E)u(t) t>0,

such that S(A)v = 0, where A(A) = Z;’.’io MA;j € C[A]™" is a regular matrix polynomial of degree d,
D(A) = 2?20 AID; € C[A]™™ is a matrix polynomial of degree dp, and C € C"™", B € C"™™, and its associate
Rosenbrock system matrix S(A)

S(A) _ [ Ag\) 1)_(12) ] c C[/\](n+m)><(n+m) (2)

and the associated transfer function
R(A) = D(A) + CA(A) B € C(A)™™, 3)

Now, consider a more general linear multivariable time invariant state-space system L; on the positive
half line R, in the representation

A (%) x(t)+B (c%) u(t),

C(%)x(t) +D (%)u(t). (4)

The function u : R, — RR™ is the input vector, x : R, — IR” is the state vector, y : R, — R" is the output

vector, and for M(A) = Z?:o M;A e C[A]™™ we use M(%) to denote the differential operator Zf:o Midd—ti,-,

0

y(®)

where 4 denotes time-differentiation. The associated matrix polynomial is

s = AL e

The associate transfer function is defined by
R(A) :=D(A) - C()\)A(/\)_lB(A) € C(A)™™, (6)

where, denoting by C[A]"*" the vector space of m X m matrix polynomials, we assume that A(A) € C[A]"",
B(A) € C[A]™™, C(A) € C[A]™", and D(A) € C[A]™™. Notice thatin (2) B and C are considered to be constant
matrices.

Rational eigenvalue problems arise in many applications such as free vibration of plates with elastically
attached masses, calculations of quantum dots, vibrations of fluid-solid structures and in control theory,
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see e.g. [6, 13, 16, 17] and the references therein. Rational matrix value functions of the form (6) arise e.g.
in linear system theory, see [3, 29].

If A(A) is regular, i.e., detA(A) does not vanish identically, then performing a Schur complement, one
obtains the rational matrix function (6) which, in frequency domain, describes the transfer function from
the Laplace transformed input to the Laplace transformed output of the system. In this case S(A) is called
a Rosenbrock system matrix, see [12]. Conversely, if one has a given rational matrix function of the form
(6), then one can always interpret it as originating from a Rosenbrock system matrix of the form (5). Such
rational matrix valued functions arise from realizations of input-output data, see e.g. [4], or in model order
reduction, see e.g. [2, 28].

We consider the general square polynomial eigenvalue problem

xo |._| A | BA) (| xo | _
&M[MO}_[QM D) || w |~ @
If A and D are square and regular, then one can form the rational function R(A) as in (6) and, since
detS(A) = detA(A)detR(A), it is clear that the eigenvalues of S(A) are the eigenvalues of A(A) and R(A)
combined and the eigenvalues of A(A) are the poles of R(A). We restrict ourselves to rational functions of
the form (6) with regular A(A) and we assume for simplicity that B, C are constant matrices in A. All the

results can be extended (with a lot of technicalities) to the case that B, C depend on A.
Note that for the linear time invariant (LTI) system in state-space form [3]

Ex(t) = Ax(t) + Bu(t) @)
() = Cx(t) + DAut),
where D(A) € C[A]™ is a matrix polynomial and A, E € C"™" with E being nonsingular, B € C*",C € C"™"
are constant matrices, a framework has been developed in [25] to study the zeros of LTI system in state
space form via Fiedler-like pencils and linearizations of the Rosenbrock system polynomial S(A) associated
with the system, see [21, 25-27].

Further, for the higher order linear time invariant (LTI) state-space system

A (%) x(t) = Bu(t), o)

y(t) = Cx(t) + Du(t),

where A(A) = Z;iio AMAj € C[A]™ is regular matrix polynomial of degree d4 and D € C"™™, C € C"™",
B € €™, there is a state-space framework developed in [22] to study the zeros of higher order system via
Fiedler linearizations, see [22]. Also, the eigenvalues and eigenvectors of the system matrix S(A) associated
with higher order system has been studied in [22].

Multivariable state space system and its associated system matrix play an important role in system
theory. Recently, in[1, 10, 15], different linearizations of the S(A) in (5) were studied. Further, the eigenvector
recovery, minimal bases and minimal indices of S(A) has been analyzed. Consider the system matrix S(A)
given in (2). We wish to study the relationship between the eigenvalues of Rosenbrock system matrix and
associated linearizations. For this we develop a framework for construction of Fiedler linearizations of the
system matrix S(A). These linearizations are also helpful to study zeros of the system L given in (1). This
problem has recently been studied for higher order state-space system in [22] and we will extend these
results to the Multivariable state-space case.

The rest of the paper is organized as follows. In section 2 we recall some basic definitions and results
on matrix polynomial and rational matrix which we need throughout this paper. In section 3 we extend
the results of Fiedler pencils for Rosenbrock system matrix given in [20, 22, 25] to multivariable state space
system. In the same section, we define Fiedler pencils for S(1) given in (2) and present an algorithm for
their construction. In Section 4 we prove that Fiedler pencils are linearizations for S(A).
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Notation. An m X n rational matrix function R(A) is an m X n matrix whose entries are rational functions
;%, where p(A) and q(A) are scalar polynomials in C[A]. We denote the j-th column of the n x n
identity matrix I, by ¢; and the transpose of a matrix A by A”.

of the form

2. Basic Concepts
Definition 2.1. [30] Let A € C"™", B € CP*1. Then the Kronecker product (tensor product) of A and B is defined by

ﬂllB s al,,B
AQ®B = : : e Cmpxnq
amB -+ au,B

One of the properties of Kronecker product is as follows: Let A € C"™", B € C™, C € C”, and D € C*.
Then (A ® B)(C ® D) = (AC® BD) € C"™".

In order to systematically generate the Fiedler linearizations for Rosenbrock system matrices, we need
a few concepts introduced in [9, 12, 29], and [25].

