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Abstract. An initial and terminal value problem for fractional differential equations of variable order is
introduced. The existence and uniqueness properties are analyzed based on the fixed point theorems of
Schaefer and Banach. The results obtained are supported by approximate numerical examples.

1. Introduction

The idea of fractional-order integration and differentiation goes back to sixteenth century, but it wasn’t
until the 19th century that Augustin-Louis Cauchy and Liouville made significant advances, so that, the
theory of fractional derivatives and integrals was formalized [16, 21, 24]. Since then, fractional calculus
has been used in a variety of fields. It is used in engineering to simulate intricate systems incorporating
electrical circuits, control theory, and viscoelasticity. It is essential to the description of processes in physics
like diffusion, wave propagation, and fractional quantum mechanics. Fractional calculus also provides
useful tools for deciphering non-Markovian processes and irregular data patterns in biology, finance, and
signal processing. Fractional calculus is an essential component of contemporary mathematics and applied
sciences due to its versatility [1-3, 19, 20, 33, 37]. In the recent years, there have seen a huge increase in the
number of research publications that examine various qualitative aspects of differential equations while
also involving various fractional operators, see the papers [4-6, 23].

Variable-order differentiation and integration are a logical progression from their counterpart in constant
order. In this situation, the order can continuously change depending on dependent or independent
variables of differentiation or integration. The mentioned extension of the order is more flexible than
the conventional fractional order and is a natural progression [8, 29, 31, 32]. These notions have been
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successfully used to represent complicated real-world problems in a variety of fields, including biology,
mechanics, control theory, and transport systems. This is due to the capability of developing evolutionary
governing equations. Due to this widespread area of applications, the scientific community has been
actively researching variable order fractional applications to the modeling of engineering and physical
systems, see for instance [28, 30].

Fractional differential equations of variable order are a flexible expansion of the traditional fractional
calculus, wherein the degree of differentiation or integration is variable in relation to the independent
variable or, other parameters. The notion of variable-order fractional derivatives has its origins in the early
20th century and has since garnered considerable interest in contemporary times owing to its wide-ranging
applicability across several fields [17, 34].

The utilization of variable-order fractional differential equations encompasses a wide range of appli-
cations. The equations utilized in the field of physics are employed to elucidate the characteristics of
materials that exhibit dynamic features, such as porous media or viscoelastic materials. In the field of
biology, computational models are employed to simulate and analyze many biological phenomena, such
as the distribution of drugs through tissues or the activity of neurons. Variable-order fractional differential
equations are employed by economists and finance experts for the purpose of modeling intricate market
dynamics and asset pricing. Furthermore, control engineers employ these methodologies to analyze and
regulate systems exhibiting diverse dynamics, thereby enhancing the precision and efficiency of control
procedures. In general, variable-order fractional differential equations provide a robust foundation for im-
proving modeling and analysis in various fields, rendering them a subject of ongoing research and practical
implementation in modern scientific and technological progress [35, 36].

Recent research in this area has been particularly performed by many researchers who focused on
the study of the existence, uniqueness, and stability of solutions to many different problems of fractional
differential equations of variable-order under different conditions [10, 15, 22] . The measure of non-
compactness technique, the upper-lower solutions method, and the fixed point theory are the foundations
upon which all of the above-mentioned results are proved. Further, the stability of the proposed problems
in the sense of Ulam-Hyers or Ulam-Hyers-Rassias was under observation [9, 11, 12, 14]. It is important
to note that the investigation relies heavily on the concept of piece-wise constant function which plays a
crucial role. For this purpose, the interval of existence [0, L] has been divided into subintervals via the
partition P := {I; = [0,L1], b = (L1, L2],Is = (Ly, Ls], ..., I, = (Ly—1, L]}, where n is a given natural number.
Further, the piecewise constant function x(C) : [0,L] — (1,2] with respect to P, is defined as

X© = ) xi(©), Ceo,L],
k=1

where 1 < xx <2,k=1,2,...,n are constants. Here Ly = 0and L, = L, thatis, Iy = 1 for C € [Ly_1, L¢], and
I = 0 elsewhere. The majority of the aforementioned results are obtained using this approach, which first
divides the existence interval into subintervals and then defines the differential and integral operators with
respect to those subintervals. Using this technique, researchers were able to convert the fractional problems
of variable-order into their equivalent conventional fractional problems of constant order.

