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Available at: http://www.pmf.ni.ac.rs/filomat

Dynamical analysis of a prey-predator model with specific mortality of
predator under the influence of fear felt by prey

Nirmalya Mondala, Souvick Karmakara, Debgopal Sahooa, Guruprasad Samantaa,∗

aDepartment of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah - 711103, India

Abstract. Predator-prey interactions are a core component of theoretical ecology, crucial in establishing
community structure and preserving ecological diversity. The effect of fear on prey by predator species
and the maximal mortality rate of predator species is currently becoming an essential topic in ecology.
The present work focuses on a prey-predator model that incorporates a specific mortality function for the
predator species and a simplified Holling type IV functional response. Furthermore, the model incorporates
an intraspecific competition among individuals of the prey species, the natural mortality rate of prey
species, and the effect of fear on the prey population produced by predators in order to get more accurate
and realistic dynamics. An analysis is conducted to determine the feasibility and stability conditions
of equilibrium points in terms of the model parameters. The condition for the existence of at least one
interior equilibrium point has been derived in terms of the model parameters. Several types of local
bifurcations have been observed in the system such as transcritical bifurcation, saddle node bifurcation,
Bogdanov-Takens bifurcation, Hopf bifurcation, Generalized Hopf bifurcation, Cusp bifurcation, ‘Saddle
node bifurcation of limit cycle’ and a global bifurcation namely Homoclinic Bifurcation is also observed.
Furthermore, the effect of hysteresis on our proposed model have been discussed. Numerical simulations
have been performed using MATLAB and MATCONT to illustrate our analytical findings.

1. Introduction

Prey-predator interactions are essential ecological connections that have a significant impact on the
structure of ecosystems. Due to the complexity of ecosystems, mathematical and experimental ecologists
[1, 2] have consistently shown interest to the dynamics of ecosystem. The importance of studying these
dynamics gives the insights of these complex ecological processes [3]. Mathematical models are playing an
increasingly pivotal role in theoretical ecology, offering valuable contributions not only to the quantitative
understanding of ecosystems but also to the advancement of mathematical modelling methodologies. The
first prey-predator model was introduced in 1920, followed by the Lotka-Volterra model in 1925. Later,
Holling introduced the concept of the functional response, which has since been extensively studied to
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understand its impact on prey-predator dynamics. In those models, the functional response is typically
assumed to be either prey-dependent or ratio-dependent. Some of these functional responses that are often
used are Holling type-I, II, III, IV, Beddington–DeAngelis, Crowley–Martin, and Hassell–Varley [4, 5, 6, 7, 8]
etc. A classical prey-predator model incorporating predator functional response on prey population can be
written as,

dx
dt
= H(x) − F (x, y)y

dy
dt
= mF (x, y)y − G(y)y

Here x and y represents prey and predator population,H(x) denotes the intrinsic growth function, F (x, y)
is functional response and G(y) represents the mortality function of predator. In most of the articles the
mortality function is considered as G(y) = µ, a constant. However, Cavani and Farkas [9] firstly introduced
the specific mortality function as G(y) = p+qy

1+y , where p is the mortality of predator at initial density and
q is the limiting mortality. This specific mortality function depends on the predator population which
is neither constant nor an unbounded function, that is ecologically convenient. Now if p = q = µ, this
specific mortality function becomes G(y) = µ, a constant. Juan Ye et al. [10] examined the dynamics of a
prey-predator model by incorporating a specific mortality function for the predator species along with a
strong Allee effect on the prey population.

In mathematical ecology, “Fear function” refers to the impact of fear on prey species due to the presence
of predators. Predators influence prey not only through direct predation but also by inducing fear through
behavioral changes in prey, such as reduced foraging, increased vigilance, or habitat shifts. These effects
can alter prey population growth, potentially leading to decreased prey numbers even in the absence of
direct predation. Wang et al. [11] investigated a model that incorporates prey and predator dynamics, with
the impact of fear on prey reproduction, which demonstrates that a significant amount of fear contributes
to the stability of the system by eliminating periodic oscillations. Several theoretical and mathematical
ecologists [11] conclude that the change in behaviors of prey biomass is greatly influenced by the presence
of predators. In some cases, these behavioral changes of prey species are so severe that it becomes more
sensitive to form a community structure than direct predation. A 2011 field experiment on song sparrows
(Melospiza melodia) by Zanette et al. [12] revealed that fear alone can significantly affect prey populations.
By removing direct predation and playing predator sounds to mimic predation risk, the study found a 40%
reduction in offspring production. This decline was attributed to anti-predator behaviors, like temporarily
abandoning habitats, which disrupted vital activities such as mating. The research suggests that fear can
decrease prey fertility and survival, potentially causing larger population declines than direct predation.

In this current study, we have introduced a prey-predator model with a fear function and specific
mortality function of predator species. Furthermore, Holling type-IV functional response, natural death
rate of prey, and decay rate due to intraspecific competition between prey species have been introduced in
the proposed system. In section 2, we have formulated the prey-predator model along with parameters.
The positivity and boundedness of the system have been discussed in section 3. Subsequently, the existence
and number of equilibrium points have been determined in section 4. Section 5 displays the stability
analysis of these equilibrium points. Additionally, we have theoretically examined possible bifurcations in
section 6. After that, numerical simulations have been performed in section 7 to learn more about one and
two parametric bifurcations. The concept of hysteresis has been discussed in this section. Finally, section 8
provides the conclusion of this work.

2. Model Formulation

In the above classical model incorporating predator functional response on prey population, the logistic
growth for prey may be described by three distinct components: the birth rate, denoted as r, the death
rate, represented by β, and a reduction due to the competition within the same species, denoted as α.
Incorporating these, we get,H(x) = (r− β)x− αx2. Here we consider the Holling type IV [13, 14] functional
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(a) Fear function f (k, y)
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Figure 1: Figure of fear function f (k, y) for {k = 0.5, 1, 1.5, 2, 2.5} and specific mortality function G(y) for {p = 0.5, q = 0.6, 0.7, 0.8, 0.9, 1}.

response F (x, y) = 1x
1+hx2 , represents the number of prey consumed by a predator per unit of time. The

parameter m (0 < m < 1) is the conversion factor, whereas µ denotes the death rate of the predator.
Multiple studies suggest that the presence of a predator, which induces fear in prey species, can signifi-

cantly reduce their reproductive rate. In some cases, this fear factor has a higher impact on prey depletion
than direct predation itself. In this context, the parameter k represents the intensity of fear, influencing the
prey’s anti-predator behaviors. Given the biological interpretations of k, y, and f (k, y), it is justifiable to
conclude that:

f (0, y) = 1, f (k, 0) = 1,
∂ f
∂k
< 0,

∂ f
∂y
< 0,

lim
k→∞

f (k, y) = 0, lim
y→∞

f (k, y) = 0

Biologically these implies, in the absence of fear or predators, the reproduction rate of prey species re-
mains unaffected by the fear of a predator. But increasing level of fear or expanding predator population
have a detrimental impact on prey reproduction. Moreover, this detrimental effect could increase to a
level where the prey population is declining substantially. In specifically, we analyze the fear function

f (k, y) =
1

1 + ky
. Numerically we have shown the fear function f (k, y) for different values of k in Figure 1a.

Here we consider the Holling type IV functional response, so F (x) =
1x

1 + hx2 , where 1 represents pre-

dation rate or attacking rate and h determines the decline in consumption rate at high prey densities. Also
the specific mortality rate of predators in the absence of prey depends on the number of predators. Now
consider the specific mortality function,

G(y) =
p + qy
1 + y

which satisfies the following conditions:

G(0) = p,
∂G
∂y
> 0, lim

y→∞
G(y) = q, G′′ < 0

where, p and q are described as above and G(y) is convex and increasing function as depicted in Fig-
ure 1b for different values of p, q. By the functional properties of G(y) clearly q > p, which is also biologically
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reasonable. By incorporating fear effect in prey, Holling type IV functional response and specific mortality
function on predator, the final model appears as follows:

dx
dt
=

rx
1 + ky

− βx − αx2
−
1xy

1 + hx2 , x(0) > 0

dy
dt
=

m1xy
1 + hx2 −

(p + qy)
1 + y

y , y(0) > 0
(1)

Table 1: Descriptions of parameters

Parameter Descriptions of Parameter
r Birth rate of prey (> 0).
k Level of fear due to predator.
β Death rate of prey (> 0).
α Decay rate for intraspecific competition.
1 Attack rate or predation rate of predator.
h The decline rate in consumption at high prey densities.
m Conversion factor (0 < m < 1).
p Mortality rate of predator at low density.
q Maximal mortality rate of predator.

Now we can rewrite the system of equations (1) as

dx
dt
= x

(
r

1 + ky
− β − αx −

1y
1 + hx2

)
≡ F1(x, y) = x f1(x, y) , x(0) > 0

dy
dt
= y

(
m1x

1 + hx2 −
(p + qy)

1 + y

)
≡ F2(x, y) = y f2(x, y) , y(0) > 0

(2)

where,

f1(x, y) =
r

1 + ky
− β − αx −

1y
1 + hx2

f2(x, y) =
m1x

1 + hx2 −
(p + qy)

1 + y

3. Positivity and Boundedness

Theorem 3.1. All the solutions of the system (2) that start in R2
+ remain positive for all time.

Proof. Solving the system of equations (2) we get,

x(t) = x(0) exp
(∫ t

0
f1(x, y)dw

)
> 0, as x(0) > 0,

y(t) = y(0) exp
(∫ t

0
f2(x, y)dw

)
> 0, as y(0) > 0.

Thus, x(t) > 0 and y(t) > 0 for t > 0.
Therefore, all solutions that begin within the interior of the first octant remain positive for all time.

Theorem 3.2. Every solution of system (2) is uniformly bounded.
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Proof. In order to demonstrate the boundedness of the solution, let us assume the function w(t) = x(t)+
y(t)
m

.
So we have,

dw
dt
=

dx
dt
+

1
m

dy
dt

⇒
dw
dt
=

rx
1 + ky

− βx − αx2
−

(p + qy)
m(1 + y)

y

⇒
dw
dt
≤

rx
1 + ky

− αx2
− µ

[
x +

y
m

]
=

rx
1 + ky

− αx2
− µw [where, µ =min {β, p, q}]

⇒
dw
dt
+ µw ≤ rx − αx2

⇒
dw
dt
+ µw ≤ −α

[
x −

r
2α

]2
+

r2

4α

⇒
dw
dt
+ µw ≤

r2

4α
= M (say)

⇒
dw
dt
+ µw ≤M

Now by the principle of differential inequality [15], we get 0 < w(t) ≤
M
µ

(
1 − e−µt

)
+ w(0)e−µt. As t → ∞,

we get 0 < w(t) ≤
M
µ
+ ϵ, for any positive ϵ. Therefore, all solutions of system (2) eventually enter into

the region: B =
{

(x, y) ∈ R2
+ : 0 < w(t) ≤

M
µ
+ ϵ, for any positive ϵ

}
. Thus every solution of system (2) is

uniformly bounded.