Definition 2.2. [9] Let small 6 : {0,1,...,p =1} = {1,2,...,p} be a bijection.

(1) For j=0,...,p — 2, the bijection o is said to have a consecution at j if 6(j) < o(j + 1) and ¢ has an inversion
at jifo(j) > o(j +1).

(2) The tuple CISS(0) = (c1,11,¢2, 12, . - ., 1, 11) is called the consecution inversion structure sequence of o, where o
has ¢y consecutive consecutions at 0,1, ...,c1 — 1; i; consecutive inversions at c1,¢1+1,...,¢1 +i; — 1 and so
on, up to iy inversionsatp —1—1i;,...,p — 2.

(3) The total number of consecutions and inversions in o is denoted by (o) and i(0), respectively, i.e., ¢(c) = Z§'=1 cj,
i(0) = 2;21 ij, and (o) +i(0) =p - 1.

Now, consider a rational matrix function R(A) € C(A1)"". Then the normal rank of R(1) denoted by
nrank(R) is defined as nrank(R) := max,rank(R(A)), where the maximum is taken over all A € C which are
not poles of the entries of R(A). If nrank(R) = n = m, then R(A) is called regular, otherwise R(A) is singular
[12].

Let S(A) be givenin (2). Then A € C is said to be an eigenvalue of the system matrix S(A) if rank(S(1)) <
nrank(S). Note that an eigenvalue A of S(A) is called an invariant zero of the system L and the set of
eigenvalues of S(A) is denoted by sp(S), see [25].

Let R(A) € C(A)"™" be a rational matrix function with normal rank k. Then the Smith-McMillan form of
R(A) is given by [12, 29]

o) o)
o) )’

where the scalar polynomials ¢;(1) and ¢;(1) are monic, pairwise coprime and, satisfy the properties:
¢i(A)/Pini(A) and P (A)/Pi(A), for i = 1,2,...,k — 1. The polynomials ¢;(A) and ¥;(A) are uniquely
determined by R(A) and are called elementary divisors of R(A). Also, the polynomials ¢1(A),..., ¢r(A)
and ¥1(A), ..., Yx(A) are called zero polynomials and pole polynomials of R(A), respectively, see [25]. Define
dr(A) =TT, §j(1) and yr(A) =TT, ¢j(A). Then i € Cis said to be a zero of R(A) if ¢r(r) = 0and p € C
is said to be a pole of R(A) if Yr(1) = 0. The spectrum sp(R) of R(A) is given by sp(R) := {A € C : pr(A) = 0}.
Therefore, sp(R) is the set of zeros of R(A) [25].

SM(R(/\)) = d1ag( Om—k,n—k ’
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3. Fiedler pencils for Rosenbrock system matrix

In this section we define Fiedler pencils for the system polynomial S(1) and describe an algorithm for
their construction. Let us consider a Rosenbrock system matrix of the form (2) with B, C constant in A,

S(/\) _ [ Aé/\) lj_(ﬁ) ] e C[/\](n+m)><(n+m) (10)

and the associated transfer function
R(A) = D(A) + CA(A)™'B € C(A)™™,
where A(A) = Z?;‘O AA; € C[A]™" is regular and D(A) = ):‘;20 AD; € C[A]™™. Our aim is to study

linearizations of S(A). The most simple way to perform a direct linearization is to consider a first companion
form

CiMDw:=AX+Y)w =0, 11)
where
[ Ad, Agr Ay Ay | 0 - 0 -B
I, -I, 0 0 0 0
I -1 0 0
X = z /Y = L 7

Dy, 0 0 C D1 Das Do
I, 0 0 -1, 0 0
I 0 -I, O

and
[ A%=1(AA))Bx ]
A44=2(A(A)™)Bx

(A(A)"HBx
Adp=Ty
A2y

X
It is easy to see that if A is an eigenvalue of R(A) then R(A)x = 0 if and only if C;(A)w = 0.

An important class of linearizations (which include the first companion form (11) as special case) that
has received a lot of attention are the Fielder pencils, [8, 9, 18]. The Fiedler matrices M;, i = 0,1,...,da
associated with A(A) = Z?ﬁo AA; € CIA]™" of degree d4 [9], are defined by

[ Ay T~
My, = A , My := A ,
a4 Lay-1n ] 0 [ —Ao
[ Lig,—i-1)n " (12)
L e— 4 I" | — —
M, = In 0 P Z—l,...,dA 1.
Lty

Ifo:{0,1,...,da—1} = {1,2,...,d4} is a bijection, then one furthermore defines the products M, :=
M;10yMg1() + + * Mg14,)- Note that o(i) describes the position of the factor M; in the product M,; i.e., (i) = j
means that M, is the jth factor in the product.
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Based on the Fiedler matrices, then for a given A(A) € C[A]™" of degree d4 and a bijection g, in [9] the
associated Fiedler pencil is defined as the dan X dan matrix pencil

Lg(/\) = /\MdA - Mg—l(l) . 'MJ‘l(dA) = AMdA - Mg. (13)

This concept was extended in [20-22, 25-27] for square Rosenbrock systems of the state-space form (8)
and (9). In [25] also a multiplication-free algorithm is presented to construct Fiedler pencils for square
system polynomials of the state-space form (8) and it is shown that these Fiedler pencils are linearizations
of the system polynomial and as well as of the associated transfer functions under some appropriate
conditions.

Extending the definition of [25], based on the idea of the companion like form (11), we define nds X nda
Fiedler matrices associated with A(1) € C[A]"™" as in (12), and Fiedler matrices associated with the matrix
polynomial D(A) € C[A]"™" by

[ D, Lap-1ym
Ny, = b , Np := b ,
A Lap-1ym ] 0 [ —Do

[ Ltap—-i—1ym . (14)
L= i m | — —
N, = Im 0 P l—l,...,dD 1.