Agarwal et al. [7] studied the following constant fractional order problem

{ D}, 1(©) = (G, p(©), e [0,00), x€]1,2],
u(0) =0, p bounded on [0, o),

where D}, stand for the Riemann-Liouville fractional derivative of order y, respectively, 1 is a given
continuous function.

In this paper, we introduce a novel approach to replace the use of the piecewise constant function and
existence interval splitting. The creation of a new operator that is more adaptable and does not need any
additional phases is the keystone of our strategy. We apply the new technique on the following initial and
terminal value problem (ITVP) of variable order

{ DOu(Q) = n(C, u(©), CeA:=[0,L],

1(0) =0, u(L) =0, 1
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X(C)

where 0 < L < +00,1 < x(C) <2,7n7: AXR — Ris a continuous function and ID,” is the Riemann-Liouville

fractional derivative of variable-order x(C).

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used throughout
this paper.
Note that the set E = C(A,R) is a Banach space of continuous functions y from A into R, such that,
u(0) = u(L) = 0 with a norm defined as

[lell = sup [(O)I-
CeA

Definition 2.1. ([25, 26, 30]) Let x : A — (1,2) be a continuous function. The left Riemann-Liouville fractional
integral of variable order x(C) for function u(C) is defined by

C(r _ (@)-1
LOuO = fo o t@Mo, C>0, o)

where I'(.) is the Gamma function.

Definition 2.2. ([25, 26, 30]) Let x : A — (1,2) be a continuous function. The left Riemann-Liouville fractional
derivative of variable order x(C) for function u(C) is defined by

o C (C _ (D)l—)((w)
I'2 - x(@))

Remark 2.3. ([13]) For general functions x(C), v(C), we notice that the semi group property does not hold, i. e:

, d\2 o d
DOu(C) = (E)Zﬁ YO ) = (E) w@)do, > 0. 3)

]I§+(C) ]IZEC)‘u(C) + ]I;(+(C)+U(C) 1(Q).

Lemma 2.4. ([37]) Let x : A — (1,2) be a continuous function. Then for

y € Co(A,R) = {y(0) € C(A,R), L'y() € C(A,R), (0 < o < 1)}, the variable order fractional integral T;”y(C)
exists for C € A.

Lemma 2.5. ([37]) Let x € C(A, (1,2)) be a continuous function. Then ]IgEC)y(C) € C(A,R) for y € C(A, R).

Theorem 2.6. ([27]) Suppose 3 is a Banach space. If ¢ : 3 — 3 is a completely continuous operator and
o={ued:u=2Apu,0<A <1} isbounded, then o has a fixed point in 3.

Theorem 2.7. ([18]) Let 3 be a Banach space and ¢ : 3 — 3 be a mapping such that, 9" is a contraction, for some
n € N. Then @ has a unique fixed point in 3.
3. Existence criteria
We start by introducing the following assumptions.
(AS1) There exist constants 0 < ¢ < 1, p > 0, such that,
C @ uw@)-n@Cy@Q) I<plu@-y@ YuyeR eA.

(AS2) x: A—(1, x']is a continuous function, such that, 1 < y* < 2.
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Remark 3.1. 1. The function T'(2-x(C)) is continuous as a composition of two continuous function. We set
Mr = mMaXgea | m | .
2. By the continuity of the function x(C), we let
L'O<1if 1<L<oo, LMAO<LINif0<L<1.
We conclude that L1"Y©<max (1,L17X")=L*.

