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Abstract. In this paper, we are interested in studying the tempered fractional diffusion equation subject
to a nonlocal terminal condition. The primary equation incorporates the tempered Caputo derivative,
which serves as a generalized form of the traditional Caputo derivative. Our findings contribute by first
establishing the well-posedness, highlighting the challenges added by the tempered kernel together with
nonlocal conditions. Following this, we study the solution’s continuity with respect to the tempered
parameter, a crucial consideration for modeling, due to the challenges in accurately measuring this index.
Lastly, we propose convergence results as parameters b — 0%, 2 — 0%, and @ — 17, linking the current
terminal fractional approach with traditional cases.

1. Introduction

Let Q be a bounded region RN with a smooth boundary denoted by dQ. Assume that T is a fixed
positive constant. In this paper, our aim is to examine the following problem

DY%u—Au=Gxt), in Qx(0,T], M
u(x,t) =0, on JQx(0,T],

with the nonlocal condition
au(x,0) + bu(x, T) = f(x), x€Q, (2)

where a,b are two non-negative parameters, f will be specified later, Df"k denotes the tempered Caputo
derivative (see p. 430[19]) of order « € (0, 1)

149 e_kt ' - d S
Dt’kw(t):m fo () %(ek w(s))ds,
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where k > 0 is called tempered parameter.

In recent years, the field of fractional differential equations (FDEs) has become an area of growing
interest, with applications extending across disciplines such as physics, biology, and environmental science
[12]. Various types of FDEs are applied in these fields, with different fractional derivatives like the Caputo,
Riemann-Liouville, and Caputo-Fabrizio derivatives proving particularly useful [7, 8, 11, 12, 16-18]. These
models incorporate memory effects and appropriate kernel functions. The tempered fractional derivative,
which was initially introduced in [13], is noteworthy in this work. An important point to note is that,
when k = 0, the tempered Caputo derivative reduces to the standard Caputo operator [12]. As a result, it
is obvious that the tempered fractional derivative represents a generalized form of the Caputo fractional
derivative.

It is widely recognized that tempered fractional calculus was developed to effectively address complex
applications in various fields, such as poroelasticity [3], geophysical fluid dynamics [9], and groundwater
hydrology [10]. To achieve a better comprehension of how solutions behave in the context of the tem-
pered fractional equations, significant research has been undertaken to address this problem from multiple
viewpoints[2, 4, 5, 8-10, 13-15, 19]. Within this body of work, Li [5] proved the well-posedness of tempered
fractional ordinary differential equations, discussing important factors like existence, uniqueness, and sta-
bility. In [19], M. A. Zaky explored the existence, uniqueness, and stability characteristics of solutions to the
nonlinear tempered fractional differential equations

D¥u = g(r,u(r)), 0<t<T 3)
associated with nonlocal condition
au(0) + beu(T) = c. (4)

In this context, g : [0, T] X R — R is a continuous function, and 4, b, c are real constants with the condition
a+b # 0. Inthe case 2 = 0 and b = 1, the model (3)-(4) was examined by Shiri in [15], in which regularity
results were established in weighted spaces, and the order of convergence was analyzed.

Inspired by the model described by equations (3) and (4), in this paper, we are strongly interested
in investigating the model represented by equations (1) and (2). It is important to highlight that this
model represents a generalized form of the classical (and fractional) heat equations u; — Au = G(x, t) (and
Dfu — Au = G(x, 1)), which have been effectively employed to model heat transfer in various environments.
Unlike the previously mentioned results [15, 19], this work extends beyond the investigation of the well-
posedness of the problem to also examine the continuity of the solution with respect to the tempered
parameter k, in addition to proposing several convergence results.

The main contributions presented in our findings are outlined in detail as follows.

e The first result is the well-posedness in a Hilbert scale space, provided that f, G are sufficiently
smooth. In comparison to the model with the standard Caputo fractional derivative, it is evident
that the tempered model presents greater complexities due to the additional kernel term ¢ in the
derivative Df’k. This, coupled with the nonlocal condition, complicates the mild formulation, resulting
in significant challenges when estimating the solution within the Hilbert scale space.

e The second focus of this paper is to investigate the continuity of the solution with respect to the
tempered parameter k. It is undeniable that, in practice, this index can only be ascertained through
experimentation. Consequently, their precise values are not available; instead, only perturbed values
with associated errors are known. For this reason, it is essential to examine the continuity of the
solution with respect to the parameters involved.

e The last purpose is to establish some convergence results as b — 0%, 4 — 0%, and a« — 1. It should be
noted that if b = 0 (or a = 0) then the nonlocal problem described by equations (1) and (2) reduces to
the standard initial value problem (or final value problem). Owing to this reason, the two convergence
results when b — 0" and 2 — 0% are crucial for demonstrating the connection between our model
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and traditional ones. As a consequence, the solution of the conventional models can be obtained as a
limit of an approximate sequence of solutions to the nonlocal problem. Additionally, in the casea =1
and k = 0, the tempered fractional operator simplifies to the classical derivative with integer order.
This observation underscores the importance of examining the convergence result when a — 1°.
Understanding this convergence is vital for establishing a clear connection between the tempered
fractional framework and traditional differentiation.

We now present a concise outline of the paper. In Section 2, we present essential preliminaries, including
the relevant Sobolev spaces and the notation employed throughout the paper. In Section 3, we dedicate our
discussion to the well-posedness within a Hilbert scale space, given that f and G are adequately smooth.
The continuity of solution in k is illustrated in Section 4. Section 5 is devoted to convergence results as the
parameters b — 0*,a2 — 0* and a — 17, which relate the present terminal fractional equations to traditional
models.

2. Preliminaries

In this section, we present relevant Sobolev spaces and introduce the notation that will be consistently
used throughout this paper. To begin with, let (A,,e,) represent an eigenpair of the negative Laplacian
operator. For p > 0, we define by

H(Q) = {0 € LXQ)|lollve = Y, A7 Ko, e < oo,
n=1

Let B be a Banach space, we denote by L7(0, T;B), 1 < g < oo, the space of functions w : (0, T) — B with the
norm

(B o), g <o,

€ess sup;c llw(®)llp, g = oo.

2ol a0, 7;m) =

Denote by CY([0, T]; B), with 6 > 0, the space of functions w : (0, T) — B satisfying

o ”w(/ t) - W(', S)”]B
lwllcoo,ry;m) := sup 5
0<t<s<T |t - S|

Next, we compile essential background information and key concepts from fractional calculus. For
a > 0and g € C, the two-parameter Mittag-Leffler function is defined by the following series expression

o Zj
Ea,ﬁ(z) = -, ZE€ C.
;; I(aj+p)

Several key properties of this function are summarized in the following lemmas [12].

