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Abstract. This research article focuses on the co-intersection graph of a commutative ring R. The
co-intersection graph ofR is a simple graph with vertices that are non-trivial ideals ofR, and two distinct
vertices I and J are adjacent if and only if I + J , R. The objective of the research article is to characterize
the Artinian commutative rings R, determining whether their associated co-intersection graph is tree,
bipartite, planar, outerplanar, or toroidal. In essence, the article explores the inherent properties of
the co-intersection graph and investigates how specific characteristics of Artinian commutative rings
influence the resulting graph structures.

1. Introduction

The investigation of graphs associated with algebraic structures is a rapidly growing field, with a focus
on classifying the graphs of algebraic structures and vice versa. Researchers are particularly interested
in understanding the relationship between the algebraic structure and the graph-theoretic properties of
the corresponding graph. When a combinatorial object is assigned to an algebraic structure, it often
leads to intriguing problems in both algebra and combinatorics. Currently, one of the most active areas
of research in this field is the study of graphs associated with commutative rings. Commutative rings are
a fundamental algebraic structure in mathematics and have many applications in diverse areas such as
coding theory, cryptography, and algebraic geometry. Algebraic structures and graph theory intertwine
in a rapidly evolving field, focusing on classifying graphs corresponding to algebraic structures and
attributing algebraic properties to them. A notable example is the zero-divisor graph associated with
a commutative ring R, where vertices represent ring elements, introduced by Beck [9] and, redefined
by Anderson and Livingston [5], this graph captures connectivity: vertices u and v are adjacent if uv
equals zero. This concept offers insights into commutative rings and zero-divisors, with applications in
algebraic geometry, topology, and coding theory. Extensively explored, as evidenced by references [4, 16–
19]. The cozero-divisor graph of a ring R with unity, which was introduced by Afkhami et al. in [1], is an
undirected simple graph whose vertex set is the set of all non-zero and non-unit elements of R, and two
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distinct vertices x and y are adjacent if and only if x < Ry and y < Rx. Some of the works associated with
the cozero-divisor graph on the rings can be found in [2, 3].

Intersection graph theory is one of the traditional areas of study in graph theory. Wide-ranging
applications of intersection graph theory can be found in many fields of human endeavor, including
common interest networks, secure sensor networks, wireless communication networks, and collabo-
ration networks. A notable result says that “every simple graph is an intersection graph”. Note that
intersection graph of a ring is a particular case of intersection graphs. Let L(R) denote the set of all
non-trivial left ideals of a ring R. The intersection graph of ideals of a ring R is an undirected simple graph
whose vertices are in a one-to-one correspondence with L(R) and two distinct vertices are joined by an
edge if and only if the corresponding left ideals of R have a non-zero intersection. For more details on
the intersection graph of ideals of rings, one may refer to the survey article [10].

Inspired by the intersection graph of ideals, Hoseini and Y. Talebi [11] introduced the notion of co-
intersection graph, which is represented asΩ(R), specifically for commutative ringR. In the co-intersection
graphΩ(R), the vertices correspond to non-trivial ideals of the commutative ringR. Notably, two distinct
vertices, represented as I and J, are deemed adjacent only when their sum, I + J, does not encompass
the entire ring R. This elegant construction sheds light on the connectivity and relationships among
non-trivial ideals in the given commutative ring. Few works on co-intersection graphs in algebraic
structures can be found in [6, 12, 13]. Keep in mind that many ring theoretical properties are reflected in
a ring’s ideal structure.

2. Preliminaries

We provide an overview of the terminologies and ideas in this section. These are necessary for
understanding the sections that follow.

A mathematical structure called a graph G = (V,E) is made up of a set of vertices V(G) (nodes) and
a set of edges E(G) that connect these vertices. Graphs are frequently used to show the connections
between different entities or objects. In a graph, a path is a series of edges that join a series of vertices
without having the vertices twice. A closed path that begins and ends at the same vertex in a graph is
called a cycle. A graph that has a path connecting each pair of vertices is said to be a connected graph. A
disconnected graph is a graph that is not connected. The complete graph Kn is a graph with n vertices in
which every pair of distinct vertices is connected by an edge. A graph with vertices that can be divided
into two disjoint sets of m elements and n elements such that each edge connects a vertex in one set to a
vertex in the other set is called a bipartite graph Km,n. A tree is a connected graph that does not contain
any cycle.