We will need the following lemma about the solution of the ITVP (1).
Lemma 3.2. The ITVP (1) is equivalent to the integral equation

(C @)1 X(@) C
0 m“(@) do = fo (- (@, @) do

E L(L—ca)l—x(m) —gf )
L) Te-x@y @ do-1 | L-on@ u@) do, @

such that, u(0) = u(L) = 0 holds.

Proof. By the definition of fractional derivative of variable order given in (3), the ITVP (1) can be written in
the form:

dd_; ;%Mw) do = 1(C, u(0)-
Then, o |

dc Jo %“(‘D) dd = fo (@, 4(@)) do +c1.
Thus,

(C (D)l X(@)

C
T vy H@) do= — )@, W(@)) do + c1C + ca. 5
o T2-x(@) H@) fo (€ - @)@, u(@)) al+c 5)
Evaluating equation (5) at { = 0 and C = L gives us ¢; = 0 and

(L @)1~x@)
=l

L
T@-xap 1 T fo (L - @)@, 1(@)) do]

Then,

1-x(@) C L1 — ~)1-x(@)
[ ) do= [ (- am@uay do+t [ D i) da

L
¢ [ @-am@ oy do.

Conversely, by taking the derivative of both sides of the equation (4), we have

d C (0 — )-X(@) C

E( fo %#(@)WDF fo (@, u(@)) do
1 L (L — @)-x@)
7

o I'2-x(@)
Taking the derivative again, we get

L
(@) do- fo (L - 2@, p(@)) do).

2 1-x(@)
d_CZ( % p(@)do) = n(C, u(©)),

which gives the ITVP (1). O



S. Guedim et al. / Filomat 38:33 (2024), 11805-11821

The first result is based on Theorem 2.6.

Theorem 3.3. Assume that conditions the (AS1) and (AS2) hold. Then the ITVP (1) has at least one solution on E.

Proof. We construct the following operator
C:E—E,

as follows,

(€= @)@

C
w0 =10~ [ G2 @) do+ [ (o ua) do

4 L (L - @)l-x@) ¢ L )
Ly Te-xy @ @~ fo (L - @)@, p@) do.

Set
={uekE | ull<rr>0}L

Clearly, E, is non empty, closed and convex subset of [E.

Now, we will prove that the operator C satisfies the hypothesis of Theorem 2.6.
Step 1: C is continuous.

We presume that the sequence (u,),en converges to p in [E. Then, we have

| Cun(C) — Cu(Q) |

F(C- @)
0 T2-x(@)

C
fo (€~ )00 | (@, 1n(@)) — 1@, p(@)) | d>

L (L = o)l-x@
| a2y lm@ - @) o

L
fo (L - )00 | (@, 1(@)) — 1@, 1(@)) | do

IN

| n(C) — (@) | + | (@) — pn(@) | do

+

+

IA

C
o= 14Mr o= ) [ (€= @) o
0
¢ L
+ P||Hn_#||f(C—®)CD_"ch+Mr I un—yllf(L—co)l‘X@)dm
0 0

L
+ Pllun—yllf(L—ca)(D”dco
0

C . —-0+2
<l = g ML 1 ullfo(—L ) o pllm =il e
L . —0+2
. L—ch—)(
+ MFL ||Mn_/~l“f —) d(D+p||Au'”_lLl|| (_0+1)(_0+2)
B MFU()Z_ L
< Npn—pll+ o - oy e = B 420 gt = g | =y =y
MrL*(L)_
+ [x 2— e ”,un ‘u”
L—U+2
< IIHn—#||+2 ||Hn pll+2p |l pn = #Hm
MrLL*

7o Il
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2M L—0+2
It — #||+ ||#n—H||+2P||#n—H||m
ZMFLL [-o+2
(1+ PR Y o+2))”“”_“”

which implies that,

| Cun(C) — Cu(Q) I|—= 0,as n — oo.

