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Abstract. In this present paper, we delve into an investigation of the distinctive characteristics and prop-
erties exhibited by various Ricci soliton structures that manifest within Riemannian manifolds equipped
with parallel vector fields. Expanding upon these discoveries, we offer systematic classifications related to
the conformal and semi-conformal modifications applied to a Riemannian metric denoted as 1. To enhance
the clarity and practical applicability of our research, we provide illustrative examples that serve to validate
and exemplify the theoretical findings and relationships presented throughout the paper. These examples
serve as tangible instances that concretely exemplify the presence and behavior of manifolds endowed with
the aforementioned soliton structures.

1. Introduction

Ricci solitons on Riemannian manifolds have become an intriguing and actively studied topic in recent
years, largely inspired by the groundbreaking work of Richard S. Hamilton and Grigori Perelman on the
Ricci flow, which is a fundamental tool in the field of differential geometry and geometric analysis. Hamilton
and Perelman’s contributions, documented in their respective papers [14] and [16], have provided a deep
understanding of the geometry and topology of Riemannian manifolds through the study of Ricci solitons.
Since the seminal works of Hamilton and Perelman, numerous researchers have been captivated by the
study and exploration of Ricci solitons on Riemannian manifolds. This area of research has garnered
significant attention and has led to a wealth of interesting results and developments. One particular focus
within the study of Ricci solitons is on Riemannian manifolds that admit certain special vector fields. These
vector fields play a crucial role in understanding the geometry and dynamics of the manifold. Some notable
contributions and references in this direction include [3], [17], and [19]. These works delve into the properties
and implications of vector fields on manifolds with Ricci solitons and provide valuable insights into the
underlying structures. Overall, the study of Ricci solitons on Riemannian manifolds has evolved into a
rich and multifaceted research area, offering a deeper understanding of geometric properties, differential
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equations, and their connections to various fields of mathematics and physics. Researchers continue to
explore and expand upon this topic, making it a fascinating and continually evolving area of study.

In this paper, the focus is on the study of various types of gradient Ricci soliton structures on a
Riemannian manifold denoted as (Mn, 1), with a particular emphasis on cases where the manifold admits
parallel vector fields. The research presented in this paper explores several intriguing relationships and
results concerning these structures. Let us break down the key findings and contributions presented in the
paper. In the initial section of the paper, we establish fundamental connections between the parallel vector
field denoted as P and the potential functionψ for Riemannian metrics that are gradient Ricci solitons. These
relationships are stated as Theorem 3.1 and Corollary 3.5, providing insights into the interplay between
vector fields and the potential function associated with gradient Ricci soliton metrics. In section 2, the paper
explores Riemannian metrics that belong to the category of gradient m-quasi-Einstein metrics. It is proven
in Theorem 3.8 that either the gradient of the potential function ψ aligns with the parallel vector field P, or a
specific constant parameter λ is equal to zero. Additionally, Corollary 3.10 introduces further implications,
including cases where the manifold exhibits constant scalar curvature or satisfies a particular equation
involving P(ψ). In section 3, we proceed to investigate gradient ρ-Einstein soliton metrics, showing that in
such cases, the Riemannian manifold Mn must have constant scalar curvature (Theorem 3.16). Section 5 is
dedicated to investigating gradient η-Ricci soliton metrics. Theorems and corollaries, specifically Theorem
3.18 to Corollary 3.23, provide crucial insights into the intricate interplay between parallel vector fields and
another vector field, denoted as V, associated with a 1-form η. These findings shed light on the manifold’s
geometric properties in this context. To illustrate these results, we provide a series of concrete examples
(Example 4.1 to Example 4.3) that showcase the practical applications of their theoretical discoveries. In
the closing sections of the paper, the paper explores the behavior of manifolds subject to conformal and
semi-conformal deformations of the Riemannian metric. We provide interesting classifications and insights
into how these deformations impact the properties of the underlying manifolds. In summary, this research
paper contributes to the understanding of various types of gradient soliton structures on Riemannian
manifolds, shedding light on their relationships with parallel vector fields, potential functions, and other
geometric properties. The presented theorems, corollaries, and examples offer valuable tools for further
exploration of these topics in differential geometry and related fields.

2. Preliminaries

A Ricci soliton is a concept in the realm of Riemannian geometry, specifically defined on an n-dimensional
Riemannian manifold denoted as (Mn, 1). This definition, elucidated in works such as [5] and [12], comprises
a triple denoted as (1,Z, λ), where Z represents a vector field on the manifold, and λ is a real constant.
These components are subject to the equation

1
2
LZ1 + Ric = λ1. (1)

Here,LZ denotes the Lie derivative operator along the vector field Z, and Ric represents the Ricci curvature
tensor. The nature of a Ricci soliton can be categorized as shrinking, expanding, or steady, depending on
whether λ is positive, negative, or zero, respectively.

A special case arises when the vector field Z is a gradient of a smooth function ψ. In this scenario, the
Ricci soliton is termed a gradient Ricci soliton, as discussed in references like [17], [19], and [20]. In this
context, the equation (1) can be expressed as

Ric +Hψ = λ1,

where Hψ represents the Hessian operator of the functionψ. It is worth noting that on any compact manifold,
every Ricci soliton can be considered a gradient Ricci soliton, as demonstrated in [16]. Additionally, it’s
important to recognize that any Einstein metric inherently provides a trivial gradient Ricci soliton. This
concept plays a significant role in understanding the geometric properties and curvature of Riemannian
manifolds, offering valuable insights into their structural characteristics.
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Various extensions and generalizations of gradient Ricci solitons have been explored within the field of
Riemannian geometry. Among these generalizations, a notable metric is defined as follows

Ric +Hψ
−

1
m

dψ ⊗ dψ = λ1, (2)

where 0 < m ≤ ∞ is an integer, and this metric is referred to as a gradient m-quasi-Einstein metric, succinctly
termed a gradient m-QE metric (with m indicating the degree of generalization). In the case where m = ∞,
this metric reduces to a standard gradient Ricci soliton, as discussed in [6]. These gradient m-QE metrics
offer a broader framework for understanding geometric structures on Riemannian manifolds, encompassing
both the traditional gradient Ricci solitons and their extended variations. They provide valuable tools for
investigating the curvature properties and behaviors of these manifolds under different conditions.

In the papers by Catino and Mazzieri, namely [7] and [8], they introduced the concept of a gradient
ρ-Einstein soliton. This concept pertains to a Riemannian metric 1 defined on an n-dimensional Riemannian
manifold (Mn, 1), with n ≥ 3. A metric is considered a gradient ρ-Einstein soliton if there exist three crucial
components: a smooth function ψ ∈ C∞(Mn), a real constant λ ∈ R, and a non-zero real constant ρ, such
that the following equation holds

Ric +Hψ = (λ + ρS)1, (3)

where S denotes the scalar curvature of the metric 1. This soliton concept can further be classified based on
specific values of ρ. For instance, when ρ takes on values of 1

2 , 1
n , and 1

2n−1 , the gradient ρ-Einstein soliton
is respectively referred to as a gradient Einstein soliton, a gradient traceless Ricci soliton, and a gradient
Schouten soliton. For more detailed information, you can refer to [13] and [21].

An η-Ricci soliton, introduced by Cho and Kimura in [9], is defined on a Riemannian manifold (Mn, 1)
and is denoted by (1,Z, λ, µ). This soliton is characterized by the equation

Ric +
1
2
LZ1 − µη ⊗ η = λ1, (4)

where η represents a 1-form, and λ and µ are real constants. If the vector field Z is the gradient of a smooth
function ψ, then this soliton is referred to as a gradient η-Ricci soliton, as discussed in [1]. The equation (4)
can be rewritten as

Ric +Hψ
− µη ⊗ η = λ1.

In cases where λ, ρ, and µ are smooth functions, the equations (1), (2), (3), and (4) are collectively referred
to as almost Ricci soliton, almost gradient m-QE metric, almost gradient ρ-Einstein soliton, and almost
gradient η-Ricci soliton, respectively. These terms are discussed in more detail in [2], [11], and [18].

Consider a Riemannian manifold Mn equipped with the Levi-Civita connection ∇ corresponding to
the Riemannian metric 1. A vector field P on Mn is categorized as a parallel vector field if it satisfies the
condition

∇P = 0.

This condition signifies that the derivative (covariant derivative) of the vector field P is zero, indicating
that P does not change as one moves along the manifold in any direction. Moreover, let us assume that the
norm of the vector field P is constant, and for simplicity, we will set it equal to 1. Under this assumption,
the following lemma holds true.