Topological graph theory is concerned with finding ways to embed a graph onto a surface, with
the minimum number of handles, called the genus of the graph. The genus of a graph G, denoted by
γ(G), is defined as the minimum integer k such that the graph can be drawn on a sphere with k handles
without any edge-crossing except at the vertices. The goal is to draw the graph in a way that the edges
only intersect at their vertices. A planar graph is one with genus 0, while a toroidal graph has genus
1. Euler’s formula states that for a connected graph with n vertices, e edges, and genus γ, the equation
n − e + f = 2 − 2γ holds true, where f is the number of faces created when the graph is embedded in Sγ.
This formula, along with combinatorial identities and inequalities, can be used to determine if certain
embeddings exist. For more information on embedding graphs onto surfaces we refer the reader to [22].

This research delves into the properties of the co-intersection graph, denoted asΩ(R), associated with
an Artinian commutative ring R. The focus lies on understanding the structural characteristics of this
graph, where the vertices correspond to nontrivial ideals of the ring. The adjacency between two distinct
vertices, represented by ideals I and J, is determined by the condition that their sum, denoted as I + J,
does not equal the entire ring R. The primary objective is to characterize Artinian commutative rings by
analyzing the graph Ω(R). Specifically, the research aims to determine the Artinian commutative ring
when the co-intersection graph is tree, or bipartite, or planar, or outerplanar, or toroidal. In essence,
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the article explores the intrinsic properties of Ω(R) and investigates how specific features of Artinian
commutative rings influence the resulting graph structures.

3. When a co-intersection graph is tree or bipartite

Remember that the number of edges in a simple connected graph with n vertices falls between n − 1
and

(n
2
)
. Keep in mind that G is complete if |E(G)| =

(n
2
)
, and tree if |E(G)| = n − 1. The authors of [11]

characterized all Artinian commutative ring whose co-intersection graph is complete. The following is
the corresponding outcome.

Proposition 3.1. [11] The co-intersection graph of a ring R is complete if and only if R has unique maximal left
ideal. In other words, Ω(R) is complete if and only if R is a local ring.

Now it is natural to characterize all Artinian commutative rings whose co-intersection graph is a
tree. In what follows, a ring with a unique maximal ideal is referred to as a local ring. If a ring fulfills
the descending chain condition of ideals, then it is an Artinian ring. Notice that Artinian rings play an
important role in algebraic geometry, for example in deformation theory. The decomposition theorem
on Artinian commutative rings states that every Artinian commutative ring can be decomposed as a
direct product of local rings. This decomposition is unique up to isomorphism.

Theorem 3.2. Let R be an Artinian commutative ring with unity. Then Ω(R) is a tree if and only if R is a local
with at most two non-trivial ideals.

Proof. Suppose Ω(R) is tree. Given that R is an Artinian commutative ring with unity. We can employ
the structure theorem R � R1 ×R2 × · · · × Rn, where each Ri is an Artinian local ring for 1 ≤ i ≤ n. When
n ≥ 3, the collection of non-trivial ideals {R1 × (0) × (0) × (0) × · · · × (0), (0) ×R2 × (0) × (0) × · · · × (0), (0) ×
(0)×R3 × (0)× · · · × (0) forms a triangle inΩ(R), a configuration that contradicts the assumption of a tree.
Therefore, it can be inferred that n ≤ 2.

Consider the case where n = 2, meaning R � R1 × R2. Suppose both R1 and R2 are fields; in
this scenario, Ω(R) would contain two isolated vertices, leading to a contradiction of connectedness.
Therefore, at least one of the Ri is not a field. Let’s assume that R2 is not a field and has a non-trivial
idealm. In this case, the set of non-trivial ideals {R1 × (0), (0)×m,R1 ×m} form a triangle inΩ(R), which
results in a contradiction. A similar contradiction would arise if R1 is not a field.

In the case when n = 1, indicating R is an Artinian local ring. Assume that R has at least three
non-trivial ideals. According to Proposition 3.1, this implies that Ω(R) contains a triangle, resulting in a
contradiction. Therefore, it can be concluded thatR is an Artinian local ring with at most two non-trivial
ideals. On the flip side, if R is an Artinian local ring with at most two non-trivial ideals, it follows from
Proposition 3.1 that Ω(R) forms K2 and is consequently a tree, which leads to the completion of the
proof.

Next we are interested in characterizing bipartite nature of co-intersection graph of an Artinian ring.
The following result plays a key role in bipartite characterization.

Proposition 3.3. [21] An undirected graph is bipartite if and only if it does not contain an odd cycle.