The above relation shows that the operator C is continuous on E.
Step 2: C maps bounded sets into bounded sets in E.
Letn* = SUP eq | n(C,0) |. Then, for u € E,, we have

IA

IN

IA

IN

IN

IA

| Cu(©) |

¢ (( - @)@ <
101+ [ S @) 1o+ [ €= a) L@, @) 1do

° L

gf (L- cD)1 ;())) (‘D)|d‘°+%j; (L - @) | n(@, p(@)) | do
(C_ )1 X(@)

0o T2-x(@)

f(c @) 11(@,0) | do+ ¢

C
| ul@) | do + f (€ ) | (@, 5(@)) — n(@,0) | dod

C (M (L-o)l@
o I2-x@)

L
%fo<L—ca>|n(o,y<o>>—n<ca,0>|do+%fo(L—w)m(o,ondo

| u@) 1+
Iu(@)ldcv
C o

@ 1w [ (572) 7 @) 1do

C
fo C-o)’d’ | n(@, w(@) - n(@,0) | do

e L or g
fO(C—w)In(w,O)Id@+MrL*f0 (LT‘D)1 " (@) | do

L

L
fo @ °@’(L - @) | n(@, p(@)) — n(@,0) | do + fo (L-®)|n@,0)|do

MrL* L2V ¢ . < )
I+ g i+ [ €=yl p@) 1 do+ [ C-ondo
Myl . *
Llr—x*z ||+f(L @)@ pIy(@)ld@+f(L @)n'do

2
28 g e [ vomdo+ S
0

L LZ
plliull (L - @)@ d® + Tf—

ZMF C—O’+2 L—0+2

*72
ol +52 ||y||+p||y||—(O+1)(_0+2)+77L+P|Iull(_a+1)(_o+2)

11810
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2MrLL* Lo+2
+2 —_—
o el 2 el o oo
2MrLL* Lo+2 9
+ +n°L
2—x* p(—a+1)(—a+2)]”u|| T

IA

Il + +1'L?

< [1+

which implies that,
2MrLL* L-o+2
+2p
2—-x (—o+ 1) (-0 +2)

ICuli<[1+ Jr+nr
Hence, C(E,) is uniformly bounded.

Step 3: C maps bounded sets into equicontinuous sets in E.
)1—X(tD)

—o 7X@ - . . . .
Firstly, we can remark that the function w,(®) = (cle) - (Csz is decreasing with respect to its

exponent 1 — y(@), for 0 < QT_‘D < CZ%Q < 1. Then, for (1, € A, (4 < (; and p € E,, we have

| Cu(C2) = Cu(Cy) |

IA

Co _ W1-x(@) C1 _ \1-x(@)
@)= p@) 1+ [ B o - [ B uaa

Co Ci
+ | (G - oM@, p(@))dad - ; (€1 — (@, w(@))da |

G (T (- @)@ G (" (L- @)@

YT ) Te—x@) MO T )y Ta- ey MOMe !

I L
12 [(-om@uenio- [ L- o ueno!

C1 1
_ P _ -x@) _ _ -x(@)
< | u(C) — u(@) | +fo | T2 = x@) (& —@)'™* (G- @)™ || w(w@) | do
Ca _ N\1-x(@) C1
(G —@) ™
+ . mﬁ(@)d@ [+ | i (& — )@, u(@)) — (C1 — d)N(@, P(@))dd |
&) 1 (M (L-o) @
+ . (& — o)n(@, u(@))da | + | zJ, r(z_—x(m))y(@)d@[Cz - Cl] |

L
+ 17 [ @-om@ penefe-a])

IA

C1
(0@ - 1@ 1+Mr sl [ @ =0 - @ - ) o
0

Ca _ N1-x(@) C1
(G-—a)™
o [ ey @ ldos [ (@0~ @ - o) In pe) 140

C2 -0 t (L - (D)l_X([D)
+ fg (&2 — @) | n(@, p(@)) | do + = o I2-x@))