4. Equilibrium Points

4.1. Trivial and Axial equilibrium

System (2) always has E0(0, 0), Ea( r−β
α , 0) which indicate species free and predator free equilibrium point

respectively. If death rate exceeds the intrinsic birth rate of any species, that species leads to an extinction,
so we assumed that, r > β.

4.2. Interior Equilibrium
The interior equilibrium point of system (2) is determined by solving the two non-trivial nullclines,

which are as follows:

f1(x, y) =
r

1 + ky
− β − αx −

1y
1 + hx2 = 0 (3)

f2(x, y) =
m1x

1 + hx2 −
(p + qy)

1 + y
= 0 =⇒ y =

p(1 + hx2) −m1x
m1x − q(1 + hx2)

. (4)

Putting the value of y from (4) in (3), we get ϕ(x) = 0, where

ϕ(x) = a7x7 + a6x6 + a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0
here,
a0 = (kp − q)(βq − p1) + q2r
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a1 = (kp − q)qα +
[
2q(r − β) + (p + q)(kβ − 1) + 2pk1

]
a2 = 3(kp − q)hqβ + [2q − (p + q)k]m1α + 2(q2r − p2k1 + pq1)h + [r + (1 − β)(1 − k)]m212

a3 = 3(kp − q)hqα + [4(r − β)q + 2pk1 + (p + q)(2kβ − 1)]hm1 − (1 − k)αm212

a4 = 3(kp − q)h2qβ + 2[2q − (p + q)k]hm1α + (q2r − p2k1 + pq1)h2 + [r − (1 − k)]βhm212

a5 = 3(kp − q)h2qα + [2q(r − β) + (p + q)kβ]m1h2
− (1 − k)αm212h

a6 = (kp − q)h3qβ + [2q − (p + q)k]h2m1α

a7 = (kp − q)h3qα

If kp < q <
p1
β

, then a0 > 0 and a7 < 0. Thus Descartes’s rule of sign [16], confirms at least one positive

solution of ϕ(x) = 0 say x∗. From (4) we have,

y∗ =
p(1 + hx∗2) −m1x∗

m1x∗ − q(1 + hx∗2)
> 0 , provided, p <

m1x∗(
1 + hx∗2

) < q.

There are some differences in the existence of system’s interior equilibrium for an appropriate choice of
parameters. We obtain several cases numerically, which are given below:

Case I: If r = 1.5, k = 0.21, β = 0.13, α = 0.25, 1 = 1.36, h = 0.44, m = 0.73, p = 0.32 and q = 1.15, the
non-trivial prey nullcline (green curve) and predator nullcline (red curve) do not intersect with each-other,
which is shown in Figure 2a.

Case II: If r = 1.75, k = 0.55, β = 0.38, α = 0.35, 1 = 1.55, h = 0.52, m = 0.93, p = 0.47, q = 1.37, the
non-trivial prey nullcline (green curve) and predator nullcline (red curve) intersect at exactly one point say
EI1(x∗1, y

∗

1), which is shown in Figure 2b.

Case III: If r = 1.7, k = 0.46, β = 0.18, α = 0.16, 1 = 1.49, h = 0.51, m = 0.93, p = 0.44, q = 1.24,
the non-trivial prey nullcline (green curve) and predator nullcline (red curve) intersect at two points say
EI1(x∗1, y

∗

1) and EI2(x∗2, y
∗

2), which is shown in Figure 2c.

Case IV: If r = 1.65, k = 0.5, β = 0.13, α = 0.25, 1 = 1.02, h = 0.44, m = 0.98, p = 0.1, q = 1.15, the
non-trivial prey nullcline (green curve) and predator nullcline (red curve) intersect at three points say
EI1(x∗1, y

∗

1), EI2(x∗2, y
∗

2) and EI3(x∗3, y
∗

3), which is shown in Figure 2d.

5. Stability Analysis

The Jacobian matrix of system (2) corresponding to the equilibrium point E(x, y) is

J(x, y) =


∂F1

∂x
∂F1

∂y

∂F2

∂x
∂F2

∂y


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Figure 2: Variation in the number of interior equilibrium points for a suitable choice of parameters. Here prey and predator nullcline
are depicted by red and green curve respectively.
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=


r

1 + ky
− β − 2αx −

1y(1 − hx2)
(1 + hx2)2 −

rkx
(1 + ky)2 −

1x
1 + hx2

m1y(1 − hx2)
(1 + hx2)2

m1x
1 + hx2 −

(p + 2qy + qy2)
(1 + y)2


Theorem 5.1. E0(0, 0), the trivial equilibrium point of system (2) is always unstable.

Proof. The Jacobian matrix J(E0(0, 0)) is given by

J(E0) =
[
r − β 0

0 −p

]
The eigenvalues of J(E0) are (r − β) and −p. Since it is biologically relevant to consider r > β, we have
(r − β) > 0 and −p < 0. Therefore, E0(0, 0) is a saddle point.

Theorem 5.2. Predator-free equilibrium point Ea( r−β
α , 0) is locally asymptotically stable if m1( r−β

α ) < p
[
1 + h( r−β

α )2
]

and is an unstable saddle point if m1( r−β
α ) > p

[
1 + h( r−β

α )2
]
.

Proof. The Jacobian matrix J(Ea) at Ea = ( r−β
α , 0) is given by

J(Ea) =


−(r − β) −

r − β
α

(
rk +

1α2

α2 + h(r − β)2

)

0
m1( r−β

α ) − p
[
1 + h( r−β

α )2
]

1 + h( r−β
α )2


The eigen values of J(Ea) are −(r − β) and

m1( r−β
α ) − p

[
1 + h( r−β

α )2
]

1 + h( r−β
α )2

. Hence the predator free equilibrium

is locally asymptotically stable if m1
(

r − β
α

)
< p

1 + h
(

r − β
α

)2 and it is an unstable saddle if m1
(

r − β
α

)
>

p

1 + h
(

r − β
α

)2.
Theorem 5.3. The coexistence equilibrium point EI(x∗, y∗) is locally asymptotically stable ifA1 > A2 andA3 < A4.

where,A1 =
m1

(1 + hx∗2)2

[
rk

(1 + ky∗)2 +
1

1 + hx∗2

]
+

(q − p)α

(1 + y∗)2 ,A3 =
21hx∗2y∗

(1 + hx∗2)2

A2 =
m1hx∗2

(1 + hx∗2)2

[
rk

(1 + ky∗)2 +
1

1 + hx∗2

]
+

21hx∗y∗(q − p)

(1 + y∗)2(1 + hx∗2)2
,A4 = αx∗ +

(q − p)y∗

(1 + y∗)2

Proof. For the coexistence equilibrium point EI(x∗, y∗), the Jacobin matrix becomes,

J(EI) =


x
∂ f1
∂x

x
∂ f1
∂y

y
∂ f2
∂x

y
∂ f2
∂y


EI

=

J11 J12

J21 J22

 = A
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where,

J11 = −αx∗ +
21hx∗2y∗

(1 + hx∗2)2 , J12 = −
rkx∗

(1 + ky∗)2 −
1x∗

1 + hx∗2
, J21 =

(1 − hx∗2)m1y∗

(1 + hx∗2)2 , J22 =
(p − q)y∗

(1 + y∗)2

Let, γ = Tr(J(EI)) = J11 + J22 = −αx∗ +
21hx∗2y∗

(1 + hx∗2)2 +
(p − q)y∗

(1 + y∗)2 = A3 −A4

and δ = det(J(EI)) =
[
xy
∂ f1
∂y
∂ f2
∂y

(
dy( f2)

dx
−

dy( f1)

dx

)]
EI

= x∗y∗
[(

rk
(1 + ky∗)2 +

1

1 + hx∗2

)
m1(1 − hx∗2)
(1 + hx∗2)2

−
(q − p)

(1 + y∗)2

(
21hx∗y∗

(1 + hx∗2)2
− α

)]
= x∗y∗(A1 −A2)

where,A1 =
m1

(1 + hx∗2)2

[
rk

(1 + ky∗)2 +
1

1 + hx∗2

]
+

(q − p)α

(1 + y∗)2 ,A3 =
21hx∗2y∗

(1 + hx∗2)2

A2 =
m1hx∗2

(1 + hx∗2)2

[
rk

(1 + ky∗)2 +
1

1 + hx∗2

]
+

21hx∗y∗(q − p)

(1 + y∗)2(1 + hx∗2)2
,A4 = αx∗ +

(q − p)y∗

(1 + y∗)2

So, when A1 > A2 and A3 < A4 the real part of the both eigen values are negative, hence the coexis-
tence equilibrium point EI(x∗, y∗) is locally asymptotically stable.

6. Bifurcation Analysis

6.1. Transcritical Bifurcation

Theorem 6.1. The system (2) experiences a transcritical bifurcation around the predator-free equilibrium point

Ea

(
r − β
α
, 0

)
at the bifurcation threshold p(TC) =

m1 (r−β)
α

1 + h( r−β
α )2

.

Proof. Here we apply Sotomayor’s theorem [17] to prove that the system (2) undergoes a transcritical bifur-

cation around Ea

(
r − β
α
, 0

)
at the bifurcation threshold p(TC) =

m1 (r−β)
α

1 + h( r−β
α )2

. Now the Jacobian matrix at Ea is

J(Ea) =


−(r − β) −

r − β
α

(
rk +

1α2

α2 + h(r − β)2

)

0
m1( r−β

α )

1 + h( r−β
α )2
− p


Now 0 is an eigen value of J(Ea; p = p(TC)). The eigen vectors of J(Ea; p = p(TC)) and J(Ea; p = p(TC))t corre-

sponding to the eigenvalue 0 are V =
(
v1
1

)
and W =

(
0
1

)
respectively,

where v1 = −
1
α

(
rk +

1α2

r2 + h(r − β)2

)
. The transversality conditions for transcritical bifurcation are

∆1 =Wt
[
Fp

(
Ea; p = p(TC)

)]
= 0,

∆2 =Wt
[
DFp

(
Ea; p = p(TC)

)
V
]
= −1 , 0,

∆3 =Wt
[
D2F

(
Ea; p = p(TC)

)
(V,V)

]
, 0 , provided, q +

A1h(r − β)2

α2 , A1 +
m1 (r−β)

α

1 + h( r−β
α )2
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Figure 3: Occurrence of the saddle-node bifurcations for the non-trivial prey nullclines (green curve) and predator nullclines (red
curve).

where, A1 =
1m

(
α21

h(r−β)2+r2 + kr
)

α
( h(r−β)2

α2 + 1
) .