Lemma 2.1. Given A > 0, and o > 0. Then, the following identities hold
Ea1(-At") = =AMt Eqo(-AtY), t>0,

and
1t Eg o(—AtY)) = t*2E 0 1(=AtY), >0,

Furthermore, for 0 < o < 1, there holds

08 Ep1 (M) = — AEq1(=At%), £ > 0.
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Lemma?22. ForO<a <1 andﬁ € C, it holds that

|Eaﬁ(z)|

1+|z|_ 1+|z|

where my and my are positive constants depending only on a, f. In addition

™M <P () < — - || where y € (0,1]. )

1+||_

Lemma 2.3. For0 < a < 1andt > 0, there holds

Eq1(=A;t%) M Ep—
E ( T“) - mq
Proof. As a consequence of (5), for t > 0, it is obvious to see that
Ea,1 (—/\jta) < @ 1+ /\jT @T”‘t—
Ea,1(—/\jT“) “m 1 +/\jl‘a = mq

The proof is complete. [

3. Well-posedness of the problem

In this section, we examine the well-posedness of the following problem

D% u — Au = G(x, t), in Qx(0,T],
u(x, t) = on JQx(0,T], (6)
au(x,0) + bu (x, T) = f(x), in Q,

where a > 0 and b > 0. Assume that Problem (6) has a unique solution denoted by .
We first derive an explicit formula for the solution in the form of a Fourier series, given by u(x,t) =

2}21 uj(t)ej(x), with uj(t) = <u(', b), ej(-)>L2(Q). From the first equation of (6), taking the inner product of both
sides of (6) with ¢;(x), we obtain

D uj(t) + Ajuj(t) = Gi(t), ui0) = (uo,e;) ., )

where Gj(t) = (G(,1),¢/()) .,
gives a unique function as follows

uy = u(x,0). The theory of fractional ordinary differential equations [2]

u(t) = e Mg (=At")uj(0) + j; t(t — ) e M, (=4t = 1))Gi(rdr. 7)
The nonlocal condition au(x, 0) + bu(x, T) = f(x) allows us to obtain
auj(0) + be M Eq 1 (—A;T*)u(0)
+b fo T(T =) e TNE, (AT = N™)Gj(r)dr = f;.
It follows that

fi=b [ (T = )* e TDE, (~A(T = )G, (dr

(0) =
(0) 0+ beFTEy 1 (—A,T%)
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Combining (7) and (8), we derive that

i (t) = e B A fi
j a+be*TE,1(—A;T*)"

eHEL (A (T
—b - T =) e TE, ((=A{(T = N™)Gi(r)d
R Jy T T BT G 0

+ f (t = r)* e FENE, f (At — 1)) Gj(r)dr. 9)
0

Consequently, the mild solution of Problem (6) is obtained as follows

© e ME,  (—t9)
ak a4 ]
K, b) = .
ur b ; T3 b P Ey (A, Y

© E_ktEa 1(—/\]‘1“1) T .
_ ’ _ a1 ,—k(T-r) . _ A\ . .
b;(ﬁbew%l(_)\jm (T = T IE (AT = )G](r)dr)e](x)

© t
+Z( fo (t—r)“-le-k“-*)Ea,a(—Aj(t—r)“)cj(r)dr)ej(x). (10)

j=1
In the following theorem, the well-posedness result in the Hilbert scale space is provided.

Theorem 3.1. Let f € H/(Q) and G € L*(0, T;H-9(Q)) for any € > 0 and 0 < 0 < . Then, the following
boundedness result holds true

o ATt
(¢, t)”IHf(Q) < E%ekq T f ”Hf(o) * ml(a—l—ea)t a”G||L°°(0,T;H“9<Q)>
ﬁlTa—Ha

+

a— Ba ||G||L°°(O,T;I[-I‘*9(Q))'
Proof. From (10), it is obvious that

u(x, t) = k008 + Q0 (D) + Qg,b,a,k(x’ B,
where the three terms in the right hand side possess the following forms

= e_ktEa,l(—/\jta)

1
/t = i 7
Qo= Lt e

= _peRE, (<A )
2 = [ a1 =4
Qopar®:) ; a+be*E, (—A;T%)

T
x f (T = 1) e T (AT = G () e
0

and

0 ¢
3 ’ — _ na-1 _k(t_r)Eaa At — a G d X )
Q0D ]Zl][ fo (4= 1) e (<A1 = )G 0 o)
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Step 1. Estimate of Q!, . The norm of the term Q!, . can be bounded above as

ol —kt a 2
1 oAl = 2o ¢ Ean(=Ajt") ) 2
“Qa,h,a,k( ’ t)H]H[(Q) - ; A]' (a + be_kTEa,l(_/\jTa) f]

o]

j
2
< l T 20420 YT 2t 2
<5 E i fis

j=1

where we note that b > 0. This implies that

1my g -
||Qabak( t)Hle(Q) = Eml I a”f“Hf(Q)'

Step 2. Estimate of @, . Initially, using Lemma 2.3, we have the following observation

be™™E, (=A%) B kT,
a+ be‘kTEall(—/\jT“) - mq

ToFe, (11)

where we note thata > 0 and b > 0. This implies that

“szak(' t)H;f(Q)

22 —ve” ta) a~1,-K(T-r) Y
_Z [a+be kTEal( AT“)f(T g Faal AT =7) )G(r)dr]

(ek(T D7,

nm

<

T ) 2y A%’ f (T = 1)* e T Eqo(=A{(T = 1)*)dr)
j= 1

T
( f (T = ) 1e M, o(<A(T = N*)GA(r)dr), (12)
0

where we have used the Holder inequality in (12). Using (5), we derive that

Eqo(=A{(T 1)) <

) < H/\TZ—%V)“ < mlA]TQ(T - 1,)—911, where0 <O <a < 1. (13)
AT -

Hence, due to the fact that e *T=") < 1, we infer that

T T
fo (T — ) te M TIE, ((=A(T = r)Y)dr < fo (T = 1)* Equ(=A(T = 1)*)dr

ml Ta—@a

70
a—0a

T
<A’ f (T — )% 1dr =
0

and

T T
f (T —r)* e MTIE, (AT - NG (r)dr < mm;@ f (T - r)“‘g"‘_lG?(r)dr.
0 0
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As a consequence, for any ¢ > 0, one has

)

2¢ ! _ n\a—1,-k(T-r) AT _ N\
ZAJ( 0 (T = 1) te M IE, (AT = r)*)dr)