G

| u(@) | do

-a (*
T L - )| no,u@)) | do
0
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— 1-x(@) — 1-x(@)
| i(C) = (Co) | +Mr ||u||f Lo (ST (@),

(%8
Mrll}illLfCl(zL ) ™ do

C1
[ [@-a-@-a] 110, u@) - 10+ 10,0140

Co
fc (@ - @) | 1@, 1(@)) — 1(@,0) + 1(@,0) | dd

Mr . L L—a\-x
T@-wiuit [ (-72) "o
-G

L

L
fo (L-o) | ne, @) -n@,0) +n®,0) | do

C1 _ o _
@)= @) e e [ (2 F2) ™ - (22 o

C2 .
. — @\l
e [C(252) o
G

C1
[ [@-0-@-alowe 0@ ue)-10,0]do

C1
[ [@-a-@-a]ine0do

) )
fc (G- 000" | @, 1@) ~1(0,0) 140 + [ (G2 0) 19(@,0) o

ML
r ||y||<c2—<:1)+ &

L
fo (L-o)o o | n(@, o)) — n(@,0) | do

CLQf(L @) 112,0)] do

Mr |l pll L

| w(C2) — () | +[m

@~ @P +2(G - 0]
C1
plal [ [@-o-@G-alo~do

Co
n*[ClQ - Cﬂ +pllull f (& - @) do

2 2
[C—f—-clcz] (C2-0)]
wll f (L-0)o%do + 1’ L2=h I;

Mr || pll'L
LI-x(2 —

—0 +1 C CZ
reihdl (7 *3)
—g+1 C a+2 Cl—c+2

) (( o+ 1)(— a+2) (- o+1)(—a+2))]

[-o+2 L
s cl)] . Tl e TG Wy

C

| (@) - p@) | H e ][(61)” QP +2(C - 0)*]

pllull|@ - cl)

pllel](-@- co
[MrL
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< | (G) — u(@) | +[$][<c P = (G + 26 - G
C% _ % —[T+2 _ C—o+2
+ (Fg)+plla ”(( o (= a+2))
MrL* pllull L~o+2
* [2—FX*”“”+ L” (o +1)( o+2)+’72]( Q)

11813

Hence, | Cu(C2) —Cu(Cq) |—= 0as &y — C. Itimplies that C(E,) is equicontinuous. Consequently, the operator

C is compact.
Step 4: The set © defined as

o={peE:u=ACu, 0<A<1j

is bounded.
Let u € ©. Then, for any C € A, we have

w@ = ACu(Q), 0<A<1,

and

| ACW(C) |

PN 1(0) C
C-o)™
A0~ [ Fr2msui@ do+ | - ano uenio

(L (D)l X(@) ~ E fL ~
" f r(2- xw)) T =) M@ do-1 | w)n(w,#(m))d®|

(C cD)l X(@)

< o1+ [ fF2estue o+ [ (= 0) (o, s} | do
+ % OL%Iy(ca)ldca+ZfoL(L—ca)m(@,y(@)Hd@]

< [I#(C)|+ OC%|y(ca)ld(a+foc(c—w)In(w,y(w))ldca
+ % OL%I#(®)|d®+%fOL(L—m)m(@,y(@)Hd@]

< [ Zé\/f_rf;(ﬂ T +L1)(;+—20 n 2)] i 4L

Now, for every C € A, we have

ZMFLL Lo+2

lAcull < [1+35 Po+1)(—0 +2)

el +7L2 < oo,

This implies that the set © is bounded independently of A € (0, 1).

Then, all condition of Theorem 2.6 are satisfied and the ITVP (1) has at least one solution i € [E.

O
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4. Results on uniqueness
The next result is based on Theorem 2.7.
Theorem 4.1. If the conditions (AS1) and (AS2) are satisfied, then the ITVP (1) has a unique solution on E.

Proof. We consider the same operator
C:E—E,

defined as follows:

—_ »)l-x(@) C
0 %u(@) o+ [ (- omi,ua) do

(L @)1 X(@) C
f T2 —x@) M@ -1 fo (L - (@, w(@)) da.