Li—tym

Based on the Fiedler matrices, then for given D(A) € C[A]"™" of degree dp and a bijection ¢, in [9] the
associated Fiedler pencil is defined as the dpm X dpm matrix pencil

TO—(/\) = /\NdD - Nofl(l) .. 'No*(du) = /\ng - No‘. (15)

Note that M;M; = M;M;, N;N; = N;Nj for |i — j| > 1 and except for the terms with index 0, d4 and dp,
respectively, each M; and N; is invertible. We then have the following definition of Fiedler matrices for
Rosenbrock matrices S(A) € C[A]*(+m) given in (2).

Definition 3.1. Consider a system polynomial S(A) as in (2). Let d = max{da,dp} and r = min{ds,dp}. Define
(dan + dpm) X (dan + dpm) matrices My, . .., My by

[ L, —1)n
M = -Ap (edAegD)®B _ My ‘ (edAegu)®B
‘ Tgp—1ym —(eaey )®C | No
—(eaey ) ®C —-Dy
3 Mo ‘ (eq, ® B)(‘?,?D ® L)
| _(edD ®Im)(63;A ® C) ‘ NO !
Ag, ‘
L —1yn My
]M - A - A
1L
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[ L(g,—i-1)n
_Ai In
I, 0
Li—iyn M; \
M; = = ,
' Tgp—i—tym | N;
-D; I,
L, 0
I Li-1ym
and ifdp <da, thenfori=r,r+1,...,d-1,
[ Lg,—i-1)n
-A; I,
Li—1yn dpm
L Lile
and ifdp > da, thenfori=r,r+1,...,d -1,
[ IdA‘rl ‘
Ltap-i—ym
M; := -D; Iy = [ g N ]
L, O !
Li—ym

where M;, i =1 :dy and N;, i = 1 : dp are Fiedler matrices associated with A(A) and D(A) given in (12) and (14),
respectively. We refer to the matrices My, ..., My as the Fiedler matrices associated with S(A).

Observe that as in [25] one has M;IM; = IM;IM; for |i — j| > 1 and all IM; (except possibly My, M) are
invertible.
The associated Fiedler pencils are then defined as follows.

Definition 3.2. Consider a system polynomial S(A) as in (2). Let d = max{da,dp} and My, ..., M, be Fiedler
matrices associated with S(A) as in Definition 3.1. Given any bijection o : {0,1,...,d-1} = {1,2,...,d)}, the matrix
pencil

IL(;(/\) = /\Md - Mg—l(l) cee Mg—l(d) = /\Md - ]Mo‘, (16)
is called the Fiedler pencil of S(A) associated with o. We also refer to IL,;(A) as a Fiedler pencil of R(A).

The companion like form given in (11), then is C1(A) = AM; —M,_; - - - MM, and the associated second
companion form of S(A) is

C(A) = AMy-MM; -+ - My oMy
[ Ag,—1 -1, 0
A, da-1
In AdA—Z 0

I, 0
I, Ay 0 0 -B 0 0
DdD 0 Ddgfl Im 0

IT"
Dy,

L, 0 : L,
C 0 0 Dy 0 0
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Example 3.3. Let R(A) = D(A) + CA(A)™!B € C(A)™™ with A(A) = Ag + AA1 + A2A; + A3A3, A; € C™" be
a matrix polynomial of degree 3 and D(A) = Dy + ADy + A2Dy, D; € C™™ be a matrix polynomial of degree 2.
Heredy > dp, r =2and d = 3. Let 01 = (1,3,2) and o, = (2,3,1) be bijections from {0,1,2} to {1,2,3}. Then
Ly, (A) = AM3 — MoMaM; and IL,,(A) = AM3 — IMaMoIMy. Then the Fiedler matrices for R(A) are given by

L, 0 0 0 0 I, O 0
0 I, O 0 0 0 -A I,
Mog=| 0 0 -4y | 0 B , M;=| 0 I, 0 ,
0 0 0 |, O -D1 I
0 0 —-C|0 -D I, O
-A, I, O Az
I, 0 0 I,
M,=| 0 0 I, . M= I
I, Dy
In L
Then
-Ay A1 I, 0 0
I, 0 0 0 0
M, = 0 -Ay O B 0
0 0 0|-Dy I,
0 -C 0|-Dg O

By using the commutativity relation it is easy to check that 1L, (A) = L, (A).

Example 3.4. Let R(A) = D(A) + CA(A)™'B € C(A)™™ with A(A) = Ag + AA1 + A2Ay + A3A;, A; € C™" and
D(A) = Dy + ADy + A?D; + A3D3 + A*Dy, D; € C"™™. Here,ds = 3,dp = 4,da < dp and r = 3, d = 4. Consider
L;(A) = AMy — MMoIM1M3. Then the Fiedler matrices for R(A) are given by

', 0 0|0 0 0 O I, 0 0|0 0O 0 0
0L 0|0 0 0 O 0 -A; I, 0 0 0 0
0 0 -A |0 0 0 B 0 I, 0/0 0 0 O

My=|0 0 O0 |, 0 0 0 |,M=|/0 0 0|, 0 0 0 |
00 010 I, 0 0 0O 0 0/0 I, 0 O
o0 010 0 I O 0 0 0|0 0 -Di I,

0o 0o -clo 0 0 -D| o o ol0 0 I, O]
“A, I, 0/0 0 0 0 ', 0 0] 0 0 0 O
I, 0 0/0 O 0 O 0L 0/ 0 0 0 O
0 0 IL,|0 0 0 0 00 L| 0 0 0 0

M,=|"0 0 O|L, 0 O 0| Ms=|0 0 O0|-D; I, 0 0 |,
0 0 0|0 -D I, 0 00 0L 0 0 0
0 0 0|0 I, 0 O 00 0]/ 0 0 I, O
0 0 0|0 0 0 I 00 0] 0 0 0 I,