Lemma 2.1. Let (Mn, 1) be a Riemannian manifold. If P is a parallel vector field on Mn, then for all vector fields
X,Y,Z on Mn we have

R(X,Y)P = 0,
1(R(X,Y)Z,P) = 0,

Ric(X,P) = 0,
Q(P) = 0,

where R, Ric and Q are the Riemannian curvature tensor, Ricci curvature tensor and the Ricci operator, respectively.
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Theorem 2.2. Let (Mn, 1) be a Riemannian manifold. If P is a unit parallel vector field on Mn, then either the scalar
curvature S is constant or the gradient of the function S is 1-orthogonal with the vector P.

Proof. Using the well known equation [15]:

dS(X) = 2div(Ric)(X).

Taking into account that

div(Ric)(X) =

n∑
i=1

(∇ei Ric)(X, ei)

= 1(∇ei Q(X), ei) − 1(Q(ei),∇ei X),

we get
dS(P) = 1(1rad(S),P) = 0,

which means either 1rad(S) = 0 or 1rad(S)⊥P.

3. Main results

In this section, we provide characterizations of various gradient Ricci soliton structures on a Riemannian
manifold that accommodates parallel vector fields. Our investigation yields several intriguing results and
insights into these geometric configurations.

3.1. The Gradient Ricci soliton
Theorem 3.1. Suppose (Mn, 1) is a Riemannian manifold, and let P be a unit parallel vector field on Mn. If
(Mn, 1, ψ, λ) is a gradient Ricci soliton manifold, then the gradient of the function P(ψ) is parallel to P.

Proof. If (Mn, 1, ψ, λ) is a gradient Ricci soliton manifold, then we have

Ric(X,Y) +Hψ(X,Y) = λ1(X,Y).

From Lemma 2.1, for any vector field X on Mn we obtain

Ric(X,P) = 0
= λ1(X,P) − 1(∇X1rad(ψ),P)
= λ1(X,P) − X(1(1rad(ψ),P))
= 1(X, λP − 1rad(P(ψ))).

Hence, we deduce λP = 1rad(P(ψ)). Thus, the proof is completed.

Moreover, we can state the following.

Corollary 3.2. Under the hypotheses of Theorem 3.1 we find that

λ = P(P(ψ)).

Proof. One can easily see that

λ = 1(λP,P) = 1(1rad(P(ψ)),P) = P(P(ψ)).

Proposition 3.3. Consider a Riemannian manifold (Mn, 1) with a unit parallel vector field P. If 1 is an Einstein
metric, then λ = 0, and Mn is a Ricci-flat manifold.
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Proof. If 1 is an Einstein metric, it naturally induces a trivial gradient Ricci soliton with a constant function
ψ. By applying Corollary 3.2, we conclude that λ = 0, which further implies Ric = 0.

Theorem 3.4. If (Mn, 1, ψ, λ) is a gradient Ricci soliton manifold, then for any vector fields X and Y defined on Mn,
we have the following relations

1.

∇X1rad(ψ) = λX −Q(X), (5)

2.

R(X,Y)1rad(ψ) = (∇YQ)X − (∇XQ)Y, (6)

3.

Ric(Y, 1rad(ψ)) =
1
2

Y(S),

where (∇XQ)Y = ∇XQ(Y) −Q(∇XY).

Proof. Let (Mn, 1, ψ, λ) be a gradient Ricci soliton manifold, i.e.,

Ric +Hψ = λ1.

1. For all vector fields X,Y on Mn, we have

λ1(X,Y) = Ric(X,Y) +Hψ(X,Y)
= 1(Q(X),Y) + 1(∇X1rad(ψ),Y)
= 1(Q(X) + ∇X1rad(ψ),Y),

from which we deduce the equation (5).

2. From the equation (5), we obtain

∇Y∇X1rad(ψ) = λ∇YX − ∇YQ(X). (7)

Interchanging X and Y in (7), we get

∇X∇Y1rad(ψ) = λ∇XY − ∇XQ(Y). (8)

Substituting the equations (7) and (8) into R(X,Y) = ∇X∇Y − ∇Y∇X − ∇[X,Y], we obtain (6).

3. Let x ∈Mn and (ei)n
i=1 be an orthonormal frame on Mn such that (∇ei e j)x = 0. By using the definition of

Ricci curvature tensor and from (6) we get

Ric(Y, 1rad(ψ)) =

n∑
i=1

1(R(ei,Y)1rad(ψ), ei)

=

n∑
i=1

[
1(∇YQ(ei), ei) − 1(Q(∇Yei), ei) − 1((∇ei Q)Y, ei)

]
= Y(S) −

n∑
i=1

[
21(Q(ei),∇Yei) + 1((∇ei Q)Y, ei)

]
= Y(S) − div(Ric)(Y),

where div(Ric)(Y) =
∑n

i=1(∇ei Ric)(Y, ei), by applying the well-known formula ( 2div(Ric)(Y) = Y(S) ) the
result immediately follows.
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Corollary 3.5. Suppose (Mn, 1) is a Riemannian manifold with a unit parallel vector field P. If 1 is a gradient Ricci
soliton metric, then

(∇PQ)(X) = 0

for any vector field X on Mn.

Proof. The proof follows immediately from (6) and by virtue of R(X,P)1rad(ψ) = 0.

3.2. The Gradient m-QE
Theorem 3.6. If (Mn, 1) is a Riemannian manifold with a unit parallel vector field P, and (Mn, 1, ψ, λ) is a gradient
m-QE manifold, then we can state the following

λ = P(P(ψ)) −
1
m

P(ψ)P(ψ).

Proof. If (Mn, 1, ψ, λ) forms a gradient m-QE manifold, then we can state the following:

Ric(X,Y) +Hψ(X,Y) −
1
m

dψ(X)dψ(Y) = λ1(X,Y).

By utilizing Lemma 2.1, we can derive the following result for any vector field X defined on Mn:

Ric(X,P) = 0

= λ1(X,P) − 1(∇X1rad(ψ),P) +
1
m

dψ(X)dψ(P)

= λ1(X,P) − X(1(1rad(ψ),P)) +
1
m

P(ψ)X(ψ)

= 1(X, λP − 1rad(P(ψ)) +
1
m

P(ψ)1rad(ψ)).

Thus, we deduce

λP = 1rad(P(ψ)) −
1
m

P(ψ)1rad(ψ).

Notice that λ = 1(λP,P) from which we get

λ = 1(1rad(P(ψ)),P) −
1
m

P(ψ)1(1rad(ψ),P).

Hence, Theorem 3.6 follows.

Theorem 3.7. If (Mn, 1) is a Riemannian manifold and (Mn, 1, ψ, λ) is a gradient m-QE manifold, then for all vector
fields X and Y defined on Mn, we have the followings

1.

∇X1rad(ψ) = λX −Q(X) +
1
m
1(1rad(ψ),X)1rad(ψ), (9)

2.

R(X,Y)1rad(ψ) = (∇YQ)X − (∇XQ)Y +
1
m

Y(ψ)[λX −Q(X)]

−
1
m

X(ψ)[λY −Q(Y)], (10)
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3.

(
m − 1

m
)Ric(Y, 1rad(ψ)) =

λ(n − 1) − S
m

Y(ψ) +
1
2

Y(S), (11)

where (∇XQ)Y = ∇XQ(Y) −Q(∇XY).

Proof. In the context of a gradient m-QE manifold (Mn, 1, ψ, λ), we can deduce the following from the
equation (2):

Ric +Hψ
−

1
m

dψ ⊗ dψ = λ1.

1. For all vector fields X,Y on Mn, we have

λ1(X,Y) = Ric(X,Y) +Hψ(X,Y) −
1
m

dψ(X)dψ(Y)

= 1(Q(X),Y) + 1(∇X1rad(ψ),Y) −
1
m
1(1rad(ψ),X)1(1rad(ψ),Y)

= 1(Q(X) + ∇X1rad(ψ) −
1
m
1(1rad(ψ),X)1rad(ψ),Y),

from which we obtain the equation (9).

2. From the equation (9), we obtain

∇Y∇X1rad(ψ) = λ∇YX − ∇YQ(X) +
1
m

Y(X(ψ))1rad(ψ)

+
1
m
1(X, 1rad(ψ))[λY −Q(Y) +

1
m

Y(ψ)1rad(ψ)]. (12)

In (12), by exchanging X and Y, we derive

∇X∇Y1rad(ψ) = λ∇XY − ∇XQ(Y) +
1
m

X(Y(ψ))1rad(ψ)

+
1
m
1(Y, 1rad(ψ))[λX −Q(X) +

1
m

X(ψ)1rad(ψ)]. (13)

The equation (10) is obtained by substituting (12) and (13) into the expression R(X,Y) = ∇X∇Y−∇Y∇X−

∇[X,Y].