Cu(C) = u(@) -

For u, u*€ E, we may write

| Cu(0) = Cp(Q) |

" (C-@) @
0 TC-x(@)

¢
+ fo C-@) 0 | n(@, u@)) - n(@, ' (@)) | do

L _ ~\1-x(@)

L
+ [ @-@0e 1@ i) - 10,ue) | do
0

IA

| (@) = (@) | + | u*(@) — u(@) | do

IA

C
g 1l +Mr = g | f (€ - 0) Do
0
C L
+ opllp—pl f (C- @)@ dod + My || -y | f (L - @)@
0 0
L
+ pllup—u |l f (L - @)oo do
0

C—U+2

Il = Il +MrL | = *||fc(c‘—@)1‘”d@+ l= | ————5+
HH N 7 PRE = S T Do +2)

IN

L . _
. . L—(D 1—y . g+2
+ MrL ||[J—M||f —) déD'*‘P”M—#”m

< Mo |+ O —
s lhp-p le(z x)”“ Ple-wll &2
MrL* (L™ .
+ Ll—X*Z——)(*”‘u_y |
MLL —0+2
< lp—- IJ”+ ||M il +2pll p— #||m
+ Mrw Tpr——
e AT
X 2MyLL —0+2
< |lp—u ||+ —lu—pw I +2plfu -y ||m
2MFLL* L-o+2
< (1+ PR " Y a+2))”“ bl
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2MrLL*
2—-x*

We puto =1 + + 20 fl_;(iza 5 so that we have

ICu-Cull<ollu—ull.
By induction, we can prove that

* an *
I C = Cu s W=

where C" = C onC oCoCo.... o C ”"n times”.
We have lim g _ 0. Then, for sufficiently large n, we get < <.
n—oo n! n

According to Theorem 2.7, the operator C has a unique fixed point which is the unique solution of the ITVP
(1. O
5. Numerical examples

Example 5.1. Consider the following ITVP

{ D*Ou() = n(C, u(@), TeA=1[01], ©)
w0 = u()) = 0,

where x(Q) =1 + %, and 1(C, ) = C + 1p.

Clearly x(C) is a continuous function on [0,1] and, 1 < x(() <1+ 3 =3 =" <2.
In addition, n(C, p) is a continuous function on A X R, and

1 1 1
C“In(@u)—n(@y)|=C”ICZ+§y—CZ—§yI = Clzw-yl

IA

LY
BHy’

s0 (AS1) satisfied for p = % and o € (0,1).
By Theorem(4.1) the equation (6) has a unique solution.

Example 5.2. Consider the following ITVP

DXOu(C) = n(C, u(Q)), CTeA=[0,1], )
() = u(1) =0,
B B _ exp(=()
where x(C) = exp(C) — Cand n(C, u) (exp(exp(:2:))+4 exp(20)+1)(1+p)

Clearly x(C) is a continuous function on [0,1] and, 1 < x(C) < exp(l) =1 = x* < 2.
Also, n(C, u) is a continuous function on A X R, and

o _ _ exp(=C) 11
@ -0y C'@qum£§»+4apao+1ﬁl+# 1+y)

< _ exp(=0 [p-yl
T (explexp(=)) + 4exp(20) + (1 + (1 + y)
< C ;Xp(_a lu=yl

(exp(exp(giz)) +4exp(20) + 1)

exp(-1)
| ‘Ll - y |/

(exp(exp(3)) +4exp(2) + 1)
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o -1
so (AS1) satisfied for p = (exp(expz;i 4pr D and o € (0,1).

By Theorem(4.1) the equation (7) has a unique solution.

Numerical results

Now, we present the numerical solution p(C) for x(C) = exp(C) — C with C € [0,1] and u;(C) for x(G;) =
exp(C;) — C; where (; is fixed.