=1

T
x f (T—r)“—le-W—’)Ea,a(—A]-(T—r)“)G]Z(r)dr)
0

(2T 0 T a—6a-1 . 20-20 2
<o J, (T-7) (ZA]. GA(r))dr

=

(ml )ZTa—ro

T
— —6a-1 2
T a-06a j; (T - ne r)”]H[’H(Q)dr
Combining (12) and (14), we get

2k(T t) T3a Oa

2 a ! a—ta— 2
”Qi,b,a,k('ft)HHf(Q)<W . j(;(T—r) ’ 1”G(-,r)||HH(Q)dr

It is obvious to see that

T T
fo (T = G0 @ < Gl o f (T - 1)*%dr)

T Oa

= —lIGll o vy
From two latter observations, we obtain

¢ Tft)mz'lﬂzxf@a ~
”Qg,b,a,k(" t)H]H’(Q) = ml(a—l—ea) a“G“Loo(o,T;HM(Q))'

Step 3. Estimate of Q° In view of Parseval’s equality, we find that

bk’

% t 2
|12, . t)HHZ{[(Q) =ZA§6’[ f (t—r)“_le_k(t_r)Ea,a(—/\j(t—r)“)Gj(r)dr].
=1 0

Using Holder inequality, one has

102, s Dy < Y, f (t = 1) e DE ( (<At - 1)*)dr)
]:

( (e T E (A - OIG;(r)dr).

By a similar techniques as in (14) and (15), we also obtain that

tx@
e < M

a—0Oa
(ml) tZa —20a
= m” ”LW(O,T;I[—I‘*"(Q))'

Consequently, we arrive at the following estimate

m Ttx—@a
||Qabak(" t)HHf(Q) S ;_W” ||L°°(0,T,-Hf—0(u))‘

11861

(14)

(15)

(16)

(17)
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Combining three steps, we deduce that

””mk(" t)”Hf(Q) < HQi,b,a,k(" t)HJHf(Q) + ”Qg,b,a,k(" t)”Hf(Q) + ”Qg,b,a,k('f t)”Hf(Q)

v TR0

ST U M7y romrr & IR
m T(x—@a

oj—ﬁ” ”Lw(o,T;Hf-@(Q))'

The proof is complete. [

4. Continuity results of the mild solution

In this section, we demonstrate the continuity results of the mild solution with respect to the tempered
parameter k.

Theorem 4.1. Suppose that 0 < a < 0 < 1 and G € L*(0, T;H*-9(Q)). Then, the following continuity in the
tempered parameter holds true

“u‘*’k(', £) — u (., t)“]H[(Q) < Atk =Kl||f ”JHM(Q)

+ Ptk — k'|<||G||Lw(o,T;HH(Q)) + ||G”L°°(O,T;IH“1*H(Q)))
+ Dylk = K|

G“Lw(o,T;IHH(Q))’
where 91, 5 and Py are positive constants.

Proof. To begin with, we follow from (10) to divide the deviation into some parts as follows

w8 = (0, ) = Q) (6 ) — QL (D)
+ Qz,b,a,k(x' t) - i,b,a,k' (x,t) + Qg,b,a,k(x/ t) - Q?,hra,k, (x,1).

In what follows, we find upper bounds for the three terms in the right hand side.

Step 1. Estimate of HQ;’b,a/k(-, t) — ;/b/“,k,(-, t)”H[(Q). First of all, it can be seen that

Q;,b,a,k(x’ t) - Q;,b,a,k’ (x, )
S e MEL (=AY e Eq1(=Ajt")

- = (a + beFTEy 1 (=AT?)  a+be¥TE,;(=A;T)

)f]-ej(x).

In addition, we note that the kernel inside the series has the following explicit formula
e‘ktEaJ (—/\]’fa) e_k/tEarl(—)\jfa)
a+ be—kTEa/l(_/\jTa) a+ be_k/TEall(—/\jT“)
a(e‘kt - e‘k/t)Earl(—/\]-t“)

(a+ bekTEq 1 (=A;T%))(a + be ¥ TEq 1 (—A,T%))

be—(k+k’)T<ek(T—t) _ ek’(T—t)) Ep1(- /\jta) Eq1(- /\jTa)

(a + be kT Eq 1 (—A;T%))(a + be ¥ TEq 1 (—A,T%))
=B; + B,. (18)
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By using the fundamental inequality le™ — e7’| < |a — b, for any 4,b > 0, we can bound the first quantity as
follows

k+k')T 4 40 ! ’ —_— .
|B1| < ﬂe( +K) |k - k |tEa,1(—A]tt) < ae(k+k )le - k |T @T‘)‘t_a 1+ /\]T‘/Y
b?|Ea1(=A;T)? b? m m
Ta+1 (k+k"\T77=
- K+ AT, (19)
b*my
where we have used Lemma 2.3 and the inequality E,1(-A;T%) > % For the second quantity, it is

obvious to see that

bEq1(~ Ajta)e—(k+k’)T KT _ k(=) . E1(—A;t%) KT _ k(=)

IB| < 20— (k+K)T
b2e—(k+k) Eall(—A]'Ta) b Ea,l(_/\jTa)

The inequality | — €| < |a — ble™™>@D), for any a,b > 0, allows us to obtain

Bo| < Ean1(=A;t") (T — t) — K'(T — t)|emax(k,k’)(T—t) < IETat—alk ! |emax(kk)T
- bEall(—A]'T“) b mq
a+177— a+177—
< Tb m k- kflemax(k,k’)T < Mt—alk _ kllemax(k,k')T(l + /\]Ta) (20)
mi
Combining (18), (19), (20), we deduce that
e_ktEall(—/\]‘fa) E_k/tEall(—A]'ta)
a+beME,1(=AT*)  a+be®TE,1(=A;T%)
m Toz+1 ae(k+k')T , _ ,
;ml ( o RN~ — (1 + A;T). (21)
This implies that

||Qzlz,h,a,k(" t) - Q;,b,a,k’(" t)”;f(g)

Sl e MEa (A e By 1 (~At%) 2f2
TS arbe TE (AT at beFTE (<A, |
< (m;;l (% . emax(k'k')T))zt_2“Ik KPY A AT
=)
Due to the fact that 1 < A7'A;, we derive
YA ATP < (T A7) L = (127
= =

From the above observations, we deduce that

||Qzlz,b,a,k(" t) - Q;,b,a,k’(" t)”Hf(Q) < Stk =K (22)

f H]HM @

where 2 is a positive constant which depends on m,my,a,T,b, A, k, K, .
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Step 2. Estimate of HQﬂ bt = It is obvious to see that

i,b,a,k’ ( t)“Hf(Q)'