3. Suppose x ∈ Mn and let (ei)n
i=1 is an orthonormal frame on Mn such that (∇ei e j)x = 0, by using (10), we

see

Ric(Y, 1rad(ψ)) =

n∑
i=1

1(R(ei,Y)1rad(ψ), ei)

=

n∑
i=1

[
1(∇YQ(ei), ei) − 1(Q(∇Yei), ei) − 1((∇ei Q)Y, ei)

+
1
m

[Y(ψ)1(λei −Q(ei), ei) − ei(ψ)1(λY −Q(Y), ei)]
]

= Y(S) − div(Ric)(Y) +
1
m

Y(ψ)(λn − S) −
1
m
1(λY −Q(Y), 1rad(ψ)),

= Y(S) − div(Ric)(Y) +
1
m

Y(ψ)(λ(n − 1) − S) +
1
m

Ric(Y, 1rad(ψ)).

Taking into account 1
2 Y(S) = div(Ric)(Y) and

∑n
i=1 ei(ψ)ei = 1rad(ψ), the result immediately follows.
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Theorem 3.8. Suppose (Mn, 1) is a Riemannian manifold with a unit parallel vector field P. If 1 is a gradient m-QE
metric, then one of the following conditions holds: either λ = 0, or the gradient of the potential function ψ is parallel
to the vector field P.

Proof. Using (10) and by virtue of 1(R(X,Y)1rad(ψ),P) = 0, we find

0 = 1(R(X,Y)1rad(ψ),P)
= 1(∇YQ(X) −Q(∇YX),P) − 1(∇XQ(Y) −Q(∇XY),P)

+
1
m

Y(ψ)1(λX −Q(X),P) −
1
m

X(ψ)1(λY −Q(Y),P)

= 1(∇YQ(X),P) − 1(∇XQ(Y),P) +
λ
m

Y(ψ)1(X,P) −
λ
m

X(ψ)1(Y,P)

= Y(1(Q(X),P)) − 1(Q(X),∇YP) − X(1(Q(Y),P))

+1(Q(Y),∇XP) +
λ
m

[Y(ψ)1(X,P) − 1(Y,P)X(ψ)]

=
λ
m

[Y(ψ)1(X,P) − 1(Y,P)X(ψ)],

which means either λ = 0 or [Y(ψ)1(X,P) − 1(Y,P)X(ψ)] = 0.
The second condition gives

[Y(ψ)1(X,P) − 1(Y,P)X(ψ)] = 0 ⇒ Y(ψ)1(X,P) = 1(Y,P)X(ψ)
⇒ 1(Y, 1(X,P)1rad(ψ)) = 1(Y,X(ψ)P)
⇒ 1rad(ψ) = P(ψ)P.

Therefore, the gradient of the potential function ψ is collinear with the vector P.

Lemma 3.9. If (Mn, 1) is a Riemannian manifold with a unit parallel vector field P, and 1 is a gradient m-QE metric,
then

0 = P(ψ)[λ(n − 1) − S].

Proof. The formula (11), Lemma 2.1 and Theorem 2.2 all lead directly to the proof.

Corollary 3.10. Suppose (Mn, 1) is a Riemannian manifold with a unit parallel vector field P. If 1 is a gradient
m-QE metric, then we can state one of the following two cases

1. If λ = 0, then either the gradient of the potential function ψ and the vector field P are orthogonal or S = 0.
2. If λ , 0, then either the function ψ is constant or (Mn, 1) has a constant scalar curvature S = λ(n − 1).

Proof. Applying the result from Theorem 3.8 to the gradient m-QE metric 1, we conclude that either the
gradient of the potential functionψ is collinear with P or λ = 0. When we use this conclusion in conjunction
with Lemma 3.9, we obtain the followings

1. If λ = 0 then P(ψ) = 0 or S = 0. Here comes the first case.
2. Otherwise, 1rad(ψ) = P(ψ)P with P(ψ) = 0 or S = λ(n − 1) we find the second case.

An important observation follows from the Corollary above.

Remark 3.11. If λ , 0 and the function ψ is non-constant, then we have

λ = ∆(ψ) −
1
m
∥1rad(ψ)∥2.
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3.3. Gradient ρ-Einstein soliton
Theorem 3.12. Suppose (Mn, 1) is a Riemannian manifold with a unit parallel vector field P. If (Mn, 1, ψ, λ) is a
ρ-Einstein soliton manifold, then the gradient of the function P(ψ) is collinear with P.

Proof. If (Mn, 1, ψ, λ) is a ρ-Einstein soliton manifold, then

Ric(X,Y) +Hψ(X,Y) = (ρS + λ)1(X,Y).

For any vector field X on Mn, from Lemma 2.1, we can derive the following

Ric(X,P) = 0
= (ρS + λ)1(X,P) − 1(∇X1rad(ψ),P)
= (ρS + λ)1(X,P) − X(1(1rad(ψ),P))
= 1(X, (ρS + λ)P − 1rad(P(ψ))).

So, we arrive to (ρS + λ)P = 1rad(P(ψ)). The proof is so finished.

Moreover, we can state the following.

Corollary 3.13. Under the hypotheses of Theorem 3.12, we find that

(ρS + λ) = P(P(ψ)).

Proof. One can easily see that

(ρS + λ) = 1((ρS + λ)P,P) = 1(1rad(P(ψ)),P) = P(P(ψ)).

Remark 3.14. Under the hypotheses of Theorem 3.12, if ψ is a constant function, then we have

S = λ = 0.

Proof. If ψ is a constant function, then from Corollary 3.13 we have (ρS + λ) = 0.
On the other hand, from (3), we have

S = (ρS + λ)n.

Combine the two results we find S = 0.

Theorem 3.15. If (Mn, 1) is a Riemannian manifold and (Mn, 1, ψ, λ) is a gradient ρ-Einstein soliton manifold, then
for all vector fields X and Y defined on Mn, we have the following relationships

1.

∇X1rad(ψ) = (ρS + λ)X −Q(X), (14)

2.

R(X,Y)1rad(ψ) = (∇YQ)X − (∇XQ)Y + ρ[X(S)Y − Y(S)X]. (15)

3.

Ric(Y, 1rad(ψ)) = Y(S)[ρ(1 − n) +
1
2

], (16)

where (∇XQ)Y = ∇XQ(Y) −Q(∇XY).
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Proof. Suppose we have a Riemannian manifold (Mn, 1, ψ, λ) that forms a gradient ρ-Einstein soliton, i.e.,

Ric +Hψ = (ρS + λ)1.

1. We have the following equality for all vector fields X and Y defined on the Riemannian manifold
(Mn, 1) with the gradient ρ-Einstein soliton structure

(ρS + λ)1(X,Y) = Ric(X,Y) +Hψ(X,Y)
= 1(Q(X),Y) + 1(∇X1rad(ψ),Y)
= 1(Q(X) + ∇X1rad(ψ),Y).

From this equation, we can derive (14).

2. Starting from the equation (14), we can derive the following

∇Y∇X1rad(ψ) = (ρS + λ)∇YX − ∇YQ(X) + ρY(S)X. (17)

Interchanging the roles of X and Y in the equation (17), we obtain

∇X∇Y1rad(ψ) = (ρS + λ)∇XY − ∇XQ(Y) + ρY(S)X. (18)

Now, by substituting the equations (17) and (18) into the expression for the Riemann tensor R(X,Y):
R(X,Y) = ∇X∇Y − ∇Y∇X − ∇[X,Y], we obtain (15).

3. Consider a point x in the Riemannian manifold Mn, and let (ei)n
i=1 be an orthonormal frame at x such

that (∇ei e j)x = 0. Utilizing the equation (15), we can give the following expression

Ric(Y, 1rad(ψ)) =

n∑
i=1

1(R(ei,Y)1rad(ψ), ei)

=
1
2

Y(S) +
n∑

i=1

[ρei(S)1(Y, ei) − ρY(S)1(ei, ei)
]

=
1
2

Y(S) + Y(S)(ρ(1 − n)),

which gives the result.

Theorem 3.16. Suppose we have a Riemannian manifold (Mn, 1) and a unit parallel vector field P defined on it. If
the metric 1 is a gradient ρ-Einstein soliton metric, then it follows that the scalar curvature S is constant.