A, 0 0|0 0 0 O
0 I, 0/0 0 0 O
0 0 I, 0 0 0 0
My=|"0 0 0|Ds O 0 O
0 0 0/0 I, 0 O
0 0 0/0 0 I, O
0 0o 0|0 O I |
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Then

[ —A, —A4
0
~Ap
0
0
0
-C

~
=
~
=

oo O O

|
Jglooco
w
—~
s

O OO OO
O O O OO O
| |
UOUOWOO
=) =

—~

3

0
I, 0
0 0

o o

Example 3.5. Let R(A) = D(A) + CA(A)™'B € C(A)"™™ with A(A) = Ay + AA; + A2A; + A3A3, where A; € CP"
and D(A) = Do + AD; + A2D;, + A3D3, where D; € C™". Here,dy = 3,dp = 3,7 = 3, and d = 3. Consider
Ls(A) = AM3 — M, = AM3 — IMIMoIMy. Then the Fiedler matrices for R(A) are given by

I, 0 0 ]0 0 o0 ', 0 0|0 0 0
0L 00 0 0 0 -A; I,]0O 0 0
0o 0 -A|0 0 B o 1, ojo o0 o0
Mo === I, 0 0 M= 15— I, 0 0|
00 00 I, O 0 0 0|0 =Dy I,
0 0 —C|o -Dy | o 0o 0|0 I, O
Ay, I, 0|l 0 0 0] (A3 0 0|0 0 O
I, 0 0| 0 0 O 0 I, 0/ 0 0 O
0 0 IL,|] 0 0 0 o o |0 0 0O
M =\——0"0 -D, I, 0 ' Ms == D; 0 0
0 0 0| I 0 0 0 0 0[O0 I, O
0 0 0] 0 0 I, | 0 0 0|0 0 I,
Then
-Ay, -A; L, 0 0 0
I, 0 0] 0 0 0
| 0o -A 0] 0 B 0
M; =|—5 0 O0]|-D, -D; I,
0 0 0] I, 0 0
0 -C 0| 0 -Dy 0

Having introduced the basic idea of generating Fiedler pencils for Rosenbrock system polynomials
given in (2), now we will analyze these constructed pencils.

Theorem 3.6. Let S(A) be given in (2). Let d = max{da,dp}and ¢ : {0,1,...,d — 1} = {1,2,...,d} be a bijection.
Let Ls(A), T5(A), and ILs(A) be the Fiedler pencils of A(A) of degree da, D(A) of degree dp, and S(A), respectively,
associated with o, that is, Ls(A) := AMy, =My, To(A) := ANg, — Ny, and IL(A) := AMy—M,. Ifo™"' = (07%,0,0;")
for some bijections o1 and oy, then

L) = Ls(A) | M, (ea €], ® BN,
| Ng, (edDegA ® C)M,, ‘ Ts(A)
Further, if CISS(0) = (c1,11, - - ., C1,11), then
Ls(A) ‘ —eqel  ®B
L,(A) = dp—c, ,  ifc1>0
@) [ enel ®C|  To(A) for

and
Ls(A) ‘ —6(,71A_,'1)6§D ®B

L,(A) = [ cr e &C .00 ] ifc; = 0.
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Proof. We have

LO‘(/\) =AMy - M, = AM,; — M{)‘] MOMUZ

| Ma| 0 ] [My] 0 Mo | (easej )®B |[ My, | 0
B 0 [Ny 0 | N —(edDegA)@ac \ No 0 | N
_ A MdA O _ MﬁlMOMGZ ‘ Mo'l(edAe;D ®B)NGZ

N 0 [N —No(earej, ® OMy, | N, NoN,

~ Ly(A) | Mo, (eq e ® B)N,

| No(eape] ® OM, | T,(A)

Now, suppose that CISS(0) = (c1, i1, ..., ¢, if).
Case I : Suppose that c; > 0. Then by commutativity relation we have M, = M,;,MyM; - -- M., with
c1 +1 € 01. Thus M, = M,;, MyM,,, where M,;, = M; - --IM,,. Hence

M, = | Mo | Mo | (ea,e3,)®B || My, | 0
? | No, || —(eare))®C ‘ No 0 | N,
_ MmMOMoz ‘ Mm (edAegD ® B)Nrrz
| =Ng, (edDegA ® C)M,, ‘ Ny, NoNg, '

Since j € o7 implies that j > ¢; + 1, we have M,, = [ * i ] and N,, = [ * i ] This shows that
can cm

M, (eq, ® I,) = eq, ® I, and Ny, (eq, ® Iy) = eq, ® I,. So, we have M, (es, ® B) = e4, ® B. Next, we have
Ny, (edDegA ® C)M,, = Ny, (e4, ® Im)(egA ® C)M,, and My, (e4, egD ® B)N,, = My, (eq, ® B)(egD ® I,;)N,,. Now, we
have

L~
(e, ® )My = (e} ®1,) ~Ar I |=(e]_ ®l),
I, 0
T, 3
T T -Ay Iy T
(edA ® I,)MiM, = (edA—l ®I) I, 0 = (edA—Z ®Iy),
Iy

and so on. Thus (egA L)MiM;---M,, = (E';A_C1 ®I,). Hence (egA ®L,)M,, = (egA_q@In) and (—(egA_C1 ®C)M,, =
—(el' _ ®C). Similarly, we have

dA—Cl
Lap—-2m
(ej, ® L)N1 = (e) ® 1) ~Di L | = (e}, ®1Ln),
I?ﬂ
Liap-3ym
T T =Dy I T
(edD ®I,)N1N; = (edD—l ®Iy) I, 0 = (edD—Z ®Iy),
Iy

and so on. Thus (egD ® Ly)N1Ny N, = (e} ®1I,). Hence (¢! ® I,,)N,, = (e} ., ®In). Now, we have

dp—c1 dp dp—

Ny, (eapey, ® [)Mo, = Ny, (ea, ® Ln)(ej, ® CO)Mo, = (eape, _, ® 1) and —(Ny,eape; ® C)Mo, = —(eayey, . ® C).