Theorem 3.4. Let R be an Artinian commutative ring with unity. Then Ω(R) is a bipartite graph if and only if
one of the following holds:

(1) R � F1 × F2, where F1 and F2 are fields.

(2) R is an Artinian local ring with exactly two non-trivial ideals.
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Proof. Assume that Ω(R) is a bipartite graph. Since R is Artinian, by the structure theorem, R �
R1 × R2 × · · · × Rn, where Ri is an Artinian local ring for each 1 ≤ i ≤ n. For n ≥ 3, the set of non-trivial
ideals {R1 × (0) × (0) × (0) × · · · × (0), (0) × R2 × (0) × (0) × · · · × (0), (0) × (0) × R3 × (0) × · · · × (0)} in Ω(R)
create a cycle of length 3, contradicting Proposition 3.3. Thus n ≤ 2.

Consider the case where n = 2, implying R � R1 × R2. Suppose, one of the Ri is not a field
say R2 with non-trivial ideal m. Then the subgraph in Ω(R) formed by the set of non-trivial ideals
{R1 × (0), (0) ×m,R1 ×m} constitutes a triangle, leading to a contradiction according to Proposition 3.3.
Hence, each Ri, where i = 1, 2, is a field. Consequently, R � F1 × F2, where F1 and F2 are fields.
Ultimately, when n = 1, it implies that R is an Artinian local ring. Assuming R possesses at least three
non-trivial ideals, Proposition 3.1 indicates that Ω(R) forms a triangle, contradicting Proposition 3.3.
Therefore, R has at most two non-trivial ideals. If R has at most one non-trivial ideal, thenΩ(R) reduces
to a single isolated vertex, resulting in a contradiction. Consequently, it can be concluded that R is an
Artinian local ring with precisely two non-trivial ideals.

In the reverse direction, if R � F1×F2, where F1 and F2 are fields. ThenΩ(R) consists of two isolated
vertices, forming a bipartite graph. Additionally, when R is an Artinian local ring with precisely two
non-trivial ideals, the application of Proposition 3.1 establishes thatΩ(R) forms K2 and is also a bipartite
graph. This concludes the proof.

4. When a co-intersection graph is planar or outer planar

Planar embeddings have a long and rich history, entwining with enumeration, chromatic graph
theory, algorithmic analysis, and many other areas. Recall that if a graph can be drawn in the plane with
all of its edges intersecting only at vertices, then it is said to be planar. There is a long history of studying
planar zero-divisor graphs; interested readers may refer to Chapter 4 in [4]. The Artinian commutative
ring R with unity that satisfies specific properties, like being a planar or outer planar with respect to its
Ω(R) structure, is characterized in this section.

Let us recall the famous Kuratowski’s Theorem.

Proposition 4.1. [21] (Kuratowski’s Theorem) A graph G is planar if and only if it does not contain a
subdivision of K5 or K3,3.

The following result provides a response to the question that “When a co-intersection graph is
planar?”

Theorem 4.2. Let R be an Artinian commutative ring with unity. Then the associated graph Ω(R) is planar if
and only if one of the following criteria is satisfied:

(1) R � F1 × F2 × F3, where F1, F2 and F3 are fields.
(2) R � F1 × R2, where F1 is a field and R2 is a local ring having unique non-trivial ideal.
(3) R is a local ring having at most four non-trivial ideals.

Proof. Assume that Ω(R) is planar. Since R is Artinian, R � R1 × R2 × · · · × Rn, where Ri is an Artinian
local ring for each 1 ≤ i ≤ n. For n ≥ 4, examining the subgraph within Ω(R) generated by the set of
non-trivial ideals {R1 × (0) × (0) × (0) × · · · × (0), (0) × R2 × (0) × (0) × · · · × (0), (0) × (0) × R3 × (0) ×
· · · × (0), (0) × (0) × (0) × R4 × · · · × (0), R1 × R2 × (0) × (0) × · · · × (0)} reveals an isomorphism with K5,
contradicting Proposition 4.1. Consequently, this implies that n ≤ 3.