Proof. Using (15) and by virtue of 1(R(X,Y)1rad(ψ),P) = 0, we find

0 = 1(R(X,Y)1rad(ψ),P)
= 1(∇YQ(X) −Q(∇YX),P) − 1(∇XQ(Y) −Q(∇XY),P) + ρ[X(S)1(Y,P) − Y(S)1(X,P)]
= ρ[Y(S)1(X,P) − X(S)1(Y,P)],

which gives us [Y(S)1(X,P) − X(S)1(Y,P)] = 0. This last equation can be expressed as

[Y(S)1(X,P) − X(S)1(Y,P)] = 0 = 1(1(X,P)1rad(S) − X(S)P,Y)

for all vector fields X,Y on Mn. As a consequence 1(X,P)1rad(S) − X(S)P = 0 for any vector field X on Mn.
By taking X = P we obtain

1rad(S) = P(S)P.

Applying Theorem 2.2, the result follows.
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Corollary 3.17. Consider a Riemannian manifold (Mn, 1) and a unit parallel vector field P defined on it. If the metric
1 is a gradient ρ-Einstein metric, then

Q(1rad(ψ)) = 0,

where ψ is a potential function.

Proof. The proof follows immediately from (16) and Theorem 3.16 .

3.4. Gradient η-Ricci soliton
Theorem 3.18. Given a Riemannian manifold (Mn, 1) with a unit parallel vector field P, if (Mn, 1, ψ, λ, µ) forms a
gradient η-Ricci soliton manifold, we can state that

λ = P(P(ψ)) − µ1(P,V)2,

where V is the corresponding vector field to the 1-form η.

Proof. In the case of a manifold (Mn, 1, ψ, λ, µ) being a gradient η-Ricci soliton, then

Ric(X,Y) +Hψ(X,Y) − µη(X)η(Y) = λ1(X,Y).

Utilizing Lemma (2.1), it follows that for any vector field X defined on Mn, we can deduce the following
result

Ric(X,P) = 0
= λ1(X,P) − 1(∇X1rad(ψ),P) + µη(X)η(P)
= λ1(X,P) − X(1(1rad(ψ),P)) + µ1(P,V)η(X)
= 1(X, λP − 1rad(P(ψ)) + µ1(P,V)V).

Thus, we deduce

λP = 1rad(P(ψ)) − µ1(P,V)V.

By applying λ = 1(λP,P), we find λ = P(P(ψ)) − µ1(P,V)2. Hence, the proof is completed.

Corollary 3.19. Suppose we have a steady gradient η-Ricci soliton on a Riemannian manifold (Mn, 1), and let P
denotes a unit parallel vector field on Mn. If both P and the gradient of the potential function ψ are orthogonal, then,
for µ , 0, it follows that the vector field P is orthogonal to the corresponding vector field associated with η.

Proof. If we consider a steady gradient η-Ricci soliton on the Riemannian manifold (Mn, 1) and assume that
the vector field P and the gradient of the potential function ψ are orthogonal, denoted as P(ψ) = 0, then,
according to Theorem 3.18, we can derive the following

µ1(P,V)2 = 0.

Moreover, it is important to note that Corollary 3.19 remains valid even when ψ is constant.

Remark 3.20. Under the hypotheses of Theorem 3.18, if ψ is a constant function then λ and µ have opposite signs.

Theorem 3.21. In the context of a gradient η-Ricci soliton manifold (Mn, 1, ψ, λ, µ), then for all vector fields X,Y
on Mn we can express the statement as follows

1.

∇X1rad(ψ) = λX −Q(X) + µη(X)V, (19)
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2.

R(X,Y)1rad(ψ) = (∇YQ)X − (∇XQ)Y + µ[η(Y)∇XV − η(X)∇YV]
+µ[1(Y,∇XV) − 1(X,∇YV)]V, (20)

3.

Ric(Y, 1rad(ψ)) =
1
2

Y(S) + µ[η(Y)div(V)

−21(∇YV,V) + 1(Y,∇VV)]. (21)

In here, V is the corresponding vector field of the 1-form η.

Proof. Let (Mn, 1, ψ, λ, µ) be a gradient η-Ricci soliton manifold, as described by the equation

Ric +Hψ
− µη ⊗ η = λ1,

where η is 1-form satisfies η(X) = 1(V,X) and V is the corresponding vector field to η.

1. For all vector fields X,Y on Mn, we have

λ1(X,Y) = Ric(X,Y) +Hψ(X,Y) − µη(X)η(Y)
= 1(Q(X),Y) + 1(∇X1rad(ψ),Y) − 1(µη(X)V,Y)
= 1(Q(X) + ∇X1rad(ψ) − µη(X)V,Y).

Thus, we deduce the equation (19).

2. From the equation (19), we can establish the equation

∇Y∇X1rad(ψ) = λ∇YX − ∇YQ(X) + µη(X)∇YV + µY(η(X))V. (22)

Interchanging X and Y in (22), we get

∇X∇Y1rad(ψ) = λ∇XY − ∇XQ(Y) + µη(Y)∇XV + µX(η(Y))V. (23)

Substituting the equations (22) and (23) into R(X,Y) = ∇X∇Y − ∇Y∇X − ∇[X,Y], we obtain (20).

3. Finally, considering an orthonormal frame (ei)n
i=1 on Mn with (∇ei e j)x = 0 at a point x ∈ Mn, from (20),

we can derive the equation

Ric(Y, 1rad(ψ)) =

n∑
i=1

1(R(ei,Y)1rad(ψ), ei)

=

n∑
i=1

[
1((∇YQ)(ei), ei) − 1((∇ei Q)Y, ei)

+µ[η(Y)1(∇ei V, ei) − η(ei)1(∇YV, ei)]

+µ[1(Y,∇ei V)1(V, ei) − 1(ei,∇YV)1(V, ei)]
]

= Y(S) − div(Ric)(Y) + µ[η(Y)div(V) − 1(∇YV,V)

+1(Y,∇VV) − 1(V,∇YV)
]

=
1
2

Y(S) + µ[η(Y)div(V) − 21(∇YV,V) + 1(Y,∇VV)
]
.
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Theorem 3.22. Consider a Riemannian manifold (Mn, 1) with a unit parallel vector field P defined on it. If 1
possesses a gradient η-Ricci soliton metric, then we can conclude that either µ = 0 or the following relation holds

∇P f V = 1rad( f 2),

where f = 1(P,V) and V represents the corresponding vector field to 1-form η.

Proof. Using (20) and the condition 1(R(X,Y)∇ψ,P) = 0, we can derive the following

0 = 1(R(X,Y)1rad(ψ),P)
= 1(∇YQ(X) −Q(∇YX),P) − 1(∇XQ(Y) −Q(∇XY),P)
+µ[η(Y)1(∇XV,P) − η(X)1(∇YV,P)]
+µ[1(Y,∇XV)1(V,P) − 1(X,∇YV)1(V,P)]

= µ[1(∇XV,P)1(V,Y) − η(X)1(∇YV,P) + 1(Y,∇XV)1(V,P) − 1(X,∇YV)1(V,P)].

Replacing Y = P in the above equation, we obtain

0 = µ[1(∇XV,P)1(V,P) − η(X)1(∇PV,P)
+1(P,∇XV)1(V,P) − 1(X,∇PV)1(V,P)]

= µ[1(−1(V,P)∇PV − 1(∇PV,P)V + 1rad(1(V,P)2),X)]

for any vector field X on Mn. By taking f = 1(V,P) we obtain

µ[− f∇PV − P( f )V + 1rad( f 2)] = 0.

Therefore, we can conclude that either µ = 0 or ∇P f V = grad( f 2).

Corollary 3.23. Suppose we have a Riemannian manifold (Mn, 1) with a unit parallel vector field P defined on it. If
1 is a gradient η-Ricci manifold, then we can conclude that either µ = 0 or the following relation holds

div( f V) = P(|V|2),

where f = 1(P,V) and V represents the corresponding vector field to 1-form η.

Proof. The proof follows immediately from (21) by applying Ric(P, 1rad(ψ)) = 0.

4. Examples

To demonstrate the findings derived in the preceding sections, we will now present a set of relevant
examples.

4.1. Euclidean space Rn

Let (Rn, <, >) be an Euclidean space equipped with the standard metric

1 = dx2
1 + dx2

2 + ... + dx2
n.