O [ —be™MEq 1 (=A%)
t t
ubak() abak() Z(a+be‘kTEa1( ATO()
X f (T - r)“‘l(e_k(T_r) - e_k/(T_r))Ea,oc(_/\ i(T— r)“)G]-(r)dr)e]-(x)
i ( Eai(=A;t%) be ™ Ear (=A;t") )
a+be*TE,1(—A; T”) a+be¥TE, 1(-=A;T%)

X ( fo (T —r)* e ¥TNE, (AT - r)”)Gj(r)dr)ej(x). (23)

For the sake of convenience, from now on, we define by

> —be ™E al(—/\'ta)
PB1(x,t) := (
1(%8) Z 0+ beFTEy 1 (—A,T%)

f (T = e = e T VE (AT = )G ) e ),

and

e i( be M Eq 1 (=A%) be ™ Eq 1 (=A%) )
2, ) = = i\a + beKTE,1(=AjT®)  a+be®¥TE, (=A;T®)

T
X ( fo (T —r)* e ¥TNE, (AT - r)a)cj(r)dr)ej(x).

By Parseval’s equality, the first term can be estimated as

S e
B (-t = AZ."( — )
¢ )”H[(Q) ]:21 T \a + be¥TE,1(=A;T)
T 2
(f (T - r)L‘(*l(e*k(T*V) _ e*k’(Tfr))Ea’a(_/\j(T _ T)a)G]‘(T)dT') .
0

Looking at (11), we know that

—kt .
,4,( —beME 1 (=A%) )2< (Ta k(Tfml)zt_za‘

a+ be‘kTEarl(—/\jT“) my

Using the inequality |[e™ — et < |a - b for any a,b > 0 and the Holder inequality, we find that

(fT(T _ r)a—l(e—k(T—r) _ e—k’(T—r))Ea’a(_/\j(T _ T)a)Gj(T)dT)z
0

2

T
< = KP( [ (7= Eanto (T =0 )

< k- k'|2( fo T = P Eun (AT - r)“)dr)( ﬁ T = P Ean (AT - r)“)G?(r)dr).
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On the other hand, in view of (13), one has

T T
f (T = 1)*Eqo(—A (T — r)")dr < %A]f@ f (T — r)*%dy
0 0
0 Ta—8a+1

I a—-6a+1’

where we remind that 0 < & < 0. By collecting the previous evaluations, one gets

o Te0aHl ek o
O s [ L
T (o]
x( fo (T = (Y A2 Eaal=A(T = G0 r)

j=1

T
<Mk - k'|2r2“( fo (T = =G, )| (Q)dr)

3 1 / —z 2
< (Ma)lk — K'}Pt> HGHL“(O,T;]H[‘O(Q))'
Here M; >0 depends on my,my, , T, k, 6, and M; >0 depends on M, T,a,6. Consequently,

|21 (., Molk - K176, (24)

Dl < O, T;H-0(Q)"

Our next aim is to bound the second quantity %,(, t) in the space H(Q). By using Parseval’s equality,
one gets

| t)”z _iA%( be™ME,1(=Ajt%) ~ be M1 Eq1(=Ajt%) )2
AW H{(Q) - j a+ be—kTEa’l(_AjTa) a+ be_k/TEa,l(_AjTa)

T
x f (T = n* e ¥ TIE, (~A(T - r)“)Gj(r)dr)Z.
0

In view of (21), one can see that

be™ME, (=A%) be ™ Eq1 (=A%)
a+be*TE,1(=AT*)  a+be®¥TE,1(—=A;T%)

< Dtk = K|(1 + A;T%)

where 27 > 0 depends on my,my, T,a,a,b,k,k'. This leads to
2 5 * —ZK / '
122 Bllgre iy < Y, AZ (D220 = K21+ AT

=1

T
x ( fo (T =) e T IE, ((-A(T - r)“)G]-(r)dr)z

() T ) 2
S2AZ Pk -K P 2 A?f( f (T = 1)* e X TNE o (=A/(T = N™)Gj(r)dr)
=1 0

(o] T 2
+2(Z)* Tk - K1 Z; Ajz.m( fo (T —r)* e ¥TNE, (AT - r)“)Gj(r)dr) )
]:
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Combining two estimates (16) and (17) and noting that 0 < a < 6 < 1, we find that
AZ" f (T =) 1e®TDE, (~A(T = NNG,(r )dr)
j= 1

(ml )2T2a—29a

el

Le=(0,T;H(-0(C2))

and

) T ) 5
Y Az fo (T = 1)* e X TNE o (=A{(T = N*)Gj(r)dr)
j=1

(ml)ZTZthSQ
- (a _ 6&)2 HL‘”(O,T;]H[H*B(Q)) :

Form three latter observations, one finds that
”‘@2(" t)”i{f(g) < (92)2’5_2(!”( - k,|2(||G||im(O,T;IHf-9(Q)) * ”G”i“(O,T;]H“l—Q(Q)))

where %, > 0 depends on my,m1,T,a, 0,a,b,k,k’. Thus, we obtain

”‘%2(" t)”]H[(Q) < Dotk ~ kl'( )G”L“(O,T;]I{f-g(())) + ||G||L°°(0,T;H/’+1-9(Q)))' (25)
Combining (23), (24) and (25), we deduce that
”Qg,b,a,k('f t) - Qtzz,b,a,k'(" t)”JHl‘(Q) = ”'%)1(" t)H]Hf(Q) + “*%72(" t)“I[—I‘(Q)
< D3tk ~ k/l( |G||L°°(o,T,-Hf-0(Q)) + ||G||L°°(0,T;Hf’+1-0((z)))‘ (26)

Here, 3 > 0 depends on m;, 11, T a,0,a,b kK.