A. Bist, N. Behera / Filomat 38:32 (2024), 11275-11294 11285

Similarly, M., (e, 65[) ® B)N,, = (e, egD_Cl ® B). Consequently, we have

Ls(A —esel  ®B
]LU(/\) = AIMd - Mg = [ U( ) ‘ s dp—c; ]

edDe;A_C1 ®C ‘ T,(A)

Case II : Suppose that c; = 0. Then ¢ has i; inversions at 0. Hence by commutativity relations we have
My =M; - - M1 MM, =: M, MM, with i; + 1 € 0,. Hence

M, = | Mo | Mo | (ea,e3,)®B || My, | 0
o | N, —(edDegA)Qz)C ‘ Ny 0 | N,
B Mo MM, | My, (es,], ® B)N,,
| Noewd! ®OM,, | NoNoN,, '

Since j € o0, implies that j > i; + 1, we have M,, = [ * 7 ] and N;, = [ * 7 ] This shows that
nn nm

(egA ®L,)M,;, = eZA ® I, and (egD ® Ln)Ng, = egD ® I,,,. Hence (—egA ®C)M,, = —egA ® C. Next, we have

I(m—2)n
Ml(edA ®In) = A I (edA ®In) = (edA—l ®In)/
_ I, 0
[ T, —3n
_AZ In
M>oM;, (BdA ® In) = I, 0 (edA—l ® In) S (EdA_2 ® In).
Iy

Thus M;, - - - MoMi(eq, ®1,) = (eq,-i, ® I;). Hence M, (eq, ® 1)) = (e,—i) ® 1) and My, (eg, ® B) = (e(a,-ir) ® B).
Similarly, we have

[ T(ap-2)m
Nl(edD ® Im) = -Di In (edD ®Iﬂ1) = (edD—l ®Im)r

L, 0
[ Lap-3ym

-D, I

N2Ni(ea, ® In) = 2 (Cap1 ® L) = (a2 ® L)
Ly 0
Iﬂl

Thus Nz'1 -+ NoN;p (EdD ® Im) = (edD_il ® Im). Hence No'l (EdD ® Im) = (e(dD_il) ® Im). Now, we have No'l (edDegA ®
I,)M,, = Ny, (eq, ® Im)(egA ® C)M,, = (edD_ilegA ®I,) and —(N(,ledﬂ,egA ® C)M,, = —(Edp—ilegA ® C). Similarly,
M, (ea,e; ® B)Ny, = (ea,—i,e; ® B). Consequently, we have

Ls(A) ‘ —e(dA_il)egD ®B
Lo(A) = AMa - M, = e(du—il)egA ®C ‘ Tg(/\)

Note that for each i,j € 0, we have M;M; = M;M;, N;N; = N;N; & M;M; = M;M;. This completes the
proof. [

Theorem 3.7. Let S(A) be in (2) with A(A) = ¥4 NA;, A; € €™, D(A) = Y9 A'D;, D; € C"™". Suppose that
da >dp.Let 0 : {0,1,...,da — 1} = (1,2,...,dA} be a bijection. The following algorithm constructs a sequence of
matrices {\Wo, Wi, ..., Wy, o}, where each matrix W; fori =1,2,...,d, — 2 is partitioned into blocks in such a way

that the blocks of W;_; are blocks of W;.
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Algorithm 1 Construction of M, for IL;(A) := AM,, — M,.

da
Y NiA;| -B
Input: S(A) = i=0 . and a bijection 0 : {0,1,...,da -1} = {1,2,...,da},and dq > dp .
C Y AD;
i=0
Output: M,
if 0 has a consecution at 0 then
[ -A; L,| O 0
| -A0 O B 0
Wo=1—"—""01=-D, 1,
| -C 0|-Dyg O
else
-A; -Ag| O B
I, 0 0 0
Wo=l———c =D, —Dy
0 0 L 0
end if

fori=1:dp—-2do
if 0 has a consecution at i then

_Az'+1 In 0
W, = Wi_l(l Ol +1, 1) 8 Wi_l(l : 1-|(-)1,2 i+ 1) Wio ,where
Wi_1(2+i:2i+2,1) 0 Wi_1(2+i12i+2,22i+1)W22
W _[ 0 0 0 ]
271 Wi(1:i+1,i42) 0 Wq(1:i+1,i+3:2i+2) |
W :[ _Di+1 Im 0 ]
27 Wi (Q+i:2i+2,i+2) 0 W, Q+i:2i+2,i+3:2i+2) |
else
—Ai Wii(1,1:i+1) 0 Wi1(1,2+i:2i+2)
I, 0 0 0
W, = 0 Wi (2:i+1,1:i+1) 0 Wisi(2:i+1,2+1:2i+2)
BT 0 W,‘_l(i+2,1 Z+1) —D;1 Wi_l(i+2,2+i22i+2)
0 0 Iy 0
0 Wi (i+3:2i+2,1:i+1) 0 Wi1(i+3:2i+2,2+i:2i+2)
end if
end for
fori=dp—-1:ds—-2do
if 0 has a consecution at i then
W, = —Ain I, 0 0
P Wi, 1) 00 Wi (52:i+ 1) Wi i+2:dp+i+ 1)
else )
[ —Ain Wii(1,:)
I, 0
Wi=1"" Wii(2:i41,0)
0 Wi_1(i+22dD+i+1,I)
end if
end for
MJ = WdA—Z

Proof. Using induction on the degree d4 = max{da,dp} and the idea of proof of Theorem 3.11 in [25] one
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can conclude the result. [

Theorem 3.8. Let S(A) be in (2) with A(A) = L. AIA;, A; € ™", D(A) = Y% A'D;, D; € €™ Suppose that
da <dp.Leto:{0,1,...,dp — 1} — (1,2,...,dp} be a bijection. The following algorithm constructs a sequence of

matrices {\Wo, W1, ..., Wy, _o}, where each matrix W, fori =1,2,...,dp —2 is partitioned into blocks in such a way
that the blocks of W;_; are blocks of W;.