A unit parallel vector field P is expressed as

P =
1
|a|

(a1, a2, ..., an), |a| =

√√
n∑

i=1

a2
i ,

where a is constant.
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Consider a function ψ(x) = α∥x∥2 = α(x2
1 + x2

2 + ... + x2
n), where α ∈ R, then we have

Hψ
i j =

∂2ψ

∂xi∂x j

= 2α1i j.

Since the Ricci curvature Ric and the scalar curvature S are zero, we can write

Ric +Hψ = 2α1.

Therefore (ψ, 2α) defines a gradient Ricci soliton on (Rn, <, >).
As we have already demonstrated in Corollary 3.2, we have P(P(ψ)) = 2α.

Let f (x) = α − ln(x1 + x2 + .... + xn + β) be a smooth function on Rn, where α and β are constants. By a
direct calculation we obtain

H f
i j =

1
(β +
∑n

i=1 xi)2

= d f (∂i)d f (∂ j) 1 ≤ i, j ≤ n,

from which we have H f
i j − d f (∂i)d f (∂ j) = 0. Then (Rn, 1) is a steady gradient m-QE manifold with λ = 0 and

m = 1. It is clear that P(ψ) , 0 but S = 0.
This example supports the results obtained in Theorem 3.8 and Corollary 3.10.

4.2. Example 2

Let (R4, 1) be a 4-dimensional Riemannian manifold such that

1 = e2γ(x)(dx2 + dy2) + dz2 + dw2.

Denote by {e1, e2, e3, e4} the orthonormal frame of (R4, 1), where

e1 = e−γ(x)∂x, e2 = e−γ(x)∂y, e3 = ∂z, e4 = ∂w.

The Lie brackets between the orthonormal frame are zero expect for

[e1, e2] = −γ
′

(x)e−γ(x)e2.

The Levi-Civita connection is given by

∇ei e j =


0 0 0 0

γ
′

(x)e−γ(x)e2 −γ
′

(x)e−γ(x)e1 0 0
0 0 0 0
0 0 0 0

 .
The non-zero Riemannian curvature tensor is given by

R(e1, e2)e1 = γ
′′

(x)e−2γ(x)e2,

R(e2, e1)e2 = γ
′′

(x)e−2γ(x)e1.

Then we obtain the Ricci curvature tensor

Ric(e1, e1) = Ric(e2, e2) = −γ
′′

(x)e−2γ(x)
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and the scalar curvature
S = −2γ

′′

(x)e−2γ(x).

We take γ
′

(x) , const. to avoid the case of null scalar curvature. Then, the parallel vector field on (R4, 1) is
given by

ξ = (0, 0, a3, a4), where ai ∈ R.

Moreover, the unit parallel vector field P is expressed as

P =
a3∂z + a4∂w√

a2
3 + a2

4

. (24)

Let assume now that γ
′′

(x)e−2γ(x) = e−2a is constant (this relation involve γ(x) = a − ln(x + b) and
γ(x) = − ln(cos(e−ax)) as solutions), where a and b are real constants.

Consider the smooth function

ψ(x, y, z,w) = −
e−2a

2
z2
−

e−2a

2
w2.

The Hessian of the function ψ satisfies

Hψ(e1, e1) = Hψ(e2, e2) = 0,
Hψ(e3, e3) = Hψ(e4, e4) = −e−2a,

Hψ(ei, e j) = 0 ∀i , j.

Therefore, we have

Ric(ei, e j) +Hψ(ei, e j) = −e−2a1(ei, e j), (25)

which from we deduce that (R4, 1) is an expanding gradient Ricci soliton manifold (λ = −e−2a).
After an easy computation, we get

P(ψ) =
−e−2a√
a2

3 + a2
4

(a3z + a4w).

It is clear that P is collinear with the gradient of P(ψ) and λ = P(P(ψ)), thus Theorem 3.1 and Corollary 3.2
are verified.

The equation (25) can be reformulated as follows

Ric(ei, e j) +Hψ(ei, e j) = −e−2a1(ei, e j)

= [
1
2

(−2e−2a) + 0]1(ei, e j)

= [ρS + λ]1(ei, e j).

Hence, we conclude that (R4, 1) is a gradient ρ-Einstein soliton manifold, with ρ = 1
2 and λ = 0 . We can

easily verify that (ρS+λ)P = 1rad(P(ψ)) and (ρS+λ) = P(P(ψ)), that is, Theorem 3.12 and Corollary 3.13 are
verified.

Consider now the function

h(x, y, z,w) = ln(z + w) −
e−2a

2
z2
−

e−2a

2
w2.
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The Hessian of the function h satisfies

Hh(e3, e3) = Hh(e4, e4) =
−1

(z + w)2 − e−2a,

Hh(e3, e4) =
−1

(z + w)2 ,

Hh(e1, ei) = Hh(e2, ei) = 0, 1 ≤ i ≤ 4.

Let η = 1
z+w (dz + dw). η verifies the followings

η(e1) = η(e2) = 0, η(e3) = η(e4) =
1

z + w
.

Therefore, we can write

Ric(ei, e j) +Hh(ei, e j) + η ⊗ η(ei, e j) = −e−2a1(ei, e j).

From the last equation we state that (1, h,−e−2a,−1) is a gradient η-Ricci soliton on R4 with (λ = −e−2a and
µ = −1).

By taking f = 1(P,V), where P is the unit parallel vector field given in (24) and V = 1
z+w (∂z + ∂w) is the

associated vector field to 1-form η, we find that

f 2 = 1(P,V)2 =
(a3 + a4)2

(a2
3 + a2

4)(z + w)2
. (26)

On other hand we have

P(P(h)) =
−(a3 + a4)2

(a2
3 + a2

4)(z + w)2
− e−2a. (27)

From (26) and (27) we obtain

P(P(h)) − µ1(P,V)2 = −e−2a = λ.

Hence Theorem 3.18 is verified.
As we have already demonstrated in Theorem 3.22 and Corollary 3.23 , we have

∇P f V =
−2(a3 + a4)2

(a2
3 + a2

4)(z + w)3
(∂z + ∂w) = 1rad( f 2)

and

div( f V) =
−4(a3 + a4)

(a2
3 + a2

4)
1
2 (z + w)3

= P(1(V,V)).

4.3. The product of Hamilton’s cigar soliton N2 with the real space Rn

In [14], Hamilton presents the first example of a complete steady soliton N2 equipped with the metric

1 = ds2
N =

dx2 + dy2

1 + x2 + y2

and the potential function
f = − ln(1 + x2 + y2).
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This space is asymptotic to cylinder at infinity. The three-dimensional N2
× R plays an important role of

collapsed complete gradient steady Ricci solitons, in fact it is the only known example in three-dimensional
(see [4]).

Let us take now the product (N2
×Rn, 1) equipped with the metric

1 = 1 + 10

=
dx2 + dy2

1 + x2 + y2 + (dx2
1 + dx2

2 + ... + dx2
n),

where 10 is the standard metric on Rn. The parallel vector field on (N2
×Rn, 1) is given by

ξ = (0, 0, a1, ..., an), where ai ∈ R.

Therefore, the unit parallel vector field P is

P =
1
|a|

(0, 0, a1, a2, ..., an), where |a| =

√√
n∑

i=1

a2
i .

The Ricci curvature is given by

Ric((X1,X2), (Y1,Y2)) = RicN2 (X1,Y1) + RicRn (X2,Y2)
= RicN2 (X1,Y1),

where (X1,X2) and (Y1,Y2) are vector fields on N2
×Rn. It is well known that

RicN2 (∂x, ∂x) = RicN2 (∂y, ∂y) =
2

(1 + x2 + y2)2 and RicN2 (∂x, ∂y) = 0.

Therefore the non-zero Ricci curvature on N2
×Rn is defined by

Ric((∂x,X), (∂x,Y)) = Ric((∂y,X), (∂y,Y)) =
2

(1 + x2 + y2)2 (28)

for all vector fields X,Y on Rn.
Consider the smooth function f on (N2

×Rn, 1) defined by

f (x, y, x1, ..xn) = − ln(1 + x2 + y2) ∀(x, y, x1, .., xn) ∈ N2
×Rn.

A direct calculation shows that the non-zero Hessian operator of f verifies

H
f
((∂x,X), (∂x,Y)) = H

f
((∂y,X), (∂y,Y)) = −

2
(1 + x2 + y2)2 . (29)

Finally, from (28) and (29), we get

Ric +H
f
= 0.

Hence (N2
×Rn, 1) is a gradient steady Ricci soliton.

One can easily see that P( f ) = 0 and λ = 0 = P(P( f )), also

(∇PQ)(X,Y) = 0.