Step 3. Estimate of HQ; bl = First of all, we have the following difference

abak’ H(Q)"

Qs = Q (=Y f (t = PN E (A = 7G|y ()
j=1

(o)

_Z[ f (t = LAyt = NG 0)

-y f (t = 7y (00 = O (-8 = 1)°)G 0 e )

j=1

i k- K| f (t = 1 a2t = G0 [0

j=1

8

By Holder’s inequality, it is obvious to see that

2

t
e~ K fo (t = 1" Eua(=,(t = 11)Gi()ir)
t t
Slk—k’lz( f (t—r)“Ea,a(—Aj(t—r)“)dr)( f (t = 1 Eua(=(t = G301
0 0
a—6Oa+1

t
< |k—k'|2m1A;9m( f (F = 1) Eqa(=As(t r)"’)G?(r)dr).
- 0
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To together with Parsval’s equality allows us to obtain
2
Q2540 = Qs Ol
2
_ Z 2| f (t- r)“’l(e’k(t’r) = DBy (At = )G
=) 0

a—6a+1

2[ 72— t Lfﬁt PAY:4 A (2
Z le=KEAA =g g | (= D Eaal=A i = G0

o= Ba+1

[ — f 4=y ZAZ" Eqa(=Ai(t =G0 )

s|k—k’|2_2% f =06 e )

<lk-K]

< k- K ﬂ 6P

<] |“m —Oa+1 L0, T;H-9(Q))
< k_kl 2_2 T—GaH

<| [“my —Oa+1 “ ”Lm(OTHf 0(Q)”

Hence, we have the following bound
||Qu bak\ g,b,a,k/('/ t)”H[(Q) < Dulk - K|

where 2, depends on m1, T, a, 8. Combining (22), (26), and (27), we obtain

(27)

GHLW(O,T;HH’(Q))’

[, £) - < Bt k- K|

f“]HM(Q)
+|<]

(s t)HJHf(Q)
+ DO — k’|(

|G||L°°(O,T;I[—If*9(£))) L°°(0,T;]HM*6(Q)))

+ Dulk — K|

G“L‘X’(O,T;HH’(Q))'

The proof is complete. [

5. Convergence of the mild solution

This section outlines convergence results as the parameters b — 07,4 — 0" and o — 17, bridging the
current terminal fractional framework with conventional models.

5.1. Convergence of the mild solution when b — 0*
It should be noted that, when b = 0, Problem (6) becomes the following initial value problem

Dy — Au; =G(x, ), in Qx(0,T],
wi(x,t) = on JQx(0,T], (28)
au;(x,0) = f(x) in Q.

To avoid any confusion, we denote by u and 1 the mild solutions to Problem (6) and Problem (28)

ak

respectively. In the following theorem, we show that u tends to 1; when b — 0.

Theorem 5.1. Assume thata > 0. Let f € H"Y(Q) and G € L°(0, T; H~9(Q)). Then, there holds

. bm bm T*
””Z,’:(" B =, t)HJHf(Q) < _27;_”](”111[ 1 a?;—mg)ﬂ HL‘”(O,T;]H"*@(Q))'
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Proof. From (7), it can be seen the mild solution of Problem (28) is as follows

[

0 = Y (EaeA D+ [ G0, @)

=1

Combining (10) and (29), we get

= HE (=A#Y) e ME, (=A%)
ak e _ € Laa(—4y _ a1\ »
oy (1) = 1 (%, £) = ;‘ (a +beKTE, 1(—=A;T%) a )f]e](x)

- eMEq1(—Ajt%) T
_ 4 _ na-1,—k(T-r) . _ A\ . .
b;(a+be—"TEa,1(—A]-T“) (T = T IE (AT - )G](r)dr)e](x)

= 9@1 + Qz. (30)

Using Parseval’s equality, the norm of 2; can be rewritten as

- ME,1(=Ajt e M Eq1(=Ajt%)\?
”91“11{[(9) Z/\zf( e Eq1(=A;t%) a1(=A; )) |fj|2
=1

a+ be~ kTEal( A T“) a

ol a2 |2
_ 22T Z o [Ea i (=A )| Eq 1 (=AT9) 1)

j=1 az(a + be~ kTEarl(—)\]-Ta))
Using Lemma 2.2 and noting that E,1(—z) < 1 for z > 0, we arrive at

|Ea 1 (=At)PIE a1 (=A T < 1 (m)*
at AZTZ“

az(a + be—kTEa,l(—/\jT“))

where we note that the denominator component on the left hand side is larger than a*. Therefore, we have
from (31) that

bv? (my)? _
”31“11{[(()) = g4 Tzla Z/\Jz‘[ 2f]'2’

=1

which allows us to obtain

b my
”Qluw(g) 2 ﬁ”f”Hf—l(Q)' (32)
Using Parseval’s equality, one gets the following bound

”QZHIH"(Q)

= —be™ME 1 (—Ajt®)
— 2¢ a 1 —k(T 7) _
- ZAj [a + be~ "TE ( —A;Te) f - Eoa(=A4(T =1)")G; (T’)df’

]‘:1 a,l

PN o ki ?
<3 Z A7 [ fo (T =1 e ™ MIE, ((=A{T - r)“)Gj(r)dr] (33)

j=1

where we note that

beHEan (<At b
a+be*TE,1(=AiT*) ~ a
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Combining (14), (15) and (33), we obtain the following bound

bz (ml )2 TZa—ZGa

”QZHW(Q) = ;W” ||L°°(0,T,-Hf—0(@))‘

(34)

By collecting three previous results (30), (32) and (34), we derive that

””ak( B = ua(, t)H]H’(Q) = ”"%HH(Q) + ”"@ZHH’

b m bm T~
< e lllino * =257 160 rae sy

The proof is complete. [

5.2. Convergence of the mild solution when a — 0*
Noting that, when a = 0, Problem (6) becomes the following terminal value problem

Di*w; — Aw) = G(x,t), in Qx(0,T],
w;(x,t) =0, on JQx(0,T], (35)
bw;(x, T) = f(x), in Q.

In the following theorem, we show that, when a — 0%, the solution ”sz of Problem (6) tends to the solution
wj, of Problem (35).

20~ 20+1

Theorem 5.2. Let b > 0. Assume that f € ]I—I€+2(Q) and G € L*(0, T;H (Q)). Then

““ZY,Z o B) =Wy, iL)”Ln(o,T,-JHf(Q))
\a n
b C4( \/Eb\/E + \/z\/l—))(“f”]Hh%(Q) + ||G||L°°(0,T; 24=30+1
where Cy = Cy(my, iy, k, T,a,A1,0,p)and 1 <p < 1.