Algorithm 2 Construction of M, for L;(A) := AM,, — M,.

Y4 NA | -B L
Input: S(A) = =0 a— and a bijection o : {0,1,...,dp —1} = {1,2,...,dp}, and ds < dp.
C | Xk AD;
Output: M,
if 0 has a consecution at 0 then
[ -A; I, 0 0
| -4 o] B 0
Wo=1—5"9 -D; I,
-C 0 L, 0
else
-A; Ay 0 B
I, 0 0 0
Wo=|——= -D: -D,
0 0 L, 0
end if

fori=1:d4-2 do
if 0 has a consecution at i then

_Az'+1 In 0
W, = W11 Oz +1,1) 8 Wi (1: i—Bl,Z ti+1) Wis  where
Wi,1(2+i:2i+2,1) 0 Wi1(2+i22i+2,23i+1)W22
W _[ 0 0 0 ]
27 Wi(1:i+1,i+2) 0 Wig(1:i+1,i+3:2i+2)
sz =[ _Di+1 Im 0
Wisi(2+i:2i+2,i+2) 0 Wi_12+i:2i+2,i+3:2i+2)
else
—-Ai Wi1(1,1:i+1) 0 Wis1(1,2+i:2i+2)
I, 0 0 0
W, = 0 Wisi(2:i+1,1:i+1) 0 Wi1(2:i+1,2+1:2i+2)
T 0 Wi_l(i+2,1 l+1) —D;1 Wi_l(i+2,2+i22i+2)
0 0 Ly 0
0 Wi1(i+3:2i+2,1:i+1) 0 Wi (i+3:2i+2,2+i:2i+2)
end if
end for

fori=dy—1:dp—-2 do
if 0 has a consecution at i then

W,‘_l(lidA,lidA) W,‘_l(lidA,dA+1) 0 W,_l(lidA,dA+2:dA+i+l)
Wi = 0 —Din In 0
Wi,l(dAJrl:dAﬁLiJrl,lidA) W,;1(dA+1IdA+l'+1,dA+l) 0 W,',1(d,q+1IdA+f+1,dA+1:dA+i+1)
else
W,‘,l(ltd/\,ltd/]) 0 W,‘,l(lid/\,d/\+1:d/\+i+l)
W = W,’,l(dA+l,1idA —Dj1 W,,l(dA+1,dA+1ZdA+i+1)
e 0 L 0
Wi,1(d/4+21d/q+i+1,1:d/q) 0 W,;](d,q+22dA+i+1,dA+1:dA+i+1)
end if
end for

MU = WdD—Z
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Proof. Using induction on the degree dp = max{da,dp} and the idea of proof of Theorem 3.11 in [25] one
can conclude the result. [J

4. Fiedler linearizations of Rosenbrock system matrix

In this section we show that the constructed Fiedler pencils associated with Rosenbrock systems are
indeed linearizations. To do this we have to recall a few basic facts.

Definition 4.1 (System equivalence). Let S1(A) and Sy(A) be (n + m) X (n + m) Rosenbrock system polynomials
of the form (5), partitioned conformably. Then S1(A) is said to be system equivalent to S(A) (denoted as S1(A) ~q

Sa(A)), if there exist unimodular matrix polynomials U(A), V(A) € C[A]™" and a()\), V(A) € C[A]"™ such that for
all A € C we have

uny| o viy | o 1.
[ 0 [T ]31”)[ 0 vm)]—&(” 17)

Definition 4.2 (Rosenbrock linearization). Let S(A) be an (n + m) X (n + m) system polynomial of the form (5)
with degree d = max{da,dp}. A linear matrix polynomial IL(A) is called a Rosenbrock linearization of S(A), if it
has the form

_[An]| B
L) = [ﬂm}

with matrix polynomials A(A), D(A) of degree less than or equal to 1, constant matrices B,C, and IL(A) is system
equivalent to

T,
o | UM ] 0 V)| 0 ] |—dazbn
S(1) ._| o Taw ]L(A)[ 0 7w ]_{ S(A) , (18)

Tap-1ym

where U(A), V(A), U(A), and V(M) are unimodular matrix polynomials. If, in addition, U(A), V(A), U(A), and V(A)
in (18) are constant matrices, then IL(A) is said to be a strict Rosenbrock linearization of S(7).

Let E := (E;j) be a block m X n matrix with p X g blocks E;;. The block transpose of E, see [9], denoted by
E3, is the block n X m matrix with p X g blocks defined by (E®);; := Ej;. We slightly modify this definition for
the special structure of Rosenbrock linearizations.

Definition 4.3 (Rosenbrock block transpose). Let S be a (dan + dpm) X (dan + dpm) system matrix given by

A| B
s-| 515
where B = —(e,-ejT) ® B with B € C™", C := (ee;) ® C with C € C™", A := [Ayj] is an da X da block matrix

with Aj; € C™", and D = [D;;] is a dp X dp block matrix with D;; € C"™™, and ey is the kth column of 14,. The
Rosenbrock block transpose of S, denoted by S® is defined by

SB ._ AB ‘ —(e;e{)@B
RECHEE D ’

where A is the block transpose of A.