This example supports the results obtained in Corollary 3.2 and Corollary 3.5.
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5. Conformal metric

In this section, we delve into the investigation of the behavior exhibited by conformal metrics on
Riemannian manifolds that admit parallel vector fields. Building upon our earlier findings, we explore the
characteristics of these conformal metrics in this specific context.

Let us consider an n-dimensional Riemannian manifold denoted as (Mn, 1), furnished with the Rieman-
nian metric 1. Furthermore, let ∇ represent the Levi-Civita connection that corresponds to this metric 1.
The metric 1̃ on Mn is referred to as a conformal metric of 1 if there exists a positive function γ ∈ C∞(Mn)
such that it conforms to the following relationship:

1̃ = e2γ1,

i.e.,
1̃(X,Y) = e2γ1(X,Y)

for all vector fields X,Y on Mn. Here, γ assumes the role of a dilation function in this context. The Levi-Civita
connection ∇̃ corresponding to 1̃ is given by

∇̃XY = ∇XY + X(γ)Y + Y(γ)X − 1(X,Y)1rad(γ). (30)

Throughout this section we consider ∇1rad(γ) = 0. This condition implies that the norm of the vector field
1rad(γ) is constant, let us suppose it equal to 1. In this situation we have

R̃(X,Y)Z = R(X,Y)Z + Y(γ)Z(γ)X − X(γ)Z(γ)Y
+ [X(γ)1(Y,Z) − Y(γ)1(X,Z)]1rad(γ)
+ [1(X,Z)Y − 1(Y,Z)X],

(31)

where R (resp., R̃) denotes the Riemannian curvature tensor corresponding to the Levi-Civita connection ∇
(resp., ∇̃).

Proposition 5.1. Let (Mn, 1) be a Riemannian manifold and let 1̃ = e2γ1 be the conformal metric of 1. Then, for any
vector field X on Mn we have

Q̃(X) = e−2γ[Q(X) + (n − 2)[X(γ)1rad(γ) − X]], (32)

where Q and Q̃ denote the Ricci operators associated to 1 and 1̃, respectively.

Proof. Let (ei)i=1,..,n be an orthonormal frame associated to 1, then the family {̃ei}i=1,..,n such that ẽi = e−γei is
an orthonormal frame associated to 1̃. By using the definition of the Ricci operator, we obtain

Q̃(X) =
n∑

i=1

R̃(X, ẽi)ẽi = e−2γ
n∑

i=1

R̃(X, ei)ei.

Substituting the last equation into the equation (31), we get

Q̃(X) =
n∑

i=1

e−2γR̃(X, ei)ei

=e−2γ
n∑

i=1

{R(X, ei)ei + ei(γ)ei(γ)X − X(γ)ei(γ)ei

+ [X(γ)1(ei, ei) − ei(γ)1(X, ei)]1radγ
+ [1(X, ei)ei − 1(ei, ei)X]},
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and by applying the following equalities

Q(X) =

n∑
i=1

R(X, ei)ei,

1radγ =

n∑
i=1

ei(γ)ei,

X(γ) = 1(X, 1radγ),

we obtain the formula (32).

From the previous Proposition it follows the following.

Proposition 5.2. Let (Mn, 1) be a Riemannian manifold and let 1̃ = e2γ1 be the conformal metric of 1. Then for all
vector fields X,Y on Mn we have

R̃ic(X,Y) = Ric(X,Y) + (n − 2)[X(γ)Y(γ) − 1(X,Y)], (33)

where Ric (resp., R̃ic) is the Ricci curvature corresponding to 1 (resp., 1̃).

Proof. To prove the equation (33), we use

R̃ic(X,Y) = 1̃(Q̃(X),Y)

= e2γ1(Q̃(X),Y)
= 1(Q(X),Y) + (n − 2)[X(γ)Y(γ) − 1(X,Y)]
= Ric(X,Y) + (n − 2)[X(γ)Y(γ) − 1(X,Y)].

Thus the proof of (33) is completed.

Proposition 5.3. Let (Mn, 1) be a Riemannian manifold and let 1̃ = e2γ1 be the conformal metric of 1. Then for any
vector field X on Mn we have

S̃ = e−2γ[S − (n − 1)(n − 2)],

where S and S̃ denote the scalar curvatures associated to 1 and 1̃, respectively.

Proof. The proof comes immediately from Proposition 5.2.

Proposition 5.4. Let (Mn, 1) be a Riemannian manifold and let 1̃ = e2γ1 be the conformal metric of 1. Then for any
smooth function ψ on Mn we have

H̃ψ(X,Y) = Hψ(X,Y) − X(γ)Y(ψ) − Y(γ)X(ψ) + 1(1radγ, 1radψ)1(X,Y), (34)

where Hψ (resp., H̃ψ) denotes the Hessian of the function ψ with respct to 1 (resp., 1̃).

Proof. We have

H̃ψ(X,Y) = 1̃(∇̃X1̃rad(ψ),Y)

= e2γ1(∇̃Xe−2γ1rad(ψ),Y)

= 1(∇̃X1rad(ψ) − 2X(γ)1rad(ψ),Y)

and by using the equation (30) in the above relation we obtain the result.

From the previous Proposition we deduce the following corollary.
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Corollary 5.5. Let (Mn, 1) be a Riemannian manifold. If 1̃ = e2γ1 is a conformal metric of 1, we have

H̃γ(X,Y) = 1(X,Y) − 2X(γ)Y(γ),

where H̃γ is the Hessian of γ with respect to 1̃.

Theorem 5.6. Let (Mn, 1) be a flat Riemannian manifold and let 1̃ = e2γ1 be the conformal metric of 1 such that
n > 4. Then 1̃ is an almost expanding gradient m-QE metric.

Proof. From Proposition 5.2 and Corollary 5.5, we have

R̃ic(X,Y) + H̃γ(X,Y) = Ric(X,Y) + (n − 2)[X(γ)Y(γ) − 1(X,Y)]
+1(X,Y) − 2X(γ)Y(γ)

= (n − 4)X(γ)Y(γ) + (3 − n)1(X,Y)
= (n − 4)dγ ⊗ dγ(X,Y) + (3 − n)e−2γ1̃(X,Y).

By taking m = 1
n−4 and f = (3 − n)e−2γ, we get

R̃ic(X,Y) + H̃γ(X,Y) −
1
m

dγ ⊗ dγ(X,Y) = f 1̃(X,Y),

where f ∈ C∞(Mn) is a negative function, which means 1̃ is an almost expanding gradient m-QE metric.

Remark 5.7. If (Mn, 1) is a 4-dimensional flat manifold, then 1̃ is an almost expanding gradient Ricci soliton and we
have

R̃ic(X,Y) + H̃γ(X,Y) = −e−2γ1̃(X,Y).

Corollary 5.8. Let (Mn, 1) be a flat Riemannian manifold. If 1̃ = e2γ1 is the conformal metric of 1, then 1̃ is an
almost expanding gradient η-Ricci soliton.

Proof. From Proposition 5.2, we have

R̃ic(X,Y) = Ric(X,Y) + (n − 2)[X(γ)Y(γ) − 1(X,Y)]
= (n − 2)[X(γ)Y(γ) − 1(X,Y)]
= (n − 2)dγ ⊗ dγ(X,Y) − (n − 2)1(X,Y).

For any function ψ on Mn such that ∇̃1rad(ψ) = 0, we have

R̃ic(X,Y) + H̃ψ(X,Y) − (n − 2)dγ ⊗ dγ(X,Y) = −(n − 2)1(X,Y).

By taking µ = (n − 2), f = −(n − 2)e−2γ and η = dγ, we get

R̃ic(X,Y) + H̃ψ(X,Y) − µη ⊗ η(X,Y) = f 1̃(X,Y).

Moreover, f < 0 for n > 2, then 1̃ is an almost expanding gradient η-Ricci soliton metric.

Remark 5.9. Under the hypotheses of Corollary 5.8, 1̃ can be seen as an almost quasi-Einstein metric

R̃ic = −(n − 2)e−2γ1̃ + (n − 2)dγ ⊗ dγ.

Theorem 5.10. Let (Mn, 1) be a Riemannian manifold and let 1̃ = e2γ1 be the conformal metric of 1. If 1 is a steady
gradient Ricci soliton metric such that the gradient of the potential function ψ is orthoganal to the gradient of γ, then
we have

R̃ic + H̃ψ = (n − 2)dγ ⊗ dγ − (dψ ⊗ dγ + dγ ⊗ dψ) − (n − 2)e−2γ1̃.