Here, F ≡
(
F1
F2

)
, F1 and F2 are defined in the system (2). So, by Sotomayor’s theorem, the system experiences

a transcritical bifurcation around Ea

(
r − β
α
, 0

)
at the bifurcation threshold p(TC) =

m1 (r−β)
α

1 + h( r−β
α )2

.

Remark: The system (2) undergoes a transcritical bifurcation with respect to the bifurcation parameter r.

6.2. Saddle–node bifurcation

A saddle-node bifurcation arises when two equilibrium points within the system converge, collide,
and vanish as a result of the parameter’s variation, leading to their mutual annihilation. Here q, the
maximal mortality of predator is considered as the bifurcation parameter. The saddle-node bifurcation
appears when the predator and prey nullclines touch tangentially. Figure 3 shows that non-trivial prey and
predator nullclines touches each other for two different values of q, namely q(SN1) and q(SN2) and setting the
remaining parameter values at {r = 1.65, k = 0.5, β = 0.13, α = 0.25, 1 = 1.02, h = 0.44, m = 0.98, p = 0.1}.

Now we will provide a theorem that proves the occurrence of a saddle-node bifurcation in the system
with respect to the bifurcation parameter q.

Theorem 6.2. The system (2) experiences a saddle-node bifurcation with respect to the bifurcation parameter q.

Proof. Let, Φ(x) ≡ a7x7 + a6x6 + a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0 = 0 has a root of multiplicity two for a
certain critical value of q, say x∗. Geometrically, this occurs when the non trivial prey nullcline

(
f1(x, y) = 0

)
intersects the predator nullcline

(
f2(x, y) = 0

)
at a point of tangency (EI1(x∗1, y

∗

1)). Then the slope of two
nullcline are equal so,
dy( f1)

dx

∣∣∣∣∣∣∣
EI1

=
dy( f2)

dx

∣∣∣∣∣∣∣
EI1

.
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The Jacobian matrix J(EI1) at q = q(SN1) is given by ,

J(EI1; q = q(SN1)) =


x
∂ f1
∂x

x
∂ f1
∂y

y
∂ f2
∂x

y
∂ f2
∂y


EI1,q(SN1)

=


x
(
−α +

21hxy

(1 + hx2)2

)
−

rkx
(1 + ky)2 −

1x
1 + hx2

m1y
( 1 − hx2

(1 + hx2)2

) (p − q)y

(1 + y)2


EI1,q(SN1)

Now,

det(J(EI1; q = q(SN1))) =
[
xy

(
∂ f1
∂x
∂ f2
∂y
−
∂ f1
∂y
∂ f2
∂x

)]
EI1,q(SN1)

=

[
xy
∂ f1
∂y
∂ f2
∂y

(
dy( f2)

dx
−

dy( f1)

dx

)]
EI1,q(SN1)

= 0.

Hence, J(EI1; q = q(SN1)) has zero eigen-value. Now the eigen vectors corresponding to the zero eigen-

value of J(EI1; q = q(SN1)) and
[
J(EI1; q = q(SN1))

]t
are V =

(
1
v1

)
EI1,q(SN1)

and W =
(

1
w1

)
EI1,q(SN1)

respectively, where

v1 =
m1(1 + y)2(1 − hx2)

(q − p)(1 + hx2)2 and w1 = −
(1 + y)2x
(q − p)y

[ rk
(1 + ky)2 +

1

(1 + hx2)

]
. The transversality conditions for sad-

dle–node bifurcation are :

Wt
[
Fq(EI1; q = q(SN1))

]
=
[ (1 + y∗1)2x∗1
(q − p)(1 + y∗1

2)

 rk
(1 + ky∗1)2 +

1

(1 + hx∗1
2)

]
q=q(SN1)

, 0,

Wt
[
D2F(EI1; q = q(SN1))(V,V)

]
= 2α − R , 0, provided, 2α , R

where, R =
21hx∗1y∗1(3 − hx∗1

2)

(1 + hx∗1
2)3

[
1 +

(1 + y∗1)2mx∗1
(q(SN1) − p)

( rk
(1 + ky∗1)2 +

1

1 + hx∗1
2

)]
−

2m1(1 + y∗1)2(1 − hx∗1
2)

(q(SN1) − p)(1 + hx∗1
2)

[
rk

(1 + ky∗1)2 +
1(1 − hx∗1

2)

(1 + hx∗1
2)2

[
1 +

(1 + y∗1)2mx∗1
(q(SN1) − p)

( rk
(1 + ky∗1)2 +

1

1 + hx∗1
2

)]]
+

m212(1 + y∗1)4(1 − hx∗1
2)2

(q(SN1) − p)2(1 + hx∗1
2)2

[
2r2kx∗1

(1 + ky∗1)3 +
2x∗1

y∗1(1 + y∗1)

( rk
(1 + ky∗1)2 +

1

1 + hx∗1
2

)]
Therefore, according to Sotomayor’s theorem [17], it is concluded that the system undergoes a saddle-node
bifurcation around the interior equilibrium point EI1(x∗1, y

∗

1) at q = q(SN1). Similarly, another saddle-node
bifurcation occurs at the interior equilibrium point EI2(x∗2, y

∗

2) when q = q(SN2).

Remark: The system (2) undergoes a saddle-node bifurcation with respect to the bifurcation parameters p,
k and r.

6.3. Hopf bifurcation
Taking k, the fear level as a changing parameter the characteristic equation of the Jacobian matrix J(EI)

can be written as

λ2
− γ(k)λ + δ(k) = 0 (5)
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where the smooth functions δ(k) and γ(k) are the determinant and trace of J(EI), explicitly defined in the
proof of theorem (5.3). Here, the sign of the real parts of the eigen values λ determine the stability of
EI(x∗, y∗). For negative real parts, EI is stable and for positive real part, EI is unstable. Thus, the shift in
stability happens when the characteristic equation (5) possesses purely imaginary roots. Let us assume at
k = k(H),γ(k(H)) = 0 and δ(k(H)) > 0, i.e., the roots of (5) are purely imaginary at k = k(H). Next, we will prove
in the following theorem that the Hopf bifurcation occurs in system (2) at k = k(H).

Theorem 6.3. For the bifurcation parameter k, system (2) undergoes a Hopf bifurcation around EI(x∗, y∗) at k = k(H)

provided γ(k(H)) = 0, δ(k(H)) > 0 and
[

dγ
dk

]
k(H)

, 0 .

Proof. The characteristic equation (5) has two purely imaginary roots λ1 = i
√
δ(k(H)) and λ2 = −i

√
δ(k(H))

at k = k(H) as, γ(k(H)) = 0 and δ(k(H)) > 0. Therefore characteristic roots of the equation (5) is of the form
λ1(k) = p1(k)+ ip2(k) and λ2(k) = p1(k)− ip2(k) in an open neighbourhood of k(H) where p1(k) and p2(k) are real
valued functions of k. So, the system changes its stability if the transvarsality condition of Hopf-Bifurcation
Theorem [18],[

d
dk

(Re(λi(k)))
]

k=k(H)

=

[
d
dk

(p1(k))
]

k=k(H)

, 0

is satisfied. Substituting λ(k) = p1(k) + ip2(k) in (5) and differentiating w.r.t. k, we get

2
(
p1(k) + ip2(k)

)(
ṗ1(k) + iṗ2(k)

)
−γ(k)

(
ṗ1(k) + iṗ2(k)

)
−γ̇(k)

(
p1(k) + ip2(k)

)
+δ̇(k) = 0

Comparing the real and complex parts, we have

ṗ1(2p1 − γ) + ṗ2(−2p2) − γ̇p1 + δ̇ = 0 =⇒ ṗ1X1 − ṗ2X2 + X3 = 0;

ṗ1(2p2) + ṗ2(2p1 − γ) − γ̇p2 = 0 =⇒ ṗ1X2 + ṗ2X1 + X4 = 0;

where, X1 = (2p1 − γ),X2 = 2p2,X3 = (−γ̇p1 + δ̇) and X4 = −γ̇p2

Solving the above system we get,

ṗ1 = −
(X1X3 + X2X4)

X2
1 + X2

2

(6)

Now, for k = k(H) i.e. for p1(k) = 0, two cases arise:

Case I: p2 =
√
δ. Therefore X1 = 0, X2 = 2

√
δ, X3 = δ̇ and X4 = −γ̇

√
δ. Hence from (6) we get[

d
dk

(p1(k))
]

k=k(H)

=
1
2

[
d
dk

(γ(k))
]

k=k(H)

, 0 , provided, k(H) ,
1
y∗

Case II: p2 = −
√
δ. Therefore X1 = 0, X2 = −2

√
δ, X3 = δ̇ and X4 = γ̇

√
δ. So from (6) we get[

d
dk

(p1(k))
]

k=k(H)

=
1
2

[
d
dk

(γ(k))
]

k=k(H)

, 0 , provided, k(H) ,
1
y∗

Hence proved.

Remark: For the bifurcation parameter r, system (2) undergoes a Hopf bifurcation around the interior
equilibrium EI(x∗, y∗)
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6.4. Cusp bifurcation
It has been observed that the system (2) possesses three coexistence equilibrium points for a suitable

choice of parametric values say, EI1(x1
∗, y1

∗), EI2(x2
∗, y2

∗) and EI3(x3
∗, y3

∗). Now, for a continuous change of a
parametric value, two cases appear: either EI1 coincides with EI2 or EI2 coincides with EI3 at a point, leads
to the occurrence of two saddle-node bifurcation curve. If these two branches of saddle-node bifurcation
curve meet tangentially at a point, the cusp bifurcation emerges. That is, three interior equilibrium points
coincide together at this cusp point. Therefore the system (2) experiences a cusp bifurcation.

6.5. Bogdanov-Takens bifurcation
The system (2) undergoes both saddle-node bifurcation and Hopf-bifurcation for a proper set of para-

metric values, resulting in a saddle-node bifurcation curve and a Hopf bifurcation curve within a specific
two-parameter bifurcation plane. When the Hopf-bifurcation curve intersects saddle-node bifurcation
curve, a new bifurcation known as the Bogdanov-Takens bifurcation emerges. Usually, a Bogdanov-Takens
(BT) bifurcation refers to a point, in which the Jacobian matrix has a zero eigenvalue with algebraic multi-
plicity two. Now we will provide a theorem that proves the occurrence of a Bogdanov–Takens bifurcation
in the system with respect to the bifurcation parameters q and r.