Consider the case where n = 3, meaning R � R1 × R2 × R3 where Ri being an Artinian local ring for
i = 1, 2, 3. Suppose, for at least one i, say i = 3, R3 is not a field. Let m be a non-trivial ideal of R3. Then
the subgraph within Ω(R) formed by the set of non-trivial ideals S = {R1 × (0) × (0), (0) × R2 × (0), (0) ×
(0) × R3, (0) × (0) × m, (0) × R2 × m} corresponds to K5. According to Proposition 4.1, this leads to a
contradiction. Therefore, it follows that R3 must be a field. Likewise, we can demonstrate that R1 and
R2 are fields, leading to the conclusion that R � F1 × F2 × F3.
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Consider the scenario where n = 2, meaningR � R1×R2 where bothR1 andR2 are local rings. Assume
that neither R1 nor R2 are fields, and each has non-trivial ideals m1 and m2, respectively. Now Ω(R)
contains a subgraph generated by the set of non-trivial ideals {(0)×R2, m1×(0), (0)×m2, m1×m2, m1×R2}

which forms K5. However, this contradicts Proposition 4.1. Therefore, it follows that at least one of the
Ri must be a field; let us assume that R1 is a field, and R2 is an Artinian local ring with non-trivial ideal
m2. Suppose R2 has at least two non-trivial ideals namely m2 and m′2. Then Ω(R) exhibits a K5 structure
formed by the set of non-trivial ideals {R1 × (0), (0) × m2, (0) × m′2, R1 × m2, R1 × m

′

2}, leading to a
contradiction. Thus, it can be concluded that R2 is a local ring with at most one non-trivial ideal.

For the case when n = 1, implying R is an Artinian local ring, assume that R has at least five non-
trivial ideals. Using Proposition 3.1, it follows that Ω(R) contains a K5, contradicting Proposition 4.1.
Therefore, Rmust be an Artinian local ring with at most four non-trivial ideals.

The reverse implication is supported by Figure 1(a) and Figure 1(b). Additionally, when R is an
Artinian local ring with at most four non-trivial ideals, it follows from Proposition 3.1 thatΩ(R) forms a
K4 and is consequently a planar graph. This concludes the proof.

Figure 1(b). Ω(F1 × R2)
with atmost one non-trivial ideal of R2

Figure 1(a). Ω(F1 × F2 × F3)

F1 × (0) × F3

F1 × (0) × (0) F1 × F2 × (0)

(0) × F2 × (0)

(0) × (0) × F3 (0) × F2 × F3

F1 × (0) F1 ×m

(0) ×m

(0) × R2

Figure 1(d).
Forbidden induced subgraph of Ω(R), for n ≥ 4

Figure 1(c). Ω(R)
with atmost four non-trivial ideals

(I1) (I2)

(I3)

(I4)

R1 × (0) × · · · × (0)

(0) × R2 × (0) × · · · × (0)

(0) × (0) × R3 × (0) × · · · × (0)(0) × (0) × (0) × R4 × (0) × · · · × (0)

R1 × R2 × (0) × · · · × (0)

A graph that can be drawn in the plane with all of its vertices lying on the outer boundary and
no edges crossing anywhere other than at their endpoints is known as an outerplanar graph. Thus, it
follows that all outerplanar graphs are planar. A well-known result states that a graph is outerplanar if
and only if it contains no subgraph that is a subdivision of either K4 or K2,3. Combining these facts with
proof of Theorem 4.2 yields the following result.



N. Rehman et al. / Filomat 38:33 (2024), 11879–11888 11884

Corollary 4.3. Let R be an Artinian commutative ring with unity. Then Ω(R) is an outerplanar graph if and
only one of the following conditions is met:

(1) R � F1 × F2 × F3, where F1, F2 and F3 are fields.

(2) R � F1 × R2, where F1 is a field and R2 is a local ring having atmost one non-trivial ideal.

(3) R is a local ring having atmost three non-trivial ideals.

5. When a co-intersection graph is toroidal

This section’s goal is to investigate the problem of embedding a co-intersection graph on the orientable
surfaces of one handle. Over the past several years, the topological structures are widely investigated.
More specifically, the graph embedding of graphs arising from algebraic ones. For research on graph
embedding of graphs from algebraic structure, one may refer to [7, 8, 15, 20]. Recall that a graph G
is called toroidal if γ(G) = 1. In this section, we will analyze the Artinian commutative rings R and
determine the conditions under which the genus of Ω(R) is equal to one.

We now present a few findings that will help to prove the section’s main finding.

Proposition 5.1. [22] Let n ≥ 3. Then

γ(Kn) =
⌈

(n − 3)(n − 4)
12

⌉
.

In particular, γ(Kn) = 1 if n = 5, 6, 7 and γ(K8) = 2.

Proposition 5.2. [22] Let n,m ≥ 2. Then

γ(Km,n) =
⌈

(m − 2)(n − 2)
4

⌉
.

In particular, γ(K4,4) = γ(K3,n) = 1 if n = 3, 4, 5, 6. Also, γ(K5,4) = γ(K6,4) = γ(K3,m) = 2, if m = 7, 8, 9, 10.