)

Proof. The mild solution to Problem (35) is given by

= T-DE, 1 (- —A;t%)
DEas (AT )

) k(T—t )Eal( At“) L ) )
]Zd( al( /\T“ f(T ) 1 k(T- )Eaa( /\(T_r) )G (r)dr)e](x)

wy(x, t) =

i=1
oo

f (1= 1) M E (A= )G 0 e ) (36)
Combining (36) and (9), we get

oo Kt P ) 4@

. X e Eq1(=Ajt%) e Eqp(=Ajt ))

o t) -y t) = ) - e;
Yo (D) = ) =~ (a+be—’<TEa,1(—/\]-T“) b (AT )

_i (¢ M Ea1(-At%) _ek“-”Ea,l(—Ajt“))
S\ a4 be TE (AT Ean(FATY)

T
f (T = e ™M IE, ((~=A(T - r)“)Gj(r)dr)e]-(x)
0
= 23(x, 1) + 2a(x, ). (37)
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Let us focus the term 25. Using Parseval’s equality, one gets the following equality

”o@ “ i/\%( e MEy1(=Ajt%) ) ek(T_t)Ea,l(_/\jta))2|f4|2
e = L g be FTE (AT DEa (AT )
sl 2 ,2k(T— )2
-y ate *’lEa,l(z—A]t‘n o
]
1 (a+bekTEy (=A;T?)) B2|Eq1(=A;T?)R

Using Cauchy inequality and Lemma 2.2, we find that

2
(a + be—kTEa,l(—A]-T“)) VEa1(-A; T = 2ab®e M |E o1 (A, TY)P

> 20b3€_kT(1+n1ﬁ)3.
]

Using Lemma 2.2 again, one gets E,1(—At") < This implies that

1+/\ it

—2 00 ) 3
” QSHZ <cMm a ezk(T—t)+kTZ 22 1 +AT% f»z
HAD) = 3 263 =i (1+ A2
—2
m a 2KT=H+KT 20 (Ta —2a 2041 2
< e (T + A7) ;A 7, (38)
where we note that - ) i < T%t~%. The latter inequality allows us to obtain that

1256, Bl < Crlm, T, k, T, Av) N Al (39)

e

Let us now return to the term 2;. Indeed, we get

( eMEan (A" e TEL (=AY )2
a—+ be‘kTEa,l(—AjT“) Ea,l(_/\jTa)
a2e2k(T—t) IEa,l (_/\jta)|2

5 .
(a+ beHTEq1(=A/T%) [Eq (=4, TP
Using the techniques as in (38), we obtain

—2
||°@4(., t)H;[@) < mé 2abezk(T t)+kTT2a<Ta + A7 ) 2a

T
X Z; /\]2.“1< fo (T = * e T E, (~A(T - r)“)Gj(r)dr)z. (40)
p=
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In the same way as (14) and Holder inequality, we find that

i A]2€+1( ]O‘T(T _ r)aflefk(T—r)Ea/a(_A],(T _ r)a)Gj(T)dr)z

=1

oo T
< Y A2 fo (T = 1)* e M Eq o (=A(T = 1)*)dr)
j=1

T
x fo (T = e T DE, o (~A{T = )IG;(r)Pdr)

|m |2Ta—9a T Qo 2
< ; — (T - 1’)“ O 1HG(, r)||H2r—226+1 (Q)di’. (41)
0

Combining (40) and (41), we arrive at

2 — \/a —a : T a—0a— 2
|24, t)HmQ) < Co(m, 1, k, T, a, 6, Al)(wf ) fo (T = =% |GC, r)”]HZHZEM @

It is not difficult to verify that

T —0a-1 2 Ta—@oc 5
j(; (T _ r)a et “G(, r)”]Hszzzen (Q)d}’ < m”G”Lw(O,T;HZF%HH Q)

From two latter inequalities above, we confirm that

Vi
1 24C, Bl < QWt 1G] 2t ) (42)
where C3 = C3(m1,my,k, T, a, 6, A1). Combining (37), (39) and (42), we deduce that forany 0 < 0 < «

””Z,’:(" £) = wy(, t)”JHf(Q) < “QC“(" t)“]H’(Q) + )(34(-, t)“]Hf(Q)

Vi,
\/Eb\/gt ”f“]H“%(Q)

< Cl(mllmlr k/ Tr a, Al)

+C3

Vi algl] e
V2 \b L=(0,TH 2 (Q)
Since the fact that 1 < p < 1, we obtain that the following bound

““Zf(" t) — wjy(, t)”mo,T,-JHf(Q))

Vi,
\/Eb \/E + \/E\/Z—J)(“f”]HH%(Q) + ||G||Loo(0,T,-]HZHze+1 (Q)))

< C4(
where Cy = Cy(my,my, k, T,a, A1, 0,p). O

5.3. Convergence of the mild solution when o — 17.

In this subsection, we continue to investigate another convergence result, namely, the convergence of
the mild solution to nonlocal problem (6) when o — 1.
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Theorem 5.3. Let a > 0 and b > 0. Let us assume that f € H"P(Q) and G € L2(0,T;HP"2(Q)) N
L®(0, T; HP(Q)). Then

¢, 8 = 0C, Dy

-p

< COV ((1 1)( 27 +t ap)(”f”]Hf P(Q) ”G”LZ(QTHf P*E(Q)) ”G”LM(O,T;HH(Q)))’ (43)

where

J a(l—=p
V@) = (=) + ()1 - 1)TE 4 (- 41 e () 1) T T

Here € >0,0<p <2, p<2a—1and T* = max(T,1). The function v on the left hand side of (43) is defined by

—kt

ox 1) = Zf a+ be‘kTe Aj Tf]e](x
j=
o0 T
—K(T-7) ,—A{(T—

bz (a e kTe T jo‘ e K== ’)Gj(r)dr)ej(x)

j=
+ Z ( f k(t")e‘Af(t’r)G]-(r)dr)e]-(x). (44)

j=1
Remark 5.4. Let s be a positive number such that

O<s< min(i, i)
p+1" ap

Then, we deduce from (43) that

o

L3(0,T;H! ()
= COVP(O" 1)(||fH]H(’*/’(Q) * ”G”LZ(O,T;]H‘)’V’%(Q)) + ”G”L‘X’(O,T;H[*P(Q)))'
To prove the above theorem, we first prepare several key inequalities in the following lemmas.
Lemma 5.5 (see [6]). Let 0 < o < 1. Then, for any u > 0, we get
7 = 1] < 271 - @)+ (T)7 = 1)),

Lemma 5.6 (see [1]). Let 3/4 < a < 1 and a < B < 1. Then, there exists a constant C independent of a, B, z such
that, for any z < 0,

Eqp(z) —ef| < (45)
Proof. [Proof of Theorem 5.3] To begin with, we design an estimate for the error
K@) = Eaa(=At") ™
In view of the inequality (45), we get
A4y _ oA < _
Egp(=Ajt%) —e™" | < [T i 1-a)
< L(l —a) < CHAP(1 - a) (46)
T (1 Ato)P - j ’
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for any 0 < p < 1. Using the inequality [e™ — ¢7?| < Cs» max(a~®,b7°)la — b|” for any a,b > 0 and 6,8’ > 0, we
find that

|e < Copr A7 max(%, A |t — 2
<C(T,a,s, 5’)r5)\]7<‘5‘5’>t5’|t“*1 -1,
Using Lemma 5.5 and the inequality (a + b)* < Cya® + Csb®, we obtain

o , o
=11 < HD(Cu(1 = )t (T - 1)

