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Abstract. In this article, we introduce the idea of relation theoretic multivalued Suzuki-generalized
nonlinear contractions and utilized the same to prove some fixed point results in a R-complete partial
metric space. Our newly proved results are sharpened versions of several known results of the existing
literature, which is substantiated by an example. Moreover, the stability of fixed point sets of the multivalued
contractions is also discussed. Further, we give an application to the iterated function space.

1. Introduction

In mathematics, Banach contraction principle (BCP) [1] is one of the most fundamental and useful tool
for solving existence problems in many branches of mathematics. The principle was established in the
Ph.D. thesis of a Polish mathematician S. Banach in 1922. He proved that a contraction mapping on a
complete metric space has a unique fixed point. To generalize this result, several researchers like Kannan
[2], Chatterjea [3] and Reich [4] have constructed relatively weaker contractive type mappings in the context
of several ambient spaces, see [5, 6]. They have attempted to replace the contraction condition with some
more generic conditions in order to include a wider class of continuous and discontinuous mappings. In
this continuation, Ciri¢ [7] obtained a new contractive condition known as generalized contraction. A
self-mapping T defined on a metric space (X, d) is called a nonlinear contraction if d(Tx, Ty) < ¢(d(x, y)) for
a suitable auxiliary function ¢ : [0,00) — [0, o). In 1968, Browder [8] imposed some conditions like right
continuity and monotonocity on the auxiliary function and improved some existing fixed point theorems.
In this sequel, many authors generalized Browder fixed point theorem by slightly varying the conditions on
the auxiliary function ¢. In 1969, Boyd and Wong [9] introduced the following class of auxiliary function:

@ = {1 :[0,00) = [0,00) : P(t) < t for each t > 0 and limsup ¢(r) > ¢ for each ¢ > 0}.

rot*

Definition 1.1. A function ¢ : [0, 00) — [0, oo) is said to be a comparison function if
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(i) ¢ isincreasing,
(if) lim ¢"(t) =0 forall t > 0.

In 1975, Matkowski [10] initiated the concept of nonlinear contraction via a comparison function. We denote
the class of auxiliary function due to Matkowski as:

D" ={¢p :[0,00) — [0, 00) : ¢ is a comparison function}.

It can be noticed here that the classes of auxiliary function due to Boyd-Wong and Matkowski are indepen-
dent. For instance, consider the following two functions:

0, ift=0,
Py ={-2L, ifte(E,in=123,...
1, ift>1.
Loift<2
t: 5/ 4
¢=(0) {%, ift<2.

Notice that ¢ ¢ © but ¢; € O’ whereas ¢, ¢ O’ but ¢, € P. Recently, in 2018, Pant [11] furnished some
fixed point results in a metric space under Suzuki type generalized ¢-contraction (Boyd and Wong type).

Definition 1.2. Let (X, d) be a metric space. A mapping T : X — X is called Suzuki type generalized ¢-contraction
if for all x, y € X, there exist ¢ € O such that

34, Tx) <d(xv,y) = d(Tx, Ty) < p(m(x, y)),
where m(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.

In 1969 one more famous generalization of the Banach contraction principle for set valued mapping in
metric spaces was established by Nadler [12] which is stated as follows:

Theorem 1.3. [12] Let (X, d) be a complete metric space and T : X — CB(X) a set valued mapping, where CB(X) is
the collection of all closed and bounded subsets of X. If there exists a € (0,1) such that

H(Tx, Ty) < ad(x, y) forall x,y € X
where H is Hausdorff metric on CB(X), then T has a fixed point.

The concept of multivalued mapping has been improved many times since then in the literature. Recently,
Andres et al. investigated the existence of coupled fixed point theorems for multivalued contractions in
complete metric space, see [13].

On the other hand, fixed point theorems for monotone single-valued mappings in a metric space en-
dowed with a partial ordering have been widely investigated, see ([14, 15]). In 2015, Alam and Imdad
[16] established a profound generalization of the Banach contraction principle with an amorphous binary
relation instead of partial order. Soon after, various relation-theoretic results were proposed by several
researchers, see ([17-20]).