Theorem 6.4. The system (2) undergoes a Bogdanov–Takens bifurcation around the interior equilibrium point
EI(x∗, y∗) with respect to the bifurcation parameters q, r, whenever satisfies the following conditions:
(BT1) tr(J(EI; (qBT, rBT))) = 0
(BT2) det(J(EI; (qBT, rBT))) = 0

Proof. Conditions (BT1) and (BT2) are equivalent to following

x∗
(
−α +

21hx∗y∗

(1 + hx∗2)2

)
+

(p − qBT)y∗

(1 + y∗)2 = 0

x∗
(
−α +

21hx∗y∗

(1 + hx∗2)2

) (p − qBT)y∗

(1 + y∗)2 +
[ rBTkx∗

(1 + ky∗)2 +
1x∗

1 + hx∗2

]( 1 − hx∗2

(1 + hx∗2)2

)
m1y∗ = 0

From above expressions we can write explicitly

qBT = p −
x∗(1 + y∗)2

y∗

[
α −

21hx∗y∗

(1 + hx∗2)2

]
,

rBT =
[x∗(1 + hx∗2)2(1 + ky∗)2

km1y∗(1 − hx∗2)

](
α −

21hx∗y∗

(1 + hx∗2)2

)2

−
1(1 + ky∗)2

k(1 + hx∗2)

Let us consider a small perturbation around the bifurcation threshold (qBT, rBT) say (qBT + λ2, rBT + λ1),
where {λi; i = 1, 2} are sufficiently small.
Then system (2) becomes

dx
dt
=

(r + λ1)x
1 + ky

− βx − αx2
−
1xy

1 + hx2 ≡ G1(x, y, λ1) = F1(x, y) +
λ1x

1 + ky

dy
dt
=

m1xy
1 + hx2 −

[
p + (q + λ2)y

]
y

1 + y
≡ G2(x, y, λ2) = F2(x, y) −

λ2y2

1 + y

(7)

Now we shift the equilibrium point EI(x∗, y∗) to the origin by the transformations x1 = x− x∗ and x2 = y− y∗.
So system (7) becomes

dx1

dt
= p00 + p10x1 + p01x2 +

p11

2
x1

2 + p12x1x2 +
p22

2
x2

2 + ...

dx2

dt
= q00 + q10x1 + q01x2 +

q11

2
x1

2 + q12x1x2 +
q22

2
x2

2 + ...
(8)
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where,

p00 = G1(x∗, y∗, λ1) , q00 = G2(x∗, y∗, λ2) , p10 =
∂G1

∂x
(x∗, y∗, λ1) = a +

λ1

1 + ky∗

q10 =
∂G2

∂x
(x∗, y∗, λ2) = c , p01 =

∂G1

∂y
(x∗, y∗, λ1) = b −

λ1kx∗

(1 + ky∗)2

q01 =
∂G2

∂y
(x∗, y∗, λ2) = d −

(2y∗ + y∗2)λ2

(1 + y∗)2 , p11 =
∂2G1

∂x2 (x∗, y∗, λ1) =
21hx∗y∗(3 − hx∗2)

(1 + hx∗2)3
− 2α

q11 =
∂2G2

∂x2 (x∗, y∗, λ2) =
2hm1x∗y∗(hx∗2 − 3)

(1 + hx∗2)3
, p12 =

∂2G1

∂y∂x
(x∗, y∗, λ1) = −

1(1 − hx∗2)
(1 + hx∗2)2

−
k(r + λ1)
(1 + ky∗)2

q12 =
∂2G2

∂y∂x
(x∗, y∗, λ2) =

m1(1 − hx∗2)
(1 + hx∗2)2

, p22 =
∂2G1

∂y2 (x∗, y∗, λ1) =
2k2x∗(r + λ1)

(1 + ky∗)3

q22 =
∂2G2

∂y2 (x∗, y∗, λ2) =
2(p − q − λ2)

(1 + y∗)3

Here, a = −αx∗ +
21hx∗2y∗

(1 + hx∗2)2 , b = −
rkx∗

(1 + ky∗)2 −
1x∗

1 + hx∗2
, c =

(1 − hx∗2)m1y∗

(1 + hx∗2)2 , d =
(p − q)y∗

(1 + y∗)2 .

Now, introducing affine transformation [17] z1 = x1, z2 = ax1 + bx2, then the above system is transformed
into

dz1

dt
= z2 + ζ00(λ) + ζ10(λ)z1 + ζ01(λ)z2 +

ζ20(λ)
2

z1
2 + ζ11z1z2 +

ζ02(λ)
2

z2
2 + B1(z1, z2)

dz2

dt
= η00(λ) + η10(λ)z1 + η01(λ)z2 +

η20(λ)
2

z1
2 + η11z1z2 +

η02

2
z2

2 + B2(z1, z2)
(9)

where, λ = (λ1, λ2) and

ζ00(λ) = G1(x∗, y∗, λ) , η00(λ) = aG1(x∗, y∗, λ) + bG2(x∗, y∗, λ) , ζ10(λ) = (p10 −
a
b

p01)

η10(λ) = bq10 − aq01 + ap10 −
a2

b
p01 , ζ01(λ) =

1
b

p01 − 1 , η01(λ) = q01 +
a
b

p01 , ζ20(λ) =
[
p11 −

2ap12

b
+

a2p22

b2

]
η20(λ) =

[
ap11 + bq11 −

2a(ap12 + bq12)
b

+
a2(ap22 + bq22)

b2

]
, ζ11(λ) =

[p12

b
−

ap22

b2

]
η11(λ) =

[ (ap12 + bq12)
b

−
a(ap22 + bq22)

b2

]
, ζ02(λ) =

p22

b2 , η02(λ) =
(ap22 + bq22)

b2

The degeneracy conditions [19] of the Bogdanov-Takens bifurcations at (qBT, rBT) are,

I.
[
a b
c d

]
,

[
0 0
0 0

]
II. ζ20(0) + η11(0) = R1 − 2α , 0 provided, 2α , R1

where, R1 =
1m

(
1 − hx∗2

) (
α
(
y∗ − 1

) (
hx∗2 + 1

)2
− 41hx∗y∗2

)
(
y∗ + 1

) (
hx∗2 + 1

)2
(
α
(
hx∗2 + 1

)2
− 21hx∗y∗

) +
α
(
hx∗2 + 1

)2
− 41hx∗y∗

(
hx∗2 − 1

)
(
hx∗2 + 1

)3

Also,

III. η20 =

α − 21hx∗y∗(
hx∗2 + 1

)2


2αx∗ +

21hx∗2y∗
(
hx∗2 − 3

)(
hx∗2 + 1

)3

 +
2hx∗3

(
hx∗2 − 3

) α − 21hx∗y∗(
hx∗2 + 1

)2

2

(
hx∗2 + 1

) (
1 − hx∗2

)
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+
21my∗

(
1 − hx∗2

)(
hx∗2 + 1

)2

( 21hx∗2(
hx∗2 + 1

)2 −
x∗

(
hx∗2 + 1

)2

1my∗
(
1 − hx∗2

) α − 21hx∗y∗(
hx∗2 + 1

)2

2 )
−

x∗

y∗

α − 21hx∗y∗(
hx∗2 + 1

)2


+

(
1my∗

(
1 − hx∗2

))2

(
hx∗2 + 1

)2
(
α
(
hx∗2 + 1

)2
− 21hx∗y∗

) ( 2x∗
(
ky∗2 − 1

) (
α
(
hx∗2 + 1

)2
− 21hx∗y∗

)2

1my∗2
(
y∗ + 1

) (
1 − hx∗2

) (
hx∗2 + 1

)2 (
ky∗ + 1

) −
21k(

hx∗2 + 1
)

(ky∗ + 1)

)

Therefore, ζ20(0) + η11(0) , 0 and η20(0) may or may not be 0. So, when η20(0) , 0, then according to
sign

[
η20(0)

(
ζ20(0) + η11(0)

)]
, i.e., either +1 or −1, the predator-prey model undergoes a subcritical BT bi-

furcation or undergoes a supercritical BT bifurcation respectively. It is difficult to show that η20(0) , 0 but
we can assure the existence of Bogdanov-Takens bifurcation numerically for certain choice of parameters
shown in Section 7.

Remark: Also the system (2) undergoes Bogdanov–Takens bifurcation around an interior equilibrium point
EI(x∗, y∗) for the pair of parameters {q, p} and {p, r}.

6.6. Generalized Hopf bifurcation

The stability of the interior equilibrium point can be modified by supercritical or subcritical Hopf
bifurcations, with the bifurcation type determined by the first Lyapunov coefficient (σ). A supercritical
Hopf bifurcation leads to a stable limit cycle, characterized by σ < 0, while a subcritical Hopf bifurcation
results in an unstable limit cycle, characterized by (σ > 0). The system undergoes a generalized Hopf
bifurcation at (σ = 0), which separates the two types of Hopf bifurcations. Now we will provide a theorem
that proves the occurrence of a Generalized Hopf bifurcation in the system with respect to the bifurcation
parameters p and r.

Theorem 6.5. The system (2) experiences a Bautin (Generalized Hopf) bifurcation at the interior equilibrium point
EI(x∗, y∗) around the bifurcation threshold (pGH, rGH) whenever EI(x∗, y∗) satisfies the following conditions:
(GH1) T = tr(J(EI; (pGH, rGH))) = 0
(GH2) D = det(J(EI; (pGH, rGH))) > 0
(GH3) L(EI; (pGH, rGH)) = 0
where L is the first lyapunov number.

Proof. Let the nontrivial equilibrium point EI(x∗, y∗) satisfies the above three conditions. The Jacobian matrix
at EI is

J(EI) =


x
∂ f1
∂x

x
∂ f1
∂y

y
∂ f2
∂x

y
∂ f2
∂y


EI

=


x∗

(
−α +

21hx∗y∗

(1 + hx∗2)2

)
−

rkx∗

(1 + ky∗)2 −
1x∗

1 + hx∗2

m1y∗
( 1 − hx∗2

(1 + hx∗2)2

) (p − q)y∗

(1 + y∗)2


Now, from the condition (GH1) and (GH2):

pGH = q +
x∗(1 + y∗)2

y∗

[
α −

21hx∗y∗

(1 + hx∗2)2

]
.

To find the first lyapunov number L at EI we translate EI to origin by using the transformation x1 = x − x∗
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and x2 = y − y∗. So, the system (2) becomes

dx1

dt
= ax1 + bx2 + P(x1, x2)

dx2

dt
= cx1 + dx2 +Q(x1, x2)

where, a =
(∂F1

∂x

)
EI

, b =
(∂F1

∂y

)
EI

, c =
(∂F2

∂x

)
EI

, d =
(∂F2

∂y

)
EI

and P(x1, x2), Q(x1, x2) are analytic functions,

defined by

P(x1, x2) =
∑

i+ j≥2

ai jx1
ix2

j

Q(x1, x2) =
∑

i+ j≥2

bi jx1
ix2

j

where, ai j and bi j are defined by, ai j =
1

i! j!