For C1(A) and C(A) given in (11) and (17), respectively, we have Ca(A) = C1(A)®.
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Definition 4.4. [9] Let P(A) = Ag + AA1 + -+ + A™A,,, be a matrix polynomial of degree m. For k = 0,...m, the
degree k Horner shift of P(A) is the matrix polynomial Pr(A) := Ay + A1 + -+ + AYA,,.. These Horner shifts
satisfy the following:

Po(A) = Am, Pra(A) = APr(A) + Ay, for 0 <k <m—1, Pyu(A) = P(A).

Extending [[9], Definition 4.2] we define auxiliary matrix polynomials associated with Horner shifts for
system polynomials.

d
Definition 4.5. Let A(A) = )ﬁ AA; € CA]™" be of degree d 4 and let Pi(A) be the degree i Horner shift of A()). For

i=0

1 <i<ds -1, define the matrix polynomials

[ Li-1n Li-1yn
I, Al 0 I
Ql(/\) = 0’; Inn ’ Rl(/\) = _;n Pl(n/\) 7
I —i—1yn La,-i-1yn
[ O—1yn Ogi-1yn
o 0, APi1(A) ) Pii(A)  On
Ti(A) := AL, A2P,(A) o Gld) = 0, I ’
O, —i-1)n Iay-i—1n

and Cy,(A) = diag [0, -1yn, Pa,1(D)].

For simplicity, we often write Q;, R;, T}, C; in place of Qi(A), Ri(A), Ti(A), Ci(A). Note that C1(A) = Ny,,
and Q;(A), Ri(A) are unimodular foralli =1,...,d4 — 1. Also note that R? (A) = Ri(A). The auxiliary matrices
satisfy the following relations.

Lemma 4.6 ([9], Lemma 4.3). Let Q;, R;, T;, C; be as in Definition 4.5 and M;’s be Fiedler matrices associated with
A(A). Then the following relations hold fori =1,...,ds — 1.

(@) QP(AC)R; = ACis1 + Ti, and QF (M, —i+1yMa,-i)Ri = Ma,—G+1) + Ti.
(b) RE(AC)Q; = ACi1 + TP, and RP(My,-iMa,—+1)Qi = Ma,—s1) + T?.
(c) TiMj = M]‘Tj =T;and TI.BM]‘ = M]‘TiB = TiBfOT all ] <ds-i-2.
dD .
Definition 4.7. Let D(A) = Y, A'D; be an m X m matrix polynomial, and let X;(A) be the degree i Horner shift of

i=0
D(A). For 1 <i <dp — 1, define the following mdp X mdp matrix polynomials:

[ Tictym Li-1ym
. — Im Alm X _ Om Im
ZiA) = On  Ln o T = i Xi(A) ’

Lgp—i—tym Lap-i—1ym

[ O—1ym O¢i-1ym
o 0n  AXis1(A) o Xiz1(A) O
Hi(A) := A, A2Xia(A) o Eld):= On  In ’

Otdp—i-1ym Ligp-i-1ym

and Eg, (1) = diag [0(,-1ym, Xap-1(1)].
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For simplicity, we often write Z;, J;, H;, E; in place of Z;(A), Ji(A), Hi(A), Ei(A). Note that E;(A) = My, and
Zi(A), Ji(A) are unimodular for alli = 1,...,dp — 1. Also note that ]?(A) = Ji(A).

Remark 4.8. Consider the auxiliary matrices Z;(A), Ji(A), Hi(A), and E;(A) given in Definition 4.7. Then the Lemma
4.6 also holds for Z;(A), [i(A), Hi(A), and E;(A).

Definition 4.9 (Auxiliary system polynomials). Let Q;(A), Ri(A), Ti(A), and Di(A) be as in Definition 4.5. Let
Zi(A), Ji(A), Hi(A), and Ei(A) be as in Definition 4.7. Let d = max{da,dp}, and r = min{ds,dp}. Fori=1,...,d-1,
define (nds + mdp) X (nda + mdp) system polynomials:

Qi(A)L, forl<i<r-1
| 0 | Z(Y)
[ Q)| 0
Qi(A) = QiA) , forr<i<d-1landds>dp
0 [ Lpm
M| O forr<i<d-landd, <d
_ 0 ZZ(A) s >l > A Ds
Ri(A)L, for1<i<r-1
0 [T
Ri(A 0 .
Ri(A) = “) , forr<i<d-1landds>dp
L 0 IdDm
M | O forr<i<d-landds, <d
0 | | o e
T,
D , forl<i<r-1
| 0 | Hi(A)
[ T:(A) | 0
Ti(A) = (()) - ] forr<i<d—landd, > dp
L pm
[ Laun | O forr<i<d-landd, <d
[ Ci(A
D , forl<i<r-1
| 0 | E(d)
[ CiA
Di(A) = (()) 7 ], fOT <i<d-1landds > dp
[ fuun | 0 forr<i<d-landd, <d
i 0 EI(A) 7 —_— -_— A D/
and Dy(\) = [ CdAO(A) Edo( ) ] where d = max{d, dp).
D

Note that D;(A) = [ G| 0 ] _ [ Ma, | 0O

0 ‘ El()\) B 0 ‘ N, dp
matrix polynomials fori =1,...,d — 1. Also, note that Rl.B()\) =R fori=1,...,d-1.
The auxiliary system polynomials satisfy the following relations.

] = M, and that Q;(A) and R;(A) are unimodular
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Lemma 4.10. Let Q;, R;, 75, D; be the system polynomials given in Definition 4.9 and M;’s be Fiedler matrices
associated with S(A). Then the following system equivalence relations hold fori=1,...,d — 1.

(@) QFAD)R; = ADij1 + Ti, and QP (M Ma—i)Ri = My_is) + T
(b) RP(AD)Q; = ADj1 + T 5, and RE(My_My_i+1))Q; = My—is1) + T2
(c) TiMj = M;T; = Tiand TPM; = M;TP = TP forall j<d—i-2.