In this paper, we initiate the concept of relation-theoretic multivalued Suzuki-generalized Ciric type
Matkowski contractions and utilize the same to prove some fixed point theorems in a R-complete partial
metric space endowed with a certain binary relation. Some examples are also presented in support of our
results. Further, we discussed the stability of fixed point sets of the multivalued contractions. At the end,
we state an application of our result to construct multivalued fractals.
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2. Partial Metric Space and Set theoretic Distance

2.1. Partial metric notions

One of the generalizations of metric spaces namely partial metric space was introduced by Mathews
[5] in 1994, wherein the distance of self point need not be zero along with modified triangle inequality.
Thereafter, Matthews proved the partial metric version of Banach fixed point theorem. Mathews defined
the partial metric space as follows,

Definition 2.1. [5] Let X be a non-empty set and p : X X X — [0, o0) a mapping satisfying the following conditions:

i) x=y = plx,x) =px, y) =py, y),
(ii) p(x,x) < p(x, y),
(iii) p(x,y) = p(y, x),
(iv) px,y) <plx,2) +p(z,y) —p(z,2), Yy yzeX

Then the mapping is known as partial metric and the pair (X, p) is called partial metric space.
Remark 2.2. Let p be the partial metric on X. Then the mapping d, : X X X — [0, 00) defined by

dp(x/y) :Zp(x/]/) _P(x/x)_P(]/r]/), Vx/]/E X/
is a metric on X and hence (X, dp) is a metric space.

Definition 2.3. [5] Let (X, p) be a partial metric space,
(i) a sequence {x,} is convergent to a point x € X if lim p(x,, x) = p(x, x),
n—oo

(ii) a sequence {x,} is Cauchy if lim p(x,,, x,) is exist and finite,
m,n— o0

(iii) (X, p) is said to be complete if every Cauchy sequence {x,} in X converges to a point in x € X and p(x,x) =
lim p(x,, Xm).

Lemma 2.4. [5] Let (X, p) be a partial metric space.
(i) A sequence (X, p) is Cauchy in (X, p) if and only if it is Cauchy in (X, d,).
(ii) (X, p) is complete if and only if (X, dp) is complete, and

gglo dp(xn,x) = 0 = p(x,x) = gg plxn, x) = n/%rjlw p(Xn, Xm)-

2.2. Set Theoretic Distances

For a metric space (X, p), C(X) denotes the set of all compact subsets of X. The distance between a point
x € X and the set A € C(X) is defined by

Dy(x,A) = inf {p(x,a),Va € A}.
Now we defined distance between two sets in a metric space as
p(A, B) = sup {Dy(a, B), Ya € A}.
The Hausdorff distance on C(X) is denoted by H, and it is defined by
H,(A, B) = max{ p(A, B), p(B,A)} VA, B € C(X).
Note that (C(X), H,) is indeed a metric space.

Lemma 2.5. Let (X,p) be a partial metric space, A,B € C(X) then for any x € A there exists y € B such that
p(x, y) < Hy(A, B).



A. Hossain et al. / Filomat 38:33 (2024), 11913-11928 11916

Proof. Let A, B € C(X) and x € A. We know that

H,(A, B) = max {sup D(x,B), sup Z)(y,A)} .

xeA yeB
From the definition, g = D,(x, B) = inf{p(x,b) : b € B} < H,(A,B). Then there exists a sequence {y,} in B
such that p(x, y,) — g as n — oo. Since B is compact, {y,} has a convergent subsequence {y,,}. Hence there
exists y € X such that y,, = y as k — oco. As B is compact, it is closed and y € B. Now, lim p(x,y,) = g
implies that l}im p(x, yn) = qie., p(x,y) = q = Dy(x, B) < H,(A, B). Hence the proof is completed. [J

Lemma 2.6. Let A, B € C(X) of a partial metric space (X, p) and T : A — C(B) be a multivalued mapping. Then for
a,b € Aand x € Ta, there exists a y € Tb such that p(x, y) < H,(Ta, Tb).

3. Relation Theoratic Notions and Auxiliary Results

Throughout this paper, IN stands for the set of all natural numbers and IN stands for the set of all whole
numbers, i.e., Ny := IN U {0}.

Definition 3.1. [21] Let X be a nonempty set. A subset R of X? is called a binary relation on X. If (x, y) € R, then
we say that “x is related to y” or “x relates to y” under R. The subsets, X> and 0 of X? are called the universal relation
and empty relation, respectively.

Definition 3.2. [21-25] A binary relation R defined on a nonempty set X is called

(i) amorphous if R has no specific property,
(ii) reflexive if (x,x) e RYx € X,
(iii) symmetric if (x,y) € Rimplies (y,x) € R,
(iv) anti-symmetric if (x,y) € Rand (y,x) € R implies x = y,
(v) transitive if (x, y) € Rand (y, w) € R implies (x,w) € R,
(vi) a partial order if R is reflexive, anti-symmetric and transitive.

Definition 3.3. [16] Let R be a binary relation on a non-empty set X and x,y € X. We say that x and y are
R-comparative if either (x,y) € Ror (y,x) € R. It is denoted by [x,y] € R.