( ∂i+ jF1

∂xi∂y j

)
EI

and bi j =
1

i! j!

( ∂i+ jF2

∂xi∂y j

)
EI

Now, the first Lyapunov number [19] is as follows;

L = −
3π

2bD
3
2

[{
ac(a2

11 + a11b02 + a02b11)+ ab(b2
11 + a20b11 + a11b02)+ c2(a11a02 + 2a02b02)− 2ac(b2

02 − a20a02)− 2ab(a2
20 −

b20b02) − b2(2a20b20 + b11b20) + (bc − 2a2)(b11b02 − a11a20)
}
−(a2 + bc)

{
3(cb03 − ba30) + 2a(a21 + b12) + (ca12 − bb21)

}]
Let us determine the coefficients ai j, bi j and a, b, c and d to calculate the first Lyapunov number.

a =
∂F1

∂x
(x∗, y∗) = −αx∗ +

21hx∗2y∗

(1 + hx∗2)2 , b =
∂F1

∂y
(x∗, y∗) = −

rkx∗

(1 + ky∗)2 −
1x∗

1 + hx∗2

c =
∂F2

∂x
(x∗, y∗) =

m1y∗(1 − hx∗2)

(1 + hx∗2)2 , d =
∂F2

∂y
(x∗, y∗) =

(p − q)y∗

(1 + y∗)2 , D = det (J(EI))

a11 =
∂2F1

∂y∂x
(x∗, y∗) = −

1(1 − hx∗2)
(1 + hx∗2)2

−
rk

(1 + ky∗)2 , b03 =
1
6
∂3F2

∂y3 (x∗, y∗) =
(q − p)

(1 + y∗)4

a20 =
1
2
∂2F1

∂x2 (x∗, y∗) =
1hx∗y∗(1 − 3hx∗2)

(1 + hx∗2)3
+

21hx∗y∗

(1 + hx∗2)2
− α , a02 =

1
2
∂2F1

∂y2 (x∗, y∗) =
k2rx∗

(1 + ky∗)3

a21 =
1
2
∂3F1

∂x2∂y
(x∗, y∗) =

1hx∗(3 − hx∗2)
(1 + hx∗2)3

, a12 =
1
2
∂3F1

∂x∂y2 (x∗, y∗) =
k2r

(1 + ky∗)3

a30 =
1
6
∂3F1

∂x3 (x∗, y∗) =
1hy∗(1 − 6hx∗2 + h2x∗4)

(1 + hx∗2)4
, a03 =

1
6
∂3F1

∂y3 (x∗, y∗) = −
rk3x∗

(1 + ky∗)4

b11 =
∂2F2

∂y∂x
(x∗, y∗) =

m1(1 − hx∗2)
(1 + hx∗2)2

, b20 =
1
2
∂2F2

∂x2 (x∗, y∗) = −
hm1x∗y∗(3 − hx∗2)

(1 + hx∗2)3

b02 =
1
2
∂2F2

∂y2 (x∗, y∗) =
(p − q)

(1 + y∗)3 , b21 =
1
2
∂3F2

∂x2∂y
(x∗, y∗) = −

hm1x∗(3 − hx∗2)
(1 + hx∗2)3

b12 =
1
2
∂3F2

∂x∂y2 (x∗, y∗) = 0 , b30 =
1
6
∂3F2

∂x3 (x∗, y∗) = −
m1hy∗(1 − 6hx∗2 + h2x∗4)

(1 + hx∗2)4

Substituting the values of above expressions in first Lyapunov number and after some algebraic com-
putations, we obtain,
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L = −
3π

2bD
3
2

x∗(L1 + L2 + L3 + L4 + L5 + L6 + L7 + L8)

y∗
(
y∗ + 1

)2 (
hx∗2 + 1

)9 (
ky∗ + 1

)5

where,

L1 = −1hmx∗2y∗2
(
y∗ + 1

)2
(
3 − hx∗2

) (
hx∗2 + 1

) (
ky∗ + 1

) [
1
(
ky∗ + 1

)2 + kr
(
hx∗2 + 1

)]2

(
2α + h2x∗4(6α + 1m) + 21h2x∗3y∗ − 61hx∗y∗ − 1m + 2αh3x∗6 + 6αhx∗2

)
L2 = 21mx∗2

(
1 − hx∗2

) (
hx∗2 + 1

) (
ky∗ + 1

)3
(
α
(
hx∗2 + 1

)2
− 21hx∗y∗

)
[
k2ry∗2

(
y∗ + 1

)2
(
hx∗2 + 1

) (
α + 1h2x∗3y∗ − 31hx∗y∗ + αh3x∗6 + 3αh2x∗4 + 3αhx∗2

)
+(

ky∗ + 1
)2

(
α
(
hx∗2 + 1

)2
− 21hx∗y∗

)2 ]
L3 = 2x∗y∗

(
y∗ + 1

) (
ky∗ + 1

)3
(
α
(
hx∗2 + 1

)2
− 21hx∗y∗

) (
1
(
ky∗ + 1

)2 + kr
(
hx∗2 + 1

))
[(

y∗ + 1
) (
α + 1h2x∗3y∗ − 31hx∗y∗ + αh3x∗6 + 3αh2x∗4 + 3αhx∗2

)2
+

1hmx∗2
(
hx∗2 + 1

) (
3 − hx∗2

) (
α
(
hx∗2 + 1

)2
− 21hx∗y∗

) ]
L4 = 1

2k2m2rx∗y∗2
(
y∗ + 1

) (
hx∗2 − 1

)2 (
hx∗2 + 1

)3 (
ky∗ + 1

)(
2x∗

(
ky∗ + 1

)2
(
α
(
hx∗2 + 1

)2
− 21hx∗y∗

)
− y∗

(
y∗ + 1

) ((
ky∗ + 1

)2
1
(
1 − hx∗2

)
+ kr

(
hx∗2 + 1

)2
) )

L5 = x∗
(
y∗ + 1

) (
hx∗2 + 1

) (
ky∗ + 1

) (
α
(
hx∗2 + 1

)2
− 21hx∗y∗

) (
1
(
ky∗ + 1

)2 + kr
(
hx∗2 + 1

))
(
1my∗

(
y∗ + 1

) (
hx∗2 − 1

) (
ky∗ + 1

)2
(
α + 1h2x∗3y∗ − 31hx∗y∗ + αh3x∗6 + 3αh2x∗4 + 3αhx∗2

)
− x∗

(
hx∗2 + 1

) (
α
(
hx∗2 + 1

)2
− 21hx∗y∗

) ((
ky∗ + 1

)2
1
(
1 − hx∗2

)
+ kr

(
hx∗2 + 1

)2
)

12m2y∗
(
y∗ + 1

) (
hx∗2 − 1

)2 (
hx∗2 + 1

) (
ky∗ + 1

)2
)

L6 =
(
1my∗

(
hx∗2 + 1

) (
1 − hx∗2

) (
1
(
ky∗ + 1

)2 + kr
(
hx∗2 + 1

))
+ 2x∗

(
ky∗ + 1

)2(
α
(
hx∗2 + 1

)2
− 21hx∗y∗

)2 ) (
y∗ + 1

) (
ky∗ + 1

) (
1mx∗

(
1 − hx∗2

) (
hx∗2 + 1

) (
ky∗ + 1

)2(
α
(
hx∗2 + 1

)2
− 21hx∗y∗

)
−

(
α + 1h2x∗3y∗ − 31hx∗y∗ + αh3x∗6 + 3αh2x∗4 + 3αhx∗2

)
(
ky∗ + 1

)2
1
(
1 − hx∗2

)
+ kr

(
hx∗2 + 1

)2
y∗

(
y∗ + 1

) )
L7 = 1my∗

(
y∗ + 1

) (
1 − hx∗2

) (
hx∗2 + 1

) (
ky∗ + 1

) (
α
(
hx∗2 + 1

)2
− 21hx∗y∗

)
(
−x∗

(
ky∗ + 1

)2
(
α
(
hx∗2 + 1

)2
− 21hx∗y∗

) ((
ky∗ + 1

)2
1
(
1 − hx∗2

)
+ kr

(
hx∗2 + 1

)2
)
+

1k2mrx∗2y∗
(
y∗ + 1

) (
1 − hx∗2

) (
hx∗2 + 1

)2 (
ky∗ + 1

)2 +

y∗
(
y∗ + 1

) ((
ky∗ + 1

)2
1
(
1 − hx∗2

)
+ kr

(
hx∗2 + 1

)2
)2 )

L8 = 1y∗
(
− 1my∗

(
1 − hx∗2

) (
hx∗2 + 1

) (
1
(
ky∗ + 1

)2 + kr
(
hx∗2 + 1

))
+ x∗

(
ky∗ + 1

)2(
α
(
hx∗2 + 1

)2
− 21hx∗y∗

)2 )[
k2mry∗

(
y∗ + 1

)2
(
1 − hx∗2

) (
hx∗2 + 1

)3
−
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2hx∗2
(
y∗ + 1

)2
(
3 − hx∗2

) (
ky∗ + 1

)3
(
α
(
hx∗2 + 1

)2
− 21hx∗y∗

)
−

hmx∗2
(
y∗ + 1

)2
(
3 − hx∗2

) (
hx∗2 + 1

) (
ky∗ + 1

) (
1
(
ky∗ + 1

)2 + kr
(
hx∗2 + 1

))
−

3x∗
(
ky∗ + 1

) (
− hy∗

(
y∗ + 1

)2
(
h2x∗4 − 6hx∗2 + 1

) (
1
(
ky∗ + 1

)2 + kr
(
hx∗2 + 1

))
+

m
(
1 − hx∗2

) (
hx∗2 + 1

) (
ky∗ + 1

)2
(
α
(
hx∗2 + 1

)2
− 21hx∗y∗

) )]
It is difficult to show that L = 0 but we can assure the existence of generalized Hopf bifurcation numerically
for certain choice of parameters.

Remark: Also the system (2) undergoes Generalized Hopf bifurcation around an interior equilibrium point
EI(x∗, y∗) for the pair of parameters {q, p} and {q, r}.

7. Numerical Simulation

Numerical simulations are presented to illustrate bifurcations and examine the effects of parameter
variations on the dynamics of system (2).