Proof. (a) We have

5o | Q% 0 ][ AC| Ri|0 ] [ QPACH)R, |
Q°(ADHR; = 0 ‘ les H [ AE; H 07|~ ‘ Z?(/\Ei)]i
_ | ACin+Ti T } (By Lemma 4.6(a) and Remark 4.8)
1+ 1
_ [ ACin - ]+[ T; - ]z ADi +T; and
B . w | Q%O M) | Mi-i | Ri| 0

[ QM isyMaiR;

ZBNy—(i+1)Nm-1]i ]

= » Mi_iy + T No o+ H; ] (Lemma 4.6(a) and Remark 4.8)
[ M) | T, |
= + =M. ; + 7.
| Na—gi+1) |H; d—(i+1)
(b) We have
RB Dy = | RELO [ AC Q[0 ]_[REACHQ |
i )64 | 0 ‘LB ‘ AE; 0 ‘Zi ‘],-B(/\Ei)zi
_[ACia + T8
a i ‘ AEjq + H;{B (From Lemma 4.6(b) and Remark 4.8)
— [ ACiH ‘ T;B _ . B
| ‘ AEin }+[ ‘ H;B =ADi +7; and

R | 0 [ Mai| M) | Qo
B . . L i d—i d—(i+1) i
R N1 | B s R oy | A E

[ R®Ma_ M) Qi |
‘ JPNa—iNa—i+1) Zi

[ Ma_g1) + T? |
‘ Na—) + H?

] (By Lemma 4.6(b) and Remark 4.8)

[ M) | T? B
- | = My + T
h - H? a—i+1) + T;
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(c) We have
M TiM;
7= || [ ]

- 4‘W] (by Lemma 4.6(c) and Remark 4.8)
i

Tl — o .
__ Nj][ Hi]_]M]'TZ and

|
[ T? M| ][ ™M |
B . ] — i ]
7N HBH Nf__[ H?Nf]

= —;*W] (by Lemma 4.6(c) and Remark 4.8)
L 55

— _ g B
VTN [ VP

O

Definition 4.11. Let IL;(1) = AIM,; — M, be the Fiedler pencil of S(A) given in (2) associated with a bijection ¢. For

j=1,2,...,4d, define
MET]) = H Ma‘l(i)/
o~ 1(i)<d—j

where the factors M, are in the same relative order as they are in M. Note that MY = [Lo-1y<a-1 Mgy = M,
and that ]Méd)l = My. Also for j =1,2,...,d, define the (nda + mdp) X (nda + mdp) system pencils ]Lf,])(/\) =
AD;(A) — MY, Observe that L(A) = 1D, = M = AM,; — M, (A) = L, and that

—Itg,—1yn —(ed, €§D) ®B
Do | 0 ] pp_ AW
0 _EdD 0= (edDe ) ®C _I(dD—l)m

LY01) = 1D, - MY = A[
D(A)
The next result shows that ]pr()\) ~se ]Lg“)(/\) fori=1,2,...,d-1.

Lemma 4.12. We have ]Lg)()\) ~ge ]Lff“)(/\) fori=1,2,...,d —1. More precisely, if Q; and R; are the system
polynomials given in Definition 4.9, then

LD () = Q?]L?(/\)R,-, if 0 has a consecution atd —i -1,
Rl.BILET’)Qi, if 0 has an inversion at d —i — 1.
Proof. The proof is exactly the same as that of Lemma 4.5in [9]. O
It is now immediate that a Fiedler pencil is a Rosenbrock linearization of S(A).

Theorem 4.13 (Rosenbrock linearization). Let S(A) be an (n + m) X (n + m) system matrix (reqular or singular)
given in (2). Ifo : {0,1,...,da — 1} — {1,2,...,da} is a bijection, then the Fiedler pencil IL;(A) of S(A) is a
Rosenbrock linearization for S(A).
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Proof. By Lemma 4.12, we have d — 1 system equivalences
Lo(A) = L (1) ~e L) ~ee -+ ~ee L (A)
A

(eape ) ®C ~lap-1ym ’
D)

~Iidy-1yn —(ea ey )®B

where ]Lff)(/\) is as in Lemma 4.12. This shows that IL;(A) ~g [(g,-1)n © S(A) & Igp-1ym- O

Corollary 4.14. Let IL;(A) be the Fiedler pencil of S(A) given in (2) associated with a bijection ¢, and @Q;, R; for
i=1,2,...d -1, be as in Definition 4.9. Then

AL
(edDegA) ®C ~Itap-1ym

L1y —(edAegD) ®B
UML)V =

~se Ligs—1yn © S(A) @ Iigp-1ym,
D(A)

where U(A) and V(A) are (nda + mdp) X (nda + mdp) unimodular system polynomials given by

. Q{;B_(i 1y if 0 has a consecution at i,
UQ) = UeTh - Us-3Ui-2, with Ui = RB if 0 has an inversion at i
A—(i+1)” ’

V) :=VioVis--- ViV, withV;

Ra—+1y, if 0 has a consecution at i,
Qu—(i+1), if 0 has an inversion at i.
The indexing of U; and V; factors in U(A) and V(A), respectively, in Corollary 4.14 has been chosen for
simplification of notation and has no other special significance.

Remark 4.15. If we consider D(A) is a matrix polynomial of degree 1 then the Fiedler pencils IL;(A) are linearizations
of the system matrix of LTI state-space system, see [25].

Remark 4.16. Consider the system matrix S(A) and associated transfer function R(A) given in (2) and (3), respec-
tively. Given an eigenvector x of IL;(A) one can determine an eigenvector of S(A) from x. That is, one can recover
eigenvectors of R(A) and S(A) from those of the Fiedler pencils of R(A). It directly follows from the Theorem 4.10 and
Theorem 4.11 in [22].

5. Conclusions

We have constructed an algorithm for construction of Fiedler pencils of system matrix S(A) associated
to a multivariable state-space system and shown that these Fiedler pencils are linearizations of S(A).
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