Proposition 5.3. [14, Proposition 4.4.4] Let G be a connected graph with 3 ≤ n vertices and m edges. Then

γ(G) ≥
⌈m

6
−

n
2
+ 1
⌉
.

We are now able to describe Artinian commutative rings R in which the co-intersection graph has
genus one.

Theorem 5.4. Let R be an Artinian commutative ring with unity. ThenΩ(R) is toroidal if and only if one of the
following holds:

(1) R � F1 × R2, where F1 is a field and R2 is a local ring having two or three non-trivial ideals.

(2) R � R1 × R2, where R1 and R2 are local rings having exactly one non-trivial ideals.

(3) R is an Artinian local ring having at least five and at most seven non-trivial ideals.

Proof. Suppose that the genus of Ω(R) is one, where R is an Artinian commutative ring with unity. Let
R � R1 × R2 × · · · × Rn, where each Ri is an Artinian local ring for 1 ≤ i ≤ n. For n ≥ 5, the subgraph
in Ω(R) formed by the set of non-trivial ideals {R1 × (0) × (0) × (0) × · · · × (0), (0) × R2 × (0) × (0) × · · · ×
(0), (0)× (0)×R3 × (0)× · · · × (0), (0)× (0)× (0)×R4 × (0)× · · · × (0), (0)× (0)× (0)× (0)×R5 × (0)× · · · ×
(0), R1 ×R2 × (0)× (0)× · · · × (0), (0)×R2 ×R3 × (0)× (0)× · · · × (0), (0)×R2 × (0)×R4 × (0)× (0)× · · · × (0)}
is K8. This, however, contradicts Proposition 5.1. Consequently, it follows that n ≤ 4.
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Consider the case where n = 4, implyingR � R1×R2×R3×R4. Assume that at least one ofRi, sayR1,
is not a field with nonzero maximal ideal m. In such a scenario, the subgraph in Ω(R) generated by the
set of non-trivial ideals {R1× (0)× (0)× (0), (0)×R2× (0)× (0), (0)× (0)×R3× (0), (0)× (0)× (0)×R4, m×
(0)× (0)× (0), m×R2 × (0)× (0), m×R2 ×R3 × (0), m× (0)×R3 × (0)} is isomorphic to K8. However, this
contradicts Proposition 5.1. Therefore, it can be concluded that each Ri is a field for each i ∈ {1, 2, 3, 4}.
That isR � F1×F2×F3×F4, where eachFi is a field. Upon examiningΩ(F1×F2×F3×F4) we observe that
it has 14 vertices and 66 edges. By applying Proposition 5.3, it follows that γ(Ω(F1 × F2 × F3 × F4)) ≥ 5,
leading to a contradiction.

Consider the case when n = 3, indicating that R � R1 × R2 × R3. Let us suppose that none of the Ri
is a field with non-trivial ideal mi. Then the subgraph in Ω(R) generated by the set of non-trivial ideals
{R1×(0)×(0), (0)×R2×(0), (0)×(0)×R3, m1×(0)×(0), (0)×m2×(0), (0)×(0)×m3,m1×m2×(0), (0)×m2×m3}

is claimed to be isomorphic to K8. However, by Lemma 5.1, this leads to a contradiction. Consequently,
it can be concluded that at least one of the Ri is a field. Assume, without loss of generality, that R1 is a
field. Let R2 and R3 be local rings with non-trivial ideals m2 and m3, respectively. Then the subgraph in
Ω(R) generated by the set of non-trivial ideals {R1 × (0) × (0), (0) × R2 × (0), (0) × (0) × R3, (0) × m2 ×

(0), (0)× (0)×m3, (0)×m2 ×m3,R1 ×m2 × (0),R1 × (0)×m3} is K8, a contradiction. Thus, it can be inferred
that at least two of the Ri’s, say R1 and R2 are fields making R � F1 × F2 × R3. Suppose R3 has at least
two non-trivial ideals m3 and m′3. Then the subgraph in Ω(R) generated by the set of non-trivial ideals
{R1×(0)×(0), (0)×R2×(0), (0)×(0)×R3, (0)×(0)×m3, (0)×(0)×m′3, R1×(0)×m3, R1×(0)×m′3, (0)×R2×m3}

is K8, leading to a contradiction. Hence R3 has a unique non-trivial ideal. Then Ω(R) has 34 edges and
10 vertices, referring to Lemma 5.3, γ(Ω(F1 × F2 × R3)) ≥ 2, leads to a contradiction. Hence R3 is also a
field. Then according to Theorem 4.2, γ(Ω(F1 × F2 × F3)) = 0, which is again a contradiction.