7.1. Codimension one bifurcation diagram

A systematic investigation of many bifurcation diagrams is conducted by varying a parameter. This
allows us to get a comprehensive knowledge of how the dynamics of the system change in relation to the
chosen parameter. Let us vary the parameter p, representing the mortality rate of the predator species,
while keeping the other parameters fixed at {r = 1.65, k = 0.5, β = 0.13, α = 0.25, 1 = 1.02, h = 0.44,
m = 0.98, q = 1.15}. In Figure 4, Figure 5, Figure 6 and Figure 7 the blue solid and dotted curves represent
the stable and unstable behavior of Ea, respectively. The red solid and dotted curves correspond to the
stable and unstable behavior of EI, while the green dotted curve indicates the unstable behavior of E0. By
analyzing Figure 4, it is noticed that one unstable and one stable EI move towards each other and meet at
p = p(SN2) = 0.3212278. Moreover, we see a similar scenario in which one unstable and one stable EI come
together and intersect at p = p(SN1) = 0.016862. So, the system displays two saddle-node bifurcations at the
points p = p(SN1) and p = p(SN2). On the other hand, we see that the system’s stability shifts when an interior
equilibrium point meets with a predator-free equilibrium point Ea at p = p(TC) = 0.352012. At p = p(TC), a
transcritical bifurcation occurs, where the unstable predator-free equilibrium point becomes stable while
the stable interior equilibrium point disappears. Higher mortality rate p leads to the extinction of predator
species, especially when p > p(TC). From Figure 4, we observe that when p < p(SN1) or p(SN2) < p < p(TC),
system (2) contains one stable EI along with unstable E0 and Ea. Two stable and one unstable EI, unstable
E0 and Ea are present for the system (2) when p(SN1) < p < p(SN2). Due to the existence of two stable EI in
p(SN1) < p < p(SN2), a bi-stability phenomenon emerges. The system has stable Ea and E0 for p > p(TC).

We will now discuss how the mortality rate of predator species influences the prey and predator biomass.
When p < p(SN1) i.e., the mortality rate of predator species is low, then the population size of predator species
is high. As a result, consumption of prey by predator species is also increase. So, population size of prey
species is low. Now we slowly increase p and entering in the range p(SN1) < p < p(SN2). Due to the existence
of bi-stability phenomenon in p(SN1) < p < p(SN2), the initial population biomass of both species determines
their future population size. when p(SN2) < p < p(TC) i.e., an increased mortality rate leads to a reduction
in predator biomass. As a result, the predation of prey decreases and prey biomass increases. When p is
extremely high, i.e., p > p(TC), the predator species faces extinction.

Next, we consider maximal mortality rate of predator species q as bifurcation parameter. Initially, We
adjust the value of parameters at {r = 1.65, k = 0.5, β = 0.13, α = 0.25, 1 = 1.02, h = 0.44, m = 0.98, p = 0.1}
and vary the maximal mortality coefficient of predator q. In this bifurcation scenario, E0 and Ea remain
unstable for all q. Consequently, all bifurcations are observed by EI. In Figure 5, we observed that one
stable and one unstable EI converge and meet at q = q(SN1) = 1.0512027. Also, we see a similar situation,
where one unstable and one stable EI move towards each other and meet q = q(SN2) = 1.3547206. As a result,
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(a) p vs x (b) p vs y

Figure 4: Bifurcation diagram of system (2) with respect to p.

(a) q vs x (b) q vs y

Figure 5: Bifurcation diagram of system (2) with respect to q.

system (2) exhibits two saddle-node bifurcations at the points q = q(SN1) and q = q(SN2). It is observed that
when q < q(SN1) and q > q(SN2), system (2) contains one stable EI. The system has one unstable and two
stable EI for q(SN1) < q < q(SN2). Due to the existence of two stable EI in q(SN1) < q < q(SN2), a bi-stability
phenomenon emerges. We shall now examine how the limiting mortality rate of predator species affects the
biomass of prey and predators. When the limiting mortality rate of predator species is low i.e q < q(SN1),the
population biomass of predator species is large. As a result, the increase in prey consumption by predator
species leads to a decrease in the prey population. We gradually increase the value of q and falls into the
range q(SN1) < q < q(SN2). Both the population biomass is influenced by their initial biomass levels due to
the bi-stability phenomena occurring in the range of q(SN1) < q < q(SN2). When q > q(SN2) i.e., an rise in the
limiting mortality rate results in a decrease in predator biomass. Consequently, predation of prey reduces,
causing an increase in prey biomass. This has ecological significance.

Now, consider another bifurcation parameter k, representing the level of fear due to predator. Initially,
we set the parameter values to {r = 1.65, β = 0.13, α = 0.25, 1 = 1.02, h = 0.44, m = 0.98, p = 0.1, q = 1.15} and
vary the parameter k. For any value of k, all axial equilibrium points (the trivial equilibrium point and the
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(a) k vs x (b) k vs y

Figure 6: Bifurcation diagram of system (2) with respect to k. Magenta dotted and solid curve represents the unstable and stable
behaviour of limit cycle respectively.

predator-free equilibrium point) remain unstable in this bifurcation scenario. As a result, the bifurcation
occurs through EI. In Figure 6, we observe one stable and one unstable EI move towards each other and
meet at k = k(SN1) = 0.63104307. Additionally, a similar situation is observed between two unstable EI at
k = k(SN2) = 0.11842867. Consequently, the system demonstrates two saddle-node bifurcations at k = k(SN1)

and k = k(SN2). On the other hand, one unstable EI gain its stability at k = k(H) = 0.93320982, resulting in a
appearence of Hopf bifurcation. The hopf bifurcation is of subcritical type as the first Lyapunov coefficient
is positive, which leads to the emergence of unstable bifurcating limit cycles. This cycle approach and
collide with stable limit cycles at k = k(SNLC) = 0.271023, results in the occurrence of saddle node bifurcation
of limit cycles. From Figure 6, we observe that when k < k(SN2) and k > k(SN1), the system has one stable
EI and for k(SN2) < k < k(H), system (2) has two unstable and one stable EI. One of those two unstable EI
becomes stable for k(H) < k < k(SN1). As a result, a bi-stability phenomenon emerges.

Next, we consider another bifurcation parameter r, representing birth rate of prey in the absence of
predator. Now we vary the parameter r, while keeping the other parameters fixed at {k = 0.5, β = 0.13,
α = 0.25, 1 = 1.02, h = 0.44, m = 0.98, p = 0.1, q = 1.15}. In this bifurcation scenario, E0 remain
unstable for all r. As a result, the system shows bifurcation through interior equilibrium point and Ea. In
Figure 7, we observed that the system change its stability when Ea meets with interior equilibrium point at
r = r(TC1) = 5.7844243. At this point, Ea becomes unstable and a stable EI appear. Consequently, a transcritical
bifurcation occurs. This stable EI converge and collide with another unstable EI at r = r(SN1) = 1.5398266.
Additionally, a similar situation is observed, where two unstable EI move towards each other and meet
at r = r(SN2) = 2.5025307. Consequently, system (2) experiences saddle node bifurcation at r = r(SN1) and
r = r(SN2). On the other hand, an unstable interior equilibrium point becomes stable at r = r(H) = 2.0112076,
resulting in the occurrence of Hopf bifurcation. The hopf bifurcation is of subcritical type as the first
Lyapunov coefficient is positive, which leads to the emergence of unstable bifurcating limit cycles. This
cycle converges and collides with stable limit cycles at r = r(SNLC) = 1.99965, resulting in the occurrence of
a saddle node bifurcation of limit cycles. Now the stable interior equilibrium point meets with an unstable
predator free equilibrium point at r = r(TC2) = 0.15512112. As a result, Ea becomes stable and the stable EI
vanishes at r = r(TC2), a transcritical bifurcation occurs. This stable predator free equilibrium point Ea meets
with E0 at r = r(BP), known as branch point. From Figure 7, we observed that for r(BP) < r < r(TC2), system
has one stable Ea and one unstable E0. For r(TC2) < r < r(SN1), the system possesses one stable EI along with
unstable Ea and E0. When r(SN1) < r < r(H), two more interior equilibrium points emerge, one being stable
and the other unstable. As a result, a bi-stability phenomenon arises between two stable EI. Between those
EI, one becomes unstable for r(H) < r < r(SN2). When r(SN2) < r < r(TC1), system has one stable EI along
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(a) r vs x (b) r vs y

Figure 7: Bifurcation diagram of system (2) with respect to r. Magenta dotted and solid curve represent the unstable and stable
behaviour of limit cycle respectively.

Figure 8: Two parametric bifurcation diagram of system (2) in q − p parametric plane.The red curve, green curve, cyan curve,
blue curve and magenta curve represents the Hopf bifurcation curve, saddle node bifurcation curve, transcritical bifurcation curve,
homoclinic bifurcation curve and saddle–node bifurcation of the limit cycle curve respectively.

with unstable Ea and E0. The stable interior equilibrium point disappear and Ea change its stability when
r > r(TC2).

7.2. Codimension two bifurcation diagram and Hysteresis
Previous investigations have shown that the parameter q affects the fluctuation in predator biomass and

the mortality rate of predator is an important factor influencing the dynamics of the system.
Thus, for our initial analysis, we choose p and q as the bifurcation parameters and set the values of

the remaining parameters to {r = 1.65, k = 0.5, β = 0.13, α = 0.25, 1 = 1.02, h = 0.44, m = 0.98}. The
bifurcation curves and thresholds that occur in the q − p parametric plane are shown in Figure 8. These
curves effectively partition the entire q − p parametric plane into eleven separate regions i.e. R1, R2, R3,
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R4, R5, R6, R7, R8, R9, R10 and R11. The following discussion will provide a more detailed examination
of these regions. The figure illustrates five different types of bifurcation curves: two saddle-node curves
(green), one Hopf curve (red), one homoclinic bifurcation curve (blue), one transcritical curve (cyan), and
one saddle-node bifurcation of the limit cycle curve (magenta). The Hopf bifurcation curve touches the
saddle–node bifurcation curve tangentially at the point BT1(1.1252903, 0.34802131) and the Hopf bifurcation
curve disappears. Consequently Bogdanov–Takens bifurcation occurs. The homoclinic bifurcation curve
emerges from this Bogdanov-Takens bifurcation point. Furthermore, the Hopf bifurcation curve has a
generalized Hopf bifurcation point at GH1(1.020375, 0.32524786), where the saddle-node bifurcation of the
limit cycle curve emerges as a consequence of the supercritical Hopf bifurcation changing into a subcritical
Hopf bifurcation.