<l (1 -+ (T 1)),

1

By choosing u =a, & =—Land 6= —, we see that
a(l-p) 2 atp)
‘e‘}‘ft - ‘ < Cla, T T [ -a)" s + () -1) T 157, 47)
Combining (46) and (47), we arrive at
|45 (@, 1) < [Ear(=Aj8%) = | 4 [e e = |
<C,T, p)Aff’(t‘Tl ) -a) T+ 1-a ()0 -1) T, (48)
i
for any 0 < p < 1. In a similar way, we also get the following result
Eaa(=;t%) — 7|
-1 a(l- e a(l-
Cla, T, AP (5 + ) - a) ol (M) -1) T (49)
From (9) and (44), we get the following equality
= eME 1(=At%) ekte=Ajt
ak e B = ( a, ] _ )
W) — ol f) ; a+be*TE,1(=AT*)  a+be* Te-NT fiei®)
0 kt _1 .4 T
Z ( Eap (-2t —k(T—r)((T et
\a+ be*TE1(=A;T)
Ean(=A(T )% - e_A/(T_’))G]-(r)dr)e]-(x)
. e MEq1 (=A%) e kte=Ai T
_p ( 1A _ )(f K1 =AT-N G (1 d ) ,
i \a+beMEq (<A T a+be*Te T\ Jy ¢ ¢ jndr fej(x)
o t
+Y ( f (= 1) Eqal=Aj(t = 1)) - e*ﬂf“*f))cj(r)dr)ej(x)
j=1 0
4
= Z Di(x, b). (50)

IN
—_

i

We begin with the first term 2;(x, t). For the sake of convenience, from now on, we denote by

_ktEO(,l(_/\]'ta) ]* ( t) _ E_kte_/\/t
a+be*TE, (—A;T®)’ = a4+ beKTe=MT"

Jia, j,t) =
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From the two above formulations, it is easy to see that

]1,k(a/ j/ t) - ];k(]‘/ t)

ae o
] (ﬂ + be_kTEa,l(_A]'Ta))(a + be‘kTe_/\fT) <Ea’1(_/\ft ) —€ A]t)

be—k(T+t)
+ (Eap(=Ajt)e™ T — e M Eq 1 (—A/T%)
(a + be—kTEall(—/\jT“))(a + be‘kTe‘AfT)

= M, j 1) + Ao(a, j 1)

Using the bound (48), we find that

|%1(0(,].,t)|
okt T
< —Ca, T, p)A; (T + ) (1-a)

a(l p)

Floas (e -1) T

T i1oa+ (' -1) e p)].

< Ca, T, p,0); (t 5 )

In view of (49) and by some simple caculations, we derive that

_At
R O R N
e, B S —— - + 3 |Ear (AT —e |
Eaa(-A) —e M|y
< - + [Eaa(-2) - eT|

a(l-p)

1-p
Cla, T, p,a,b)A; (t 2 +t‘“”)[(1 0 11— a+(T)y-1)" 157
By collecting three latter bounds as above, one gets

e, 7, 8) = J1 G D1 < | (a, j, D] + [ Ao(a, i 1))
ip
2

<C(a,T, p,a, b)/\]_P(t# + t—ap)[ 1(12—/7) tl—at ((T*)l_a 3 1) Ta(lz p)]'

This implies that

|2 ( t)Hz = ZA%( eHEan (ALY ke )zlf'|2
TIH@) 4 <4 T \a+be E, 1 (=AT)  a+be e~ MT j

ai-p)

< Cla, T, p,a,b)(t5 +t‘“P) [1-a)*

-

+1—a+((T*)1*“—12 ] ZAZ“PfZ.

Hence, since the assumption f € H~?(Q), we arrive at

||gl(./ t)H]H((O) (Of T p,a b)( ’727 + t—ap)
1
2

x[1-0)" T +1—a+ (@) - 1) " 77|l . (51)
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Let us continue to estimate the term ||93(‘, t)”H (@ By using Holder inequality, we obtain

T 2 T T
( f e‘k(T’r)e‘Af(T_r)Gj(r)dr) S( f e‘Zk(T")e‘”f(T‘r)dr)( f GZ»(T)dr)
0 0 o
1 — 2T(k+A))

T 1 T )
- ey () Gew) <5 [ arcion

Thus, we derive that

2560y = 82 (e CNED ety
3V e = <+ \a+beFEqy (—A;T%)  a+ be ke T

T 2
x( f e‘k(T‘r)e_Af(T‘r)G]-(r)dr)

0

<C(a,T,p,a, b)(t%'l + t‘“P)z( f ' i /\?K_ZP_lG?(r)dr)
0o

x [(1 —) Tt l-at ((T*)lfa - 1)¥TM]2.

It follows that

|125¢, Dl < C@ T, psa, Bt + )
a(l- oo
% [(1 B a)% tl-a+t ((T*)l_a h 1) 2 T%]HGHLZ(O,T;H"-P-%(Q))'

We continute to estimate the term Qu(x, t). Initially, we find that

(t = ) Ega(=Aj(t — 1)) — e < (= 1)o7

Eqa(=Aj(t = 1)) = e 4t

+ |t =t = e

= M, ), 1) + M@, ], 1).

Denote by

a(l-p)

Ep(a/ 1) = (1 - (X) 2

1;'0 a(l-p
tl-a+ () -1)7 T
Using (49), we obtain
M@, j,t) < C(a, T, p)Eg(er, DA (¢ - 7t - N (- nor).