Definition 3.4. [16] Given a non-empty set X and a binary relation R on X, a sequence {x,} C X is termed as
R-preserving if
(X, xn11) ER VY n€Np.

Definition 3.5. [26] Given a partial metric space (X, p), a binary relation R defined on X is called p-self-closed if for
an R-preserving sequence {x,} C X converging to x € X, there exists a subsequence {x,,} of {x,} such that [x,,x] € R
forall k € N.

Definition 3.6. [26] Let R be a binary relation defined on a nonempty set X. We say that (X,p) is R-complete if
every R-preserving Cauchy sequence in X converges.

Definition 3.7. [27] Let (X, p) be a partial metric space endowed with a binary relation Rand T : X — C(X) then
X(T;R) = {x € X such that (x,y) € R for some y € Tx}.

Definition 3.8. For a nonempty set X witha map T : X — C(X). Any binary relation R on X is T-p-closed if ¥
x,y€X

(x,y)eR, aeTx and be Ty with p(a,b) <plx,y) = (a,b)eR.
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Definition 3.9. Let (X, p) be a partial metric space endowed with a binary relation Rwithx € X. Then T : X — C(X)

H,
is called R(Hp—continuous at x if for any R-preserving sequence {x,} with x, LR x, we obtain T(x,) — T(x), i.e.,
lim H,,(Tx, Tx) = 0. Furthermore, T is called Ryy,-continuous if it is Ry, -continuous at each point of X.

n—oo

Lemma 3.10. [28] Let ¢ € @’. Then for all t > 0, we have ¢(t) < t.

Definition 3.11. [29] Given N € No, N > 2, a binary relation R defined on a non-empty set X is called N-transitive
if for any xo, x1, %2, .., XN € X,

(xi—1,x;) € R foreach i(1 <i< N)= (xo,xn) €R.

Notice that notion of 2-transitivity coincides with transitivity. Following Turinici[30], R is called finitely transitive
if it is N-transitive for some N > 2.

Definition 3.12. [30] A binary relation R defined on a nonempty set X is called locally finitely transitive if for each
denumerable subset E of X, there exists N = N(E) > 2, such that R is N-transitive.

Definition 3.13. [20] Let X be a nonempty set and T a self-mapping on X. A binary relation R on X is called
locally finitely T-transitive if for each denumerable subset E of T(X), there exists N = N(E) > 2, such that Rl is
N-transitive.

The following result eastablishes the superiority of the idea of ‘locally finitely T-transitivity’over other
varients of ‘transitivity”:

Proposition 3.14. [20] Let X be a nonempty set, R a binary relation on X and T a self-mapping on X. Then

(i) Ris T-transitive & Rlrx) is transitive,

(if) R s locally finitely T-transitive & Rlrx) is locally finitely transitive,
(iii) R is transitive = R is finitely transitive = R is locally transitive = R is locally finitely T-transitive,
(iv) R is transitive = R is T-transitive = R is locally finitely T-transitive.

Given a binary relation R and a self-mapping T on a nonempty set X, we use the following notations:

(i) N(x,y) = max{p(x, y), Dy(x, Tx), Dy(y, Ty)},
(i) M(x,y) = max{p(x, Y), Dp(x, Tx), Dy(y, Ty), %{Z)p(x, Ty) + Dy(y, Tx)}}.

Remark 3.15. Observe that N(x,y) < M(x, y) (Vx,y € X).

In view of symmetry of metric p, the following conclusion is immediate.

Proposition 3.16. If (X, p) is a partial metric space, R is a binary relation on X, T is a mapping from X to C(X) and
¢ € @', then the following contractivity conditions are equivalent:

(D) %Z),,(x, Tx) < p(x, y) = Hy(Tx, Ty) < pM(x, ) ¥ x,y € X with (x,y) € R,

(1) %Z),,(x, Tx) < p(x,y) = H,(Tx, Ty) < p(M(x,y)) VY x,y € Xwith [x,y] € R.

4. Main Results

In this section, we first define the relation-theoretic multivalued Suzuki-generalized Ciri¢ type Matkowski
contractions, then we prove some fixed point results in relational partial metric space under the same con-
traction.
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Definition 4.1. Let (X, p) be a partial metric space endowed with a binary relation R. Let T : X — C(X) be a
multivalued mapping. Then, T is said to be relation-theoretic multivalued Suzuki-generalized Ciri¢ type Matkowski
contraction if there exists ¢ € @’ such that

%Z)p(x, Tx) < p(x,y) = H,(Tx, Ty) < p(M(x,y)) VY x,y € X with (x,y) € R.