Now, we study the dynamical properties of each region. For Figure 9, Figure 11, and Figure 12, the
predator and prey nullclines are represented by the red and green curves (solid), respectively. The solid
blue curve shows trajectories from different initial points, denoted by black stars. The black dot signifies
stability, while the circle denotes instability of the equilibrium points. In R1, system (2) has one unstable
E0 and one stable Ea. Figure 9a shows the phase portrait and trajectories under several initial conditions
for (q, p) = (1.3, 0.45). Moving from R1 to R2, Ea becomes unstable and a stable interior equilibrium point
appears through transcritical bifurcation curve. So, the system has one stable EI along with unstable Ea and
E0 in region R2. The phase portrait corresponding to the specific values of (q, p) = (1.3, 0.3) from R2 is shown
in Figure 9b. On the other hand, when we transit from R1 to R9, two unstable EI appear through saddle
node curve. In R9, one unstable E0, one stable Ea and two unstable EI are present. The phase portrait for R9
is shown in Figure 9g, with an appropriate parametric value of (q, p) = (0.9, 0.388). Moving from R9 to R8, Ea
becomes unstable and a stable interior equilibrium point emerges through transcritical bifurcation curve. As
a result, one stable and two unstable EI along with unstable Ea and E0 are present in R8. Figure 9f represents
the phase portrait for a specific value of (q, p) = (1.1, 0.34). Transitioning from region R2 to R3, one stable
and one unstable EI emerges via saddle node curve. So, in R3, system contain two stable and one unstable
EI, one unstable Ea and one unstable E0. Therefore, we notice a bi-stable phenomena between between two
EI, where the population biomass of both species is influenced by their initial biomass levels. Figure 9c
demonstrates the dynamical properties of R3 with an appropriate parametric value of (q, p) = (0.8, 0.335).
The basin of attraction for the region R3 is shown in Figure 10a. Moving from R3 to R4, one stable and
one unstable EI disappear through saddle node curve. As a result, one stable EI, one unstable Ea and one
unstable E0 are present in R4. The dynamic behaviour of region R4 shown in Figure 9d for a fixed value
of (q, p) = (0.6, 0.297). On the other hand, when we enter from R3 to R7, one stable EI undergoes a loss of
stability through Hopf curve. So, the system contains one unstable Ea, one unstable E0, two unstable and one
stable EI. The dynamical properties of R7 with a fixed value of (q, p) = (1.1, 0.33) is shown in Figure 9e. One
of most intriguing phenomena occurs while shifting from region R3 to R6, i.e, cross saddle node bifurcation
of limit cycle curve. In region R6, A large amplitude stable limit cycle surrounds a small amplitude unstable
limit cycle that surrounds an interior equilibrium point. This type of unstable limit cycle usually occurs
by the existence of a subcritical Hopf bifurcation. Thus, trajectories originating within the unstable limit
cycle converge towards a stable interior equilibrium point, whereas trajectories beginning from outside
this unstable limit cycle converge towards high amplitude stable limit cycle. Due to presence of another
stable EI, a bi-stability phenomenon emerges in R6 (refer to Figure 9j). Thus, the population biomass of
both species is influenced by their initial biomass levels. This region exhibits both stable and unstable limit
cycles, demonstrating how sensitive the system is to its initial conditions. In the long run, very different
things can happen depending on small changes in the starting populations and how the species interact
with each other. The basin of attraction for the region R6 is shown in Figure 10b. A similar type of scenario
observed, when we transit from R6 to R11, but their are some changes in system’s dynamics. In region R11,
Ea becomes stable and a stable EI disappear through transcritical bifurcation curve. As a result, a bi-stable
phenomenon occurs between an interior equilibrium point and predator free equilibrium point. Therefore,
based on the initial population size of both species, the trajectories either converge towards an interior
equilibrium point or the predator-free equilibrium point. Figure 9k represents this dynamical properties
of R11 for (q, p) = (0.75, 0.355). Moving from R11 to R10, a stable EI undergoes a loss of stability through
Hopf curve. This unstable interior equilibrium point surrounded by a stable limit cycle. So, the system’s
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dynamics lead to sustained oscillations around this unstable interior equilibrium point, demonstrating a
cyclical pattern in the populations of predators and prey species. Additionally, system (2) exhibits one
unstable EI along with one stable Ea and one unstable E0. As a result, all trajectories originating from
outside the stable limit cycle either move towards a stable predator free equilibrium point or that stable
limit cycle. The phase portrait corresponding to the particular values of (q, p) = (0.75, 0.365) from the region
R10 is shown in Figure 9h. Transitioning from R4 to R5, the system surpasses the saddle node bifurcation
of limit cycle curve. As a result, there is a unique stable interior equilibrium point that is covered by an
unstable limit cycle of small amplitude. This unstable limit cycle is then encompassed by a stable limit
cycle of higher amplitude. The presence of such an unstable limit cycle is mainly caused by a subcritical
Hopf bifurcation. Moreover, the system contains one unstable Ea and E0. The dynamical characteristic of
R5 for a fixed value of (q, p) = (0.6, 0.305) is shown in Figure 9i. We also observe that, Predator species are
facing extinction in regions R1,R9 and R10 because of to their increased mortality rates. To facilitate all the
characteristics of equilibrium points of each regions in q − p parametric plane, see Table 2.

Table 2: Stability characteristic of equilibrium points from different regions of q vs p bifurcation, shown in
Figure 8.

Regions Equilibrium states Nature of equilibrium states
R1 E0,Ea E0 is unstable, Ea is LAS
R2 E0,Ea, One interior E0 is unstable, Ea is unstable and other interior is LAS
R3 E0,Ea, Three interiors E0 is unstable, Ea is unstable, One interior is LAS,

One interior is stable spiral and other interior is unstable
R4 E0,Ea, One interior E0 is unstable, Ea is unstable and other interior is stable spiral
R5 E0,Ea, One interior E0 is unstable, Ea is unstable and other interior is stable spiral
R6 E0,Ea, Three interiors E0 is unstable, Ea is unstable, One interior is LAS,

One interior is stable spiral and other is unstable
R7 E0,Ea, Three interiors E0 is unstable, Ea is unstable, One interior is LAS,

One interior is unstable spiral and other interior is unstable
R8 E0,Ea, Three interiors E0 is unstable, Ea is unstable, One interior is LAS,

One interior is unstable spiral and other interior is unstable
R9 E0,Ea, Two interiors E0 is unstable, Ea is LAS,

One interior is unstable spiral and other interior is unstable
R10 E0,Ea, Two interiors E0 is unstable, Ea is LAS,

One interior is unstable spiral and other interior is unstable
R11 E0,Ea, Two interiors E0 is unstable, Ea is LAS,

One interior is stable spiral and other interior is unstable
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(a) R1 : (q, p) = (1.3, 0.45) (b) R2 : (q, p) = (1.3, 0.3) (c) R3 : (q, p) = (0.8, 0.335)

(d) R4 : (q, p) = (0.6, 0.297) (e) R7 : (q, p) = (1.1, 0.33) (f) R8 : (q, p) = (1.1, 0.34)

(g) R9 : (q, p) = (0.9, 0.388) (h) R10 : (q, p) = (0.75, 0.365) (i) R5 : (q, p) = (0.6, 0.305)

(j) R6 : (q, p) = (0.8, 0.343) (k) R11 : (q, p) = (0.75, 0.355)

Figure 9: Phase portraits for regions Ri (i = 1, 2, 3, ...11) of Figure 8. solid magenta curve indicates stable limit cycle and a deep red
curve (dotted) indicates an unstable limit cycle.

We have noticed that system (2) exhibits homoclinic bifurcations, as seen by the blue curve in Figure 8.
Figure 11 illustrates the system’s dynamic evolution because of a homoclinic bifurcation, showcasing the
shift of a limit cycle. Three different phase portraits are shown in this figure, representing stages before,
during, and after a homoclinic bifurcation. Initially, we set the parameter value (q, p) = (0.6, 0.305) in region
R10. Subsequently, the existence of a saddle point (interior equilibrium point) and a stable limit cycle
(magenta closed orbit) around an unstable EI indicate a pre-homoclinic bifurcation phase (Figure 11a) in
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(a) Basin of attraction R3 (b) Basin of attraction R6

Figure 10: Basin of attraction

(a) (q, p) = (0.88, 0.38) (b) (q, p) ≈ (0.8867291, 0.3868386) (c) (q, p) = (0.9, 0.388)

Figure 11: Phase portraits in x− y plane are shown before, at, and after a homoclinic bifurcation for various values of q and p. These
phase portraits illustrate the existence of a homoclinic orbit, which is represented by a magenta closed orbit in Figure 11b.

system. As bifurcation parameters (q, p) rises, the stable limit cycle expands until it perfectly meets with
the saddle point. When reaching the bifurcation point at (q, p) = (0.886729150973482, 0.386838691248586),
the limit cycle meets the saddle point, resulting in an orbit of infinite duration (Figure 11b). This specific
closed orbit is referred to as a homoclinic orbit, which establishes a connection between the saddle EI and
itself. It is important to note that it forms at the place where the stable and unstable manifolds of the saddle
point intersect within the plane. If we continuously increase the value of bifurcation parameters {q, p}, the
stable limit cycle and the homoclinic orbit interact, resulting in perturbations and instability in the limit
cycle. Consequently, the limit cycle disappears and gives rise to the post-homoclinic bifurcation phase, as
seen in Figure 11c for (q, p) = (0.9, 0.388).

This bifurcation indicates a crucial situation where a slight change in the parameters q and p can move
the dynamics from a stable cyclic oscillation to the extinction of predator. A similar type of scenario occurs
when we move from R7 to R8, but there are some changes that is a slight change in the parameters q and
p can move the dynamics from a stable cyclic oscillation to a stable interior equilibrium point, shown in
Figure 12.

Next, we introduce maximal mortality rate of predator species, taking into account the birth rate of prey
in the absence of predator. Presently, we construct two parametric bifurcation diagram in q− r plane, while
keeping fixed all other parameters at {k = 0.5, β = 0.13, α = 0.25, 1 = 1.02, h = 0.44, p = 0.1, m = 0.98}, shown
in Figure 13a.

Each type of bifurcation is represented by a different color in the illustrated figure: two saddle-node
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(a) (q, p) = (1.1, 0.33) (b) (q, p) ≈ (1.10037794, 0.3339442) (c) (q, p) = (1.11, 0.34)

Figure 12: Phase portraits in x− y plane are shown before, at, and after a homoclinic bifurcation for various values of q and p. These
phase portraits illustrate the existence of a homoclinic orbit, which is represented by a magenta closed orbit in Figure 12b.