In Figure (1), we plot the solution u depending on C.

The solution p(¢) with ¢ € [0, 1] for x(¢) = exp(¢) — ¢
0.014 T T T T T T T T

— 1(()

0.012 |- 1

0.008 |- 1

0.006 [ 1

0.004 [ 1

0.002 - 1

Figure 1: The solution 1(C) in [0, 1] with x(C) = exp(C) - C.

The following figures present a comparison between the solution u and the various solutions y;, each
with a different C.

The solution () in [0, 1] and pi(C) with x(¢) = exp(0) - 0=1

— p(C)
1 (()

0.015

0.005 -
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e The solution p(C) in [0,1] and p1;(¢) with x(¢) = ezp(0.1) - 0.1 = 1.0051

0.005

—— pi(C)
— 1il6)

9 The solution p(¢) in [0, 1] and pi(¢) with x(¢) = ezp(0.2) - 0.2 = 1.0214

0.012 -

0.008 -

0.006

0.004 -

0.002 -

0.014

0.012

0.008 -

0.006 -

0.004 -

0.002 -

— p1(C)

— (§)

The solution (¢) in [0,1] and p;(¢) with y(¢) = exp(0.3) - 0.3 = 1.0498

—_—(0)

1 (C)
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.. The solution p(C) i [0,1] and 1;(C) with y(¢) = exp(0.4) - 0.4 = 1.0918

0.012

0.008

0.006

0.004

0.002

— ()
— u(§)

» The solution p(¢) in [0,1] and p;(C) with x(¢) = ezp(0.5) - 0.5 = 1.1487

0.012

0.008

0.006

0.004

0.002

0.014

0.012

0.008

0.006

0.004

0.002

—_—(6)

e 1 (C)

The solution p(¢) in 0,1] and p;(¢) with x(¢) = ezp(0.6) - 0.6 = 1.2221

—

)
m(C)
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The solution x(¢) in [0, 1] and p;(¢) with x(¢) = eap(0.8) — 0.8 = 1.4255

0.014

— n(C)
— i(Q)

0.012

0.008 -

0.006 -

0.004

0.002 -

L
0.5

L
0.6

L
0.7

L
0.8

L
0.9

0.014

n(Q)
(<)

0.012

0.008 -

0.006

0.004

0.002 -

The solution p(¢) in [0,1] and j;(¢) with x(¢) = ezp(0.9) — 0.9 = 1.5596

L
0.2

0.3

L
04

L
0.5

0.6

0.7

The solution p(¢) in [0,1] and 4(¢) with x(¢) = exp(1) — 1 = 1.7182

0.014

— ()
— (C)

0.012 -

0.008 -

0.006

0.004 -

0.002 -

In this table, we present the Norm;

L
0.3

.
04

L
0.5

L
0.6

max [u(©) (@) for x(0) € 11,21

L
0.7

.
0.8

L
0.9
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C 0 0.1 0.2 0.3 0.4

Xx(©) 1 1.005 1.021 1.049 1.091

Norm; || 1.63x107¢ | 1.49x 107 | 1.08 x 107° 1x107° 23x107°

C 0.5 0.6 0.8 0.9 1

Xx(0) 1.148 1.222 1.425 1.559 1.718

Norm; || 392x107% | 58%x107° | 6.26x107° | 7.09x 107® | 7.44x 107°

We observe that when C approaches to 0,4(x = 1,091) the Norm; is decreasing and when C approaches to
1(x = 1,718) is creasing.

6. Conclusion

In this paper we have presented results on the existence and uniqueness of solutions to initial and
terminal value problem ITVP (1) for non linear fractional differential equation of variable order x(C) where
1< x(0) <2
Our results are based on the fixed point theorem technique (Theorem 3.3, Theorem 4.1). Finally, we
illustrated the theoretical results with numerical examples.

Considering the scarcity of studies on fractional calculus of variable order, the results we obtained are very
important and can be applied in various sciences.
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