Now, consider n = 2, that is R � R1 × R2. We can analyze the following cases:
Case(i): Suppose both R1 and R2 are fields. In this scenario, according to Theorem 4.2, Ω(R) is a planar
graph, which leads to a contradiction.
Case(ii): Suppose R1 a field and R2 is not a field. If R2 has at least four non-trivial ideals denoted as m1,
m2, m3, and m4. Then Ω(R) has K8 generated by the set of non-trivial ideals {(0) × m1, (0) × m2, (0) ×
m3, (0)×m4, (R1)×m1, R1×m2, R1×m3, R1×m4}, a contradiction. Thus,R2 has at most three non-trivial
ideals. If R2 has exactly one non-trivial ideal then by Theorem 4.2, γ(Ω(R)) = 0, a contradiction. Hence,
R2 has at least two and at most three non-trivial ideals.
Case(iii): Suppose bothR1 andR2 are not fields with non-trivial idealsm1 andm2, respectively. Suppose
one of the Ri, say R1, has at least two non-trivial ideals m1 and m′1, then Ω(R) has K8 generated by the
set of non-trivial ideals {(0) ×R2, m1 ×R2, m′1 ×R2, m1 ×m2, m′1 ×m2, m1 × (0), m′1 × (0), (0) ×m2}, a
contradiction. Hence each Ri has exactly one non-trivial ideal.

Finally for n = 1, R is a local ring. Suppose R has at least eight non-trivial ideals, then by Proposition
3.1, Ω(R) has K8, a contradiction by Proposition 5.1. Hence, R has at most eight non-trivial ideals. If R
has at least four non-trivial ideals, then by Theorem 4.2, γ(Ω(R)) = 0, a contradiction. Thus, R has at
least five and at most seven non-trivial ideals.

The reverse implication is evident from the graphical representations in Figure 2(a), Figure 2(b), and
Figure 2(c). Additionally, whenR is an Artinian local ring with at least five and at most seven non-trivial
ideals, the proof is completed by employing Proposition 3.1 and Proposition 5.1, which establish that
γ(Ω(R)) = 1.
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where F1 is a field and R2 is an Artinian local ring with three non-trivial ideals.
Figure 2 (a). Toroidal embedding of Ω(F1 × R2)

(0) ×m1 (0) ×m2

F1 ×m1

F1 ×m3 (0) ×m1

(0) ×m1 (0) ×m2 F1 ×m3 (0) ×m1

(0) ×m3

F1 ×m2

(0) ×m3

F1 ×m2

F1 × (0)

(0) × R2

where F1 is a field and R2 is an Artinian local ring with exactly two non-trivial ideals.
Figure 2 (b). Toroidal embedding of Ω(F1 × R2)

(0) ×m1 (0) ×m2 F1 ×m1 (0) ×m1

(0) ×m1 (0) ×m2 F1 ×m1 (0) ×m1

F1 ×m2 F1 ×m2

F1 × (0)

(0) × R2
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where R1 and R2 are local rings with exactly one non-trivial ideals m1 and m2 respectively

Figure 2 (c). Toroidal embedding of Ω(R1 × R2)

m1 × (0) m1 ×m2 (0) × R2 m1 × (0)

m1 × (0) m1 ×m2 (0) × R2 m1 × (0)

(0) ×m2

R1 × (0)

(0) ×m2

R1 × (0)

R1 ×m2

m1 × R2

6. Conclusion

This research article explores the interesting domain of Artinian commutative rings, specifically fo-
cusing on the co-intersection graph Ω(R) associated with such rings. By characterizing the structural
properties of this graph, the study sheds light on the intricate relationships between non-trivial ideals
of the ring and the resulting connectivity patterns. The investigation successfully determines whether
Ω(R) exhibits planar, outerplanar, tree, or bipartite characteristics, offering valuable insights into the
graph-theoretic aspects of Artinian commutative rings. Moreover, the pursuit of identifying rings with a
genus of one adds an additional layer of complexity to the analysis, highlighting the nuanced interplay
between algebraic structures and graph theory. Overall, this research contributes to a deeper under-
standing of the inherent properties of co-intersection graphs and their connection to the algebraic nature
of Artinian commutative rings.

Acknowledgements: The authors are deeply grateful to the referee for careful reading of the paper and
helpful suggestions.
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