(a) q vs r (b) p vs r

Figure 13: Two parametric bifurcation diagram of system (2) in (a): q − r and (b): p − r parametric plane. The red curve, green
curve, cyan curve, blue curve and magenta curve represents the Hopf bifurcation curve, saddle node bifurcation curve, transcritical
bifurcation curve, homoclinic bifurcation curve and saddle–node bifurcation of the limit cycle curve respectively.
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curves (green), one Hopf curve (red), one homoclinic curve (blue), one transcritical curve (cyan), and one
saddle-node bifurcation of limit cycle curve (magenta). The entire parametric plane q − r partitioned by
these bifurcation curves into eleven regions, which are denoted as W1, W2, W3, W4, W5, W6, W7, W8, W9,
W10 and W11. Several co-dimension 2 bifurcation points emerge by intersection of some of these bifurcation
curves. An example of such an occurrence is a cusp bifurcation, which occurs at CP1(1.7921034, 1.092659),
where two saddle node curves converge and collide, resulting in their subsequent disappearance. Another
cusp bifurcation occurs at CP2(0.15080943, 5.784424), where the saddle node curve meets with transcritical
curve and disappear the saddle node curve. Another co-dimension 2 bifurcation happens where the Hopf
curve and the saddle–node curve meet at the point BT2(1.2703237, 1.9016769) and subsequently hopf curve
vanishes. It is called the Bogdanov–Takens bifurcation. From this Bogdanov–Takens bifurcation point, the
homoclinic bifurcation curve emerges, which is one type of global bifurcation. Moreover, a supercritical
Hopf bifurcation transform into a subcritical Hopf bifurcation at GH2(1.2370357, 1.9229855), known as
generalized hopf bifurcation point (lie on hopf curve). As a result, saddle-node bifurcation of limit cycles
curve emerges from this bifurcation point. All the characteristics of equilibrium points of each regions in
q − r parametric plane are described in Table 3.

Table 3: Stability characteristic of equilibrium points from different regions of q vs r bifurcation, shown in
Figure 13a.

Regions Equilibrium states Nature of equilibrium states
W1 E0,Ea, Two interiors E0 is unstable, Ea is LAS,

One interior is unstable spiral and other interior is unstable
W2 E0,Ea E0 is unstable, Ea is LAS
W3 E0,Ea, Three interiors E0 is unstable, Ea is unstable, One interior is LAS,

One interior is unstable spiral and other interior is unstable
W4 E0,Ea, Three interiors E0 is unstable, Ea is unstable, One interior is LAS,

One interior is stable spiral and other is unstable
W5 E0,Ea, One interior E0 is unstable, Ea is unstable and other interior is stable spiral
W6 E0,Ea, Two interiors E0 is unstable, Ea is LAS,

One interior is stable spiral and other interior is unstable
W7 E0,Ea E0 is unstable, Ea is LAS
W8 E0,Ea, Three interiors E0 is unstable, Ea is unstable, One interior is LAS,

One interior is stable spiral and other is unstable
W9 E0,Ea, Three interiors E0 is unstable, Ea is unstable, One interior is LAS,

One interior is stable spiral and other is unstable
W10 E0,Ea, Three interiors E0 is unstable, Ea is unstable, One interior is LAS,

One interior is unstable spiral and other interior is unstable
W11 E0,Ea, One interior E0 is unstable, Ea is unstable and other interior is LAS

Additionally, we explore the dynamical properties along with bifurcation thresholds in p− r parametric
plane to examine the system in different point of view. Figure 13b represents the corresponding bifurcation
diagram in p − r plane, with all other parameters fixed at {k = 0.5, β = 0.13, α = 0.25, 1 = 1.02, h = 0.44,
q = 1.15, m = 0.98}. This figure shows numerous bifurcation curves, each representing a distinct type of
bifurcation: two saddle-node curves in green, one Hopf curve in red, one homoclinic curve in blue, one
transcritical curve in cyan, and one saddle-node of the limit cycle curve in magenta. The parametric plane
p − r is separated by these bifurcation curves into seven regions, denoted as H1, H2, H3, H4, H5, H6 and
H7. Several co-dimension 2 bifurcation points are formed when some of these bifurcation curves meet. An
instance of such phenomenon is a cusp bifurcation that takes place at CP3(0.63077854, 0.78939536), where
the convergence and collision of two saddle node curves result in their subsequent disappearance. On
the other hand, generalized hopf bifurcation point appear on hopf curve at GH3(0.19752392, 1.8203157),
where subcritical hopf bifurcation transforms into supercritical hopf bifurcation. This hopf bifurcation
curve meets saddle node bifurcation curve at BT3(0.31015925, 1.6882354) and disappears, which leads to the
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(a) hysterisis loop for q vs x (b) hysterisis loop for p vs x

Figure 14: Evidence of hysteresis phenomenon for the parameter q and p. The red solid and dotted curves represent the stable and
unstable behaviour of EI .

occurrence of Bogdanov-Takens bifurcation. All the characteristics of equilibrium points of each regions in
p − r parametric plane are described in Table 4.

Table 4: Stability characteristic of equilibrium points from different regions of p vs r bifurcation, shown in
Figure 13b.

Regions Equilibrium states Nature of equilibrium states
H1 E0,Ea E0 is unstable, Ea is LAS
H2 E0,Ea, One interior E0 is unstable, Ea is unstable and other interior is stable spiral
H3 E0,Ea, Three interiors E0 is unstable, Ea is unstable, One interior is LAS,

One interior is stable spiral and other is unstable
H4 E0,Ea, Three interiors E0 is unstable, Ea is unstable, One interior is LAS,

One interior is unstable spiral and other interior is unstable
H5 E0,Ea, Three interiors E0 is unstable, Ea is unstable, One interior is LAS,

One interior is unstable spiral and other interior is unstable
H6 E0,Ea, Three interiors E0 is unstable, Ea is unstable, One interior is LAS,

One interior is stable spiral and other is unstable
H7 E0,Ea, Three interiors E0 is unstable, Ea is unstable, One interior is LAS,

One interior is stable spiral and other is unstable

Hysteresis refers to the phenomenon where the behavior of prey biomass does not simply follow the
changes in predator mortality rates (q and p) in a straightforward manner. Instead, the system exhibits a
history-dependent response. As the mortality rate of the predator species q increases, the prey biomass
moves along a specific equilibrium path. However, when the mortality rate is decreased again, the prey
biomass does not retrace its previous path. Instead, it follows a different trajectory, forming a loop-like
behavior, shown in Figure 14a.

This occurs because, as q reaches certain critical values (at saddle-node bifurcations q(SN1) and q(SN2)), the
stable and unstable equilibrium points in the system collide and vanish. Once this happens, the system
cannot simply return to its original state, even if q is reversed to its initial value. Instead, the system shifts
toward the nearest available equilibrium, creating a path-dependent cycle.

A similar dynamic is observed when the mortality rate of the predator species p fluctuates. The prey
biomass does not immediately return to its original state after the mortality rate of p is restored. Instead,
the system exhibits a lagged response, following a different equilibrium path, which also leads to a looping
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behavior, shown in Figure 14b.

8. Conclusion

Ecological study focuses on understanding the ecosystem’s dynamic complexity and identifying the
ecological components that influence it. In recent years, several mathematical models have been developed
to investigate the various ecological dynamics [20] under different environmental conditions. One example
of an ecological model is the prey-predator interaction model. An extensive experiment of a prey-predator
model, including different biological or physiological parameters, helps to discover the key elements that
play a significant role in determining the community structure and preserving biodiversity. Fear [21, 2, 22,
23, 24] is a physiological element experienced by prey in response to predators. Many experiments have
shown that the presence of predators can change the behavior of prey species, leading to a more effective
reduction in prey biomass than direct predation [25]. On the other hand, the mortality rate of predator
species plays a vital role in the growth of the prey population. Here, we have considered the mortality
rate of predators in the absence of prey, which is a bounded function but also is an increasing function
of predator biomass. The present study introduces a prey-predator model that incorporates the impact of
fear produced by predator species on prey species and the specific mortality rate of predator species. The
suggested model includes the Holling type-IV functional response and intraspecific competition of prey to
make the dynamics more plausible.

First, we have confirmed the well-posedness of our suggested model by demonstrating that solutions
remain positive and confined in a specific region B ⊆ R2

+. Subsequently, we have analyzed the local
dynamics of the associated system. The system always shows an unstable E0 along with a predator-free
equilibrium point Ea. The stability condition of Ea have been discussed in theorem (5.2). Additionally,
the system comprises of interior equilibrium points (EI), the quantity and presence of which depend upon
several types of factors explained in section (4.2). The stability condition of EI is discussed in the theorem
(5.3). The present study primarily focuses on two key factors: the level of fear k of prey species and the
limiting mortality rate q of predator species. In addition, we have included the mortality rate p of predator
species and the birth rate r of prey species. Then we have examined how the dynamics of system are
affected by the fluctuations of parameters k, q, p and r. By conducting a numerical analysis, we have
demonstrated that the system undergoes two saddle-node bifurcations for the parameters q, p, k and r,
as well as one transcritical bifurcation for the parameter p. The system undergoes one subcritical hopf
bifurcation and saddle-node bifurcation of limit cycles with respect to the parameters k and r. Under
some specific parametric values, the system can show a bi-stable phenomenon between two EI. In some
cases, a bi-stable phenomenon can also occur between an EI and Ea. We have observed some changes
in the prey-predator population when we varied some bifurcation parameters of the system (2). For
example, the predator species faces extinction at a higher mortality rate, and the prey population decreases
when the level of fear by predators increases. We have also examined two parametric bifurcations and
observed that the q−p parametric plane exhibits both Bogdanov-Takens and Generalized Hopf bifurcation.
Furthermore, the parametric plane q− p exhibits homoclinic bifurcation. Moreover, we have also examined
two parametric bifurcation diagrams in q− r and p− r planes, which are cusp bifurcation, Bogdanov-Takens
bifurcation, Generalized Hopf bifurcation and Homoclinic bifurcation. Furthermore, a hysteresis cycle
has been observed in prey population due to the variations in the mortality rate of predator species and
maximal mortality of predator species, as stated in section 7.2. From the bifurcation analysis, we observe
certain changes in the prey and predator populations, given below:

(i) When the mortality rate of predator species p is low, the predator population size is large. This leads
to an increase in the consumption of prey by the predators. Gradually raising the mortality rate of
the predator species reveals that the population sizes of both predator and prey become dependent
on their initial population sizes. However, when the mortality rate of the predator species p is high,
the predator population declines, eventually leading to extinction. As a result, the prey population
reaches its maximum level.
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(ii) when the maximal mortality q of predator species is low, then the size of prey population low due to
high predation pressure. Gradually raising q reveals that the population sizes of both predator and
prey depends on their initial population biomass. However, when q is high, the predator population
decreases but does not go extinction, leading to a decrease in predation pressure and an increase in
the prey population size.

A thorough analysis of this model could offer valuable insights into population dynamics in real-world
scenarios. Future enhancements to the model could incorporate two prey species and one predator, which
would greatly contribute to preserving biodiversity and maintaining community structure.

Novelty of this work

(i) As the predator population increases and closes to the environment’s carrying capacity, maximal
mortality (q) starts effecting.

(ii) By shifting the interior equilibrium point EI to the origin and applying certain transformations, the
theorems for generalized Hopf and Bogdanov-Takens bifurcation have been proved.

(iii) The system exhibits homoclinic bifurcation and saddle node bifurcation of limit cycles for the changes
in both the parameters p and q, where p and q represents mortality of predator at initial density and
maximal mortality of predator respectively.

(iv) A hysterisis loop is shown in prey biomass with respect to parameters p and q.
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