We call 1̃ a gradient mixed quasi-Einstein metric (see [3]).
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Proof. The proof comes immediately from Proposition 5.2 and Proposition 5.4, and the fact that if1(1rad(γ), 1rad(ψ)) =
0, then 1 is a steady gradient Ricci soliton metric (see Theorem 3.1).

An Application: Recall the Example 4.3 where we proof that the product (N2
× Rn, 1) is a gradient steady

Ricci soliton. Consider the function

γ(x, y, x1, .., xn) = a1x1 + .. + anxn + b, (x, y, x1, .., xn) ∈ (N2
×Rn),

where ai, b are real constants. The gradient of the function γ is a parallel vector field on (N2
×Rn):

1rad(γ) = (0, 0, a1, ..., an) = ξ,

which satisfies 1(1rad(γ), 1rad( f )) = 0, where f is the potential function defined in Example 4.3. By virtue of
Theorem 5.10, we deduce that (N2

×Rn, 1̃) such that 1̃ = e2γ1 is an expanding gradient mixed quasi-Einstein
manifold.

Proposition 5.11. Let (Mn, 1) be a Riemannian manifold and 1̃ = e2γ1 be the conformal metric of 1. If 1 is a gradient
m-QE metric, then 1̃ is either an almost gradient η-Ricci soliton or a type of a gradient mixed quasi-Einstein metric.

Proof. Let 1 be a gradient m-QE metric, then from Theorem 3.8 either the gradient of the potential function
ψ is collinear with 1rad(γ) or λ = 0.

1. If 1rad(ψ) = 1(1rad(γ), 1rad(ψ))1rad(γ) then, by using the two equations (33) and (34), we get

R̃ic(X,Y) + H̃ψ(X,Y) = Ric(X,Y) +Hψ(X,Y) + (n − 2)X(γ)Y(γ)
−(n − 2)1(X,Y) − X(γ)Y(ψ) − Y(γ)X(ψ) + 1(1radγ, 1radψ)1(X,Y)

=
[ 1
m

h2
− 2h + (n − 2)

]
X(γ)Y(γ) +

[
λ + h − (n − 2)

]
e−2γ1̃(X,Y),

where h = 1(1radγ, 1radψ). Hence

R̃ic(X,Y) + H̃ψ(X,Y) − µη ⊗ η = f 1̃,

such that 
µ = 1

m1(1radγ, 1radψ)2
− 21(1radγ, 1radψ) + (n − 2),

f = [λ + 1(1radγ, 1radψ) − (n − 2)]e−2γ,
η = dγ,

which means 1̃ is an almost gradient η-Ricci soliton.

2. If λ = 0 then Ric(X,Y) +Hψ(X,Y) = 1
m dψ ⊗ dψ(X,Y), applying this equation, we find

R̃ic(X,Y) + H̃ψ(X,Y) = Ric(X,Y) +Hψ(X,Y) + (n − 2)[X(γ)Y(γ)
−(n − 2)1(X,Y) − X(γ)Y(ψ) − Y(γ)X(ψ)
+1(1radγ, 1radψ)1(X,Y)

=
1
m

dψ ⊗ dψ(X,Y) + (n − 2)dγ ⊗ dγ(X,Y)

−(dγ ⊗ dψ + dψ ⊗ dγ)(X,Y)
+[1(1rad(γ), 1rad(ψ)) − (n − 2)]1(X,Y).

For 1rad(γ)⊥1rad(ψ), we obtain

R̃ic + H̃ψ = αdψ ⊗ dψ + βdγ ⊗ dγ + δ(dγ ⊗ dψ + dψ ⊗ dγ) + f 1̃,

where 
α = 1

m ,
β = (n − 2),
δ = −1,
f = −(n − 2)e−2γ.
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Proposition 5.12. Let (Mn, 1) be a Riemannian manifold and 1̃ = e2γ1 be the conformal metric of 1. If 1 is an
dγ-Ricci soliton metric such that the gradient of γ is orthogonal with the gradient of the potential function ψ, then 1̃
is a type of a gradient mixed quasi-Einstein metric.

Proof. Let 1 be an dγ-Ricci soliton metric, i.e.,

Ric +Hψ
− µdγ ⊗ dγ = λ1.

Suppose that 1(1rad(γ), 1rad(ψ)) = 0, then from Theorem 3.18 we deduce that λ = −µ. By using the two
formulas (33) and (34), we get

R̃ic + H̃ψ = [(n − 2) − λ]dγ ⊗ dγ − (dγ ⊗ dψ + dψ ⊗ dγ) + [λ − (n − 2)]e−2γ1̃.

This completed the proof.

6. Semi-conformal deformation of a Riemannian metric

In this section, we offer classifications of gradient Ricci solitons, gradient m-QE metrics, and η-Ricci
solitons within the context of Riemannian manifolds subjected to semi-conformal deformations of the
Riemannian metric. For a deeper understanding of semi-conformal metric deformations, you can refer to
[10], which provides valuable background information on this topic.

Let (Mn, 1) be an n-dimensional Riemannian manifold equipped with a Riemannian metric 1 and let f
be a strictly positive smooth function on Mn. A semi-conformal deformation of the Riemannian metric 1
on Mn noted G is defined ([10]) by

G(X,Y)x = f (x)1(X,Y)x + 1(ξ,X)x1(ξ,Y)x,

for all x ∈M, vector fields X,Y on Mn and a vector field ξ on Mn such that 1(ξ, ξ) = 1 and ξ( f ) = 0.

It is important to note that the metric G is a conformal metric to 1 on the distribution orthogonal to
ξ. In the subsequent discussion, we assume that ξ is a parallel vector field with respect to the Levi-Civita
connection ∇ on the Riemannian manifold (Mn, 1), meaning that ∇ξ = 0. In this scenario, the Levi-Civita
connection ∇ corresponding to the metric (Mn,G) can be defined as follows.

Theorem 6.1. [10] Let (Mn, 1) be a Riemannian manifold. The Levi-Civita connection ∇ of (Mn,G) is given by

∇XY = ∇XY +
X( f )
2 f

Y +
Y( f )
2 f

X −
1(X,Y)

2 f
1rad f −

(X( f )1(ξ,Y)
2 f ( f + 1)

+
Y( f )1(ξ,X)
2 f ( f + 1)

)
ξ (35)

for all vector fields X,Y on Mn.

Theorem 6.2. [10] Let (Mn, 1) be a Riemannian manifold. If Ric (resp., Ric) denotes the Ricci curvature of (Mn, 1)
(resp., (Mn,G)), then we have

Ric(X,Y) = Ric(X,Y) + AG(X,Y) + BH f (X,Y) + CX( f )Y( f ) (36)

−[A +

∣∣∣1rad f
∣∣∣2

2 f 2( f + 1)
]1(ξ,X)1(ξ,Y),

where

A =
( ((4 − n) f + 5 − n)

∣∣∣1rad f
∣∣∣2

4 f 3( f + 1)
−
∆( f )
2 f 2

)
, B =

(2 − n) f + 3 − n
2 f ( f + 1)

,

C =
((3n − 6) f 2 + (6n − 16) f + 3n − 9)

4 f 2( f + 1)2

and H f denotes the Hessian of f with respect to 1.
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Proposition 6.3. Let (Mn, 1) be a Riemannian manifold. If H f (resp., H
f
) denotes the Hessian of f with respect to 1

(resp., G), then we have

H
f
(X,Y) = H f (X,Y) −

1
f

X( f )Y( f ) +

∣∣∣1rad f
∣∣∣2

2 f
1(X,Y)

for all vector fields X,Y on Mn.

Proof. The proof comes immediately from (35) and the fact that H
f
(X,Y) = X(Y( f )) − (∇XY)( f ).

Corollary 6.4. Let (Mn, 1) be a Riemannian manifold and let ϕ and σ be two smooth functions on Mn such that

1rad(ϕ) = (1 − B)1rad f =
2 f 2 + n f − 3 + n

2 f ( f + 1)
1rad f (37)

and

1rad(σ) = (−B)1rad f = −
(2 − n) f + 3 − n

2 f ( f + 1)
1rad f ,

where B is given in Theorem 6.2. If H f denotes the Hessian of f with respct to 1, then H
ϕ

(resp., H
σ
) the Hessian of

ϕ (resp., of σ) with respect to G satisfies the followings

H
ϕ

(X,Y) = (1 − B)H f (X,Y) +DX( f )Y( f )

+
(1 − B)

∣∣∣1rad f
∣∣∣2

2 f 2 G(X,Y) −
(1 − B)

∣∣∣1rad f
∣∣∣2

2 f 2 1(ξ,X)1(ξ,Y), (38)

H
σ
(X,Y) = (−B)H f (X,Y) + EX( f )Y( f ) −

B
∣∣∣1rad f

∣∣∣2
2 f 2 G(X,Y) +

B
∣∣∣1rad f

∣∣∣2
2 f 2 1(ξ,X)1(ξ,Y), (39)

where

D =
−2 f 2( f + n) + (9 − 4n) f + 2(3 − n)

2 f 2( f + 1)2 ,

and

E =
2(2 − n) f 2 + (11 − 4n) f + 2(3 − n)

2 f 2( f + 1)2 .