In view of Lemma 5.5, we get

NI

(=1 =] < Colt = (- )+ () - )T

)

11875

(52)

(53)

(54)

Using the inequality e < C,z7?, we have e < CP)\;p(t —1)7P. Thus, the following inequality holds

true

NI

M@, i) < CpA (= r)a-l—%"((l — )+ () 1)

)

(55)
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Combining (53), (54), (55), we arrive at

(t = 1) Eqa(=Aj(t = 1)) = M)

< C(a, T, Vil DA (6= )57 (1= ) o (6 ), (56)
where

Vo, )= -a)f + (M) - DT +(1-a) 7 +1-a+(T)-1)" T

Using Parseval’s equality, one gets

oo t 2
2460 = 2 5 [ (=11 Baatorse =) - )G
j=1

sl t
<Y A fo |(t—r)a-15“,a(—Aj(t—r)ﬂ)—e-Af“-r)

=1

dr)

t
( f (£ = " Eaa(=A,(t = 1)) — 0| G2y,
0

This inequality together with (56) allows us to get that

23 Bl < C@ T Vo, DPIGIE o 11

t(t—r)“’g’%dr+ t(t—r)ﬂflfaﬂdw t(t—r)‘“*%rz (57)
(] L l )

where we note that
Z A?g—%’G]z.(r) < ||G||im OTHP Q)"
=1

Additionally, it is easy to verify that

t ' ¢
f (t- r)"‘_%_%dr + f (t =) 1-ardy + f (t- r)“—l—%’dr
0 0 0

= Cla, - + 60 4 1), 58

where we remind that p < 2?“ and p < 2a — 1. Hence, from (57) and (58), we obtain the following bound

4
2

[|24(, t)H]H[(Q) <C(a, T, p)Vp(a, 1)(t“‘ 3 4 paep ta—%'))|

< Ca, T, p)Vpla, (T4 + T + T F )G

|G||L°° (0,T;H(Q))
(59)

L0, T;HP(Q))
Lastly, we focus on the term 2,(x, f). By using Parseval’s equality, we have

—kt 4 T

0 = S M) (7 i
2@ T £\ g 4+ beKTE 1 (<A T?)
j=1 a, ] 0

2
X (T = 7 Eaa AT = 1) = N T0)Gy )

P ol [k 2
< = 2 ~KT-n)((T — a—lEaa AT = 1) — e MNTD\G, ) '
=2 jzzl/\] (j(; e (( ) g ( /\]( ) —e )G](r)dr (60)
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By employing the same proof as in (59), we arrive at

226, Bl gy < ZC(a, T, p)V,(a, 1)(T272 + T 4+ T3 (61)

t )”G”L”(O,T;II-I"P(Q)Y

Combining (51), (52), (59), (61), we conclude that

4
Wﬂﬁvﬂ—v@ﬂmw@)SEZHQKVMMmm

=1

= COVP(a’ 1)(t%71 + 7P (”f”IH‘*P(Q) + ”G”LZ(O,T;]HC*P*%(Q)) + ”G”LM(O,T;]HH’(Q)))’

where we note

P

_P_1 _ _3 _r
PTETE 4 T T < T2

-1 a-a a2
24TV T2,

Here, Cy dependson o, T, p,a,b. O

6. Conclusion

This study focuses on the tempered fractional diffusion equation subject to a nonlocal terminal condition.

The fractional operator used in this model is the tempered Caputo derivative, which extends the traditional
Caputo derivative. We begin by demonstrating the well-posedness while highlighting the complexities
introduced by the tempered kernel and the nonlocal condition. Next, we examine the continuity of the
solution in relation to the tempered parameter, which is vital in modeling purpose. Lastly, we present
numerous convergence results, relating the terminal fractional model to established classical equations.

References

(1]
[2]

[3]
[4]

(5]
[6]
[7]
(8]
191
[10]
[11]
[12]

[13]
[14]

[15]

[16]

H. Chen, M. Stynes, Blow-up of error estimates in time-fractional initial-boundary value problems, IMA J. Numer. Anal. 41 (2021),
974-997.

C. Y. Gu, E X. Zheng, Mittag-Leffler stability analysis of tempered fractional neural networks with short memory and variable-order,
Fractals 29 (2021), 2140029.

A. Hanyga, Wave propagation in media with singular memory, Math. Comput. Modelling 34 (2001), 1399-1421.

S. Krim, A. Salim, M. Benchohra, Nonlinear contractions and Caputo tempered implicit fractional differential equations in b-metric spaces
with infinite delay, Filomat 37 (2023), 7491-7503.

C. Li, W. Deng, L. Zhao, Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations, Discrete
Continuous Dyn. Syst. Ser. B. 24 (2019), 1989-2015.

L. D. Long, O. R. Donal, Notes on Convergence Results for Parabolic Equations with Riemann—Liouville Derivatives, Mathematics 10
(2022), 4026.

L. D. Long, N. D. Phuong, M. A. Ragusa, On a non-local Sobolev—Galpern-type equation associated with random noise, Bull. Malays.
Math. Sci. Soc. 46 (2023), 202.

M. Medved, E. Brestovanska, Differential equations with tempered 1p-Caputo fractional derivative, Math. Model. Anal. 26 (2021),
631-650.

M. M. Meerschaert, F. Sabzikar, M. S. Phanikumar, A. Zeleke, Tempered fractional time series model for turbulence in geophysical flows,
J. Stat. Mech.:Theory Exp. 2014 (2014), P09023.

M. M. Meerschaert, Y. Zhang, B. Baeumer, Tempered anomalous diffusion in heterogeneous systems, Geophys. Res. Lett. 35 (2008),
L17403.

Y. Meng, X. Du, H. Pang, Iterative Positive Solutions to a Coupled Riemann-Liouville Fractional g-Difference System with the Caputo
Fractional g-Derivative Boundary Conditions, J. Funct. Spaces 1 (2023), 5264831.

1. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their
solution and some of their applications, (1st edition), Elsevier, 1998.

F. Sabzikar, M. M. Meerschaert, ]. Chen, Tempered fractional calculus, J. Comput. Phys. 293 (2015), 14-28.

A.Salim, S. Krim, J. E. Lazreg, M. Benchohra, On Caputo tempered implicit fractional differential equations in b-metric spaces, Analysis
2(2023), 129-139.

B. Shiri, G. C. Wu, D. Baleanu, Collocation methods for terminal value problems of tempered fractional differential equations, Appl. Numer.
Math. 156 (2020), 385-395.

N. A. Tuan, N. H. Tuan, C. Yang, On Cauchy problem for fractional parabolic-elliptic Keller-Segel model, Adv. Nonlinear Anal. 12
(2023), 97-116.



N. H. Luc et al. / Filomat 38:33 (2024), 11855-11878 11878

[17] N.H. Tuan, V.V. Au, A. T. Nguyen, Mild solutions to a time-fractional Cauchy problem with nonlocal nonlinearity in Besov spaces, Arch.
Math. 118 (2022), 305-314.

[18] R.Wang, N. H. Can, N. A. Tuan, N.H. Tuan, Local and global existence of solutions to a time-fractional wave equation with an exponential
growth, Commun. Nonlinear Sci. Numer. Simul. 118 (2023), 107050.

[19] M. A. Zaky, Existence, uniqueness and numerical analysis of solutions of tempered fractional boundary value problems, Appl. Numer.
Math. 145 (2019), 429-457.