Proof. We have

1(X, 1rad f ) = X( f ) = G(X, 1rad f ) = f1(X, 1rad f )

for any vector field X on Mn. The yield of the previous equation is

1rad f =
1
f
1rad f .

On other hand, by the same way we have

1(X, 1rad(ϕ)) = X(ϕ) = G(X, 1rad(ϕ)) = f1(X, 1rad(ϕ)).

The yield of the last equation is

1rad(ϕ) =
1
f
1rad(ϕ).
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Using the equation (37) we obtain

1rad(ϕ) =
1 − B

f
1rad f = (1 − B)1rad f . (40)

Now, by applying H
ϕ

(X,Y) = G(∇X1rad(ϕ),Y) and using both of the equation (40) and Proposition 6.3, we
obtain the result.

The same steps are used to prove the equation (39).

Remark 6.5. Let ω be a 1-form associated to ξ. Then we have

ω(X) = 1(X, ξ) = G(X, ξ),

where ξ = 1
f+1ξ. In the following we use ω ⊗ ω(X,Y) to indicate 1(X, ξ)1(ξ,Y) or G(X, ξ)G(Y, ξ).

Remark 6.6. In the rest of the paper, we will call an almost generalized gradient quasi-Einstein manifold every
quadruple (1, ψ, η, ω) satisfies

Ric +Hψ = λ1 + µη ⊗ η + τω ⊗ ω,

where λ, µ and τ are smooth functions (for more details on generalized quasi-Einstein manifold, see [3]).

Theorem 6.7. Let (Mn, 1) be a flat Riemannian manifold. If G is a semi-conformal deformation of metric 1,
then (Mn,G, σ, d f , ω) is an almost generalized gradient quasi-Einstein manifold, moreover, if ∆( f ) = 0 then
(Mn,G, σ, d f , ω) is shrinking.

Proof. From Theorem 6.2 and Corollary 6.4, we get

Ric(X,Y) +H
σ
(X,Y) = [

∣∣∣1rad f
∣∣∣2

2 f 3 −
∆( f )
2 f 2 ]G(X,Y) + [C + E]d f ⊗ d f (X,Y)

−[
(2 f + 1)

∣∣∣1rad f
∣∣∣2

2 f 2( f + 1)
−
∆( f )
2 f 2 ]ω ⊗ ω(X,Y),

where ω is the 1-form corresponding to ξ.
If ∆( f ) = 0, then∣∣∣1rad f

∣∣∣2
2 f 3 −

∆( f )
2 f 2 =

∣∣∣1rad f
∣∣∣2

2 f 3 ,

where f ∈ C∞(M) is a strictly positive function, which means (Mn,G, σ, d f , ω) is an almost shrinking
generalized gradient quasi-Einstein manifold.

Corollary 6.8. Under the hypotheses of Theorem 6.7, if f satisfies the equation ∆( f ) = |
1rad f |

2

f , then (Mn,G, d f , ω)
is steady.

Example 6.9. Recall the Example 4.1 where (Rn, <, >) is an Euclidean space equipped with the standard metric

1 = dx2
1 + dx2

2 + ... + dx2
n.

Let ξ be a unit vector field on Rn, defined by

ξ =
1
|a|

(0, a2, ..., an) where |a| =

√√
n∑

i=2

a2
i .
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Consider the function f (x) = ex1 ,

∇ξ = 0 and ξ( f ) = 0.

Since ∆( f ) = |
1rad f |

2

f , then from Corollary 6.8, (Rn,G, σ, d f , ω) is an almost generalized gradient quasi-Einstein
manifold, where G = ex11 + ω ⊗ ω, ω = 1

|a|

∑n
i=2 aidxi and σ(x) = 1

2 ((n − 3)x1 + ln(ex1 + 1)).

Theorem 6.10. Let (Mn, 1) be a Riemannian manifold and let G = f1 + ω ⊗ ω be a semi-conformal deformation of
the metric 1where f ∈ C∞(Mn) is a strictly positive function andω is the 1-form corresponding to ξ. If 1 is a gradient
Ricci soliton metric with the potential function f , then we have

Ric +H
ϕ
= [

λ
f
+

( f + 1)
2 f 3 |1rad f |2 −

∆( f )
2 f 2 ]G(X,Y) + [C +D]d f ⊗ d f (X,Y)

−[
( f 2 + 3 f + 1)

2 f 3( f + 1)
|1rad f |2 −

∆( f )
2 f 2 +

λ
f

]ω ⊗ ω(X,Y).

Hence, (Mn,G, d f , ω) is an almost generalized gradient quasi-Einstein manifold.

Proof. The proof comes immediately from Theorem 6.2 and Corollary 6.4.

Theorem 6.11. Let (Mn, 1) be a Riemannian manifold and let G = f1 + ω ⊗ ω be a semi-conformal deformation of
the metric 1where f ∈ C∞(Mn) is a strictly positive function andω is the 1-form corresponding to ξ. If 1 is a gradient
m-QE metric with the potential function f , then (Mn,G, d f , ω) is an almost generalized gradient quasi-Einstein
manifold.

Proof. Let 1 be a gradient m-QE metric, then from Theorem 6.2 and Corollary 6.4, we obtain

Ric(X,Y) +H
ϕ

(X,Y) = [
λ
f
+

( f + 1)
2 f 3 |1rad f |2 −

∆( f )
2 f 2 ]G(X,Y) + [C +D +

1
m

]d f ⊗ d f (X,Y)

−[
( f 2 + 3 f + 1)

2 f 3( f + 1)
|1rad f |2 −

∆( f )
2 f 2 +

λ
f

]ω ⊗ ω(X,Y).

Proposition 6.12. Let (Mn, 1) be a Riemannian manifold and let G = f1 + ω ⊗ ω be a semi-conformal deformation
of the metric 1, where f ∈ C∞(Mn) is a strictly positive function and ω is the 1-form corresponding to ξ. If 1 is an
d f -Ricci soliton metric with the gradient of the potential function f , then (Mn,G, ϕ, d f , ω) is an almost generalized
gradient quasi-Einstein manifold.

Proof. Let 1 be an d f -Ricci soliton metric, i.e.,

Ric +H f
− µd f ⊗ d f = λ1.

By using the equations (36) and (38), we get

Ric +H
ϕ
= [

λ
f
+

( f + 1)
2 f 3

∣∣∣1rad f
∣∣∣2 − ∆( f )

2 f 2 ]G(X,Y) + [C +D + µ]d f ⊗ d f (X,Y)

−[
( f 2 + 3 f + 1)

2 f 3( f + 1)

∣∣∣1rad f
∣∣∣2 − ∆( f )

2 f 2 +
λ
f

]ω ⊗ ω(X,Y).

This completes the proof.

Theorem 6.13. Let (Mn, 1) be a Riemannian manifold and let G = f1 + ω ⊗ ω be a semi-conformal deformation of
the metric 1, where f ∈ C∞(Mn) is a strictly positive function and ω is the 1-form corresponding to ξ. If 1 is an
ω-Ricci soliton metric with the gradient of the potential function f , then (Mn,G, ϕ, d f , ω) is an almost generalized
gradient quasi-Einstein manifold.
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Proof. Let 1 be an ω-Ricci soliton metric, i.e.,

Ric +H f
− µω ⊗ ω = λ1.

By using the two equations (36) and (38), we get

Ric +H
ϕ
= [

λ
f
+

( f + 1)
2 f 3

∣∣∣1rad f
∣∣∣2 − ∆( f )

2 f 2 ]G(X,Y) + [C +D]d f ⊗ d f (X,Y)

−[
( f 2 + 3 f + 1)

2 f 3( f + 1)

∣∣∣1rad f
∣∣∣2 − ∆( f )

2 f 2 − µ +
λ
f

]ω ⊗ ω(X,Y).
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