Theorem 4.2. Let (X,p) be a partial metric space endowed with a binary relation R. Let T : X — C(X) be a
multivalued mapping. Suppose that the following conditions hold:

(a) (X,p)is R-complete,

(b) X(T;R) is non-empty,

(c) Ris T-p-closed and locally T-transitive,

(d) T is relation-theoretic multivalued Suzuki-generalized Cirié type Matkowski contraction,
(e) either T is Ryy,-continuous or R is p-self-closed.

Then T has a fixed point.
Proof. Let us assume that T has no fixed point. Then D,(x, Tx) > 0 for all x € X. By condition (b), choose
xo € X(T;R) such that (xp,x1) € R for some x; € Txp. So now we have 0 < Dy(x1, Tx1) < H,(Txo, Tx1)

and %Dp(xo, Txp) < Dp(xo, Txg) < p(xo,x1). Then by contractivity condition (d), Lemma 2.5 and increasing
property of ¢, we have

Dp(xl/ Txl) < 7-{P(TXO/ Txl)
< P(M(xo, x1))
= G(maxlp(xo, 1), Dy(x0, Txo), Dy(oct, Tra), 31Dy, Tr) + Dy, Txo))

= Pp(max{p(xo, x1), p(xo, x1), Dp(x1, Tx1), %{Dp(xo, Tx1) + p(x, x1)))
< Gmaxlp(xo, w), Dyloet, Tra), 5 (o, 1) + Dy, Tr))
= (P(T}’Zax{P(xO/ xl)/ Dp(xl’ Txl)})

so that
Dy(x1,Tx1) < P(maxip(xo, x1), Dy(x1, Tx1)}). 1)

In case if max{p(xo, x1), Dp(x1, Tx1)} = Dy(x1, Tx1) then using Lemma 3.10 and equation (1), we obtain
Dy(x1, Tx1) < Dy(x1, Tx1), which is a contradiction and hence (1) reduces to

Dy(x1,Tx1) < P(p(xo, x1)). (2)
Since Tx; is compact, there exists x, € Tx; such that p(x1, x2) = Dy (x1, Tx1). Hence from (2) and property of
¢, we have
p(x1, x2) < p(xo, x1).
Then by the Definition 3.8 we have (x1,x2) € R. Now again as (x1,x2) € R we have 0 < Dy(xa, Txz) <

H,(Tx1, Txz) and %Z)p (x1, Tx1) < Dy(x1, Tx1) < p(x1,x2). Then by contractivity condition (d), Lemma 2.5 and
increasing property of ¢, we have

Dy(x2, Txz) < Hy(Txy, Txo) < p(p(x1,x2)) < plxy, x2). 3)

Since Tx; is compact, there exists x3 € Tx; such that p(x2, x3) = D, (x2, Txz). Hence from (2) and property of
¢, we have

p(x2, x3) < p(x1,x2).
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Then by the Definition 3.8 we have (xp, x3) € R. Continuing the process, we can contruct a sequence {x,}
such that for all n > 0,

Xn+1 € TXn , (X, Xns1) € R. 4)
and
P, Xn1) < P(P(Xn-1, Xn))- )
Thus applying inductivity on euqation (5), we get
POt Xne1) < QP(Xn1,%n)) < -+ < " (p(x0, X1)). (6)

Tending n — oo and using the property of ¢, we get
7}1_1;1;10 p(xn/ xn+1) =0. (7)
Fix € > 0. In view of (7), we can write

p(Xn, Xn+1) < € = P(€). 8)
Now we will show that {x,} is a Cauchy sequence. Using (7) and increasing property of ¢, we get

P, Xpa1) + P(Xna1, Xna2) — P(Xna1, Xns1)
P(Xn, Xn+1) + P(Xn+1, Xn42)

€ — P(€) + p(xn+1, Xu+2)

€ — ¢(€) + P(p(xn, Xn+1))

€= @(e) + P(e — P(e))

€—¢(e) + Ple)

€.

p(xn/ xn+2)

IN AN A TN IA

On using locally T-transitivity property of R, we obtain

IA

P, Xpa1) + P(Xna1, Xn43) — P(Xns1, Xnt1)
P(Xn, Xn+1) + P(Xn+1, Xn43)

€ — P(€) + p(xn+1, Xu+3)

€ — P(€) + P(p(xn, Xn+2))

€ — P(e) + ¢(e)

€.

p(xn/ xn+3)

INIAN A DA

Continuing this process, we can write
p(Xn, Xnk) <€ YkeN,

which shows that the sequence {x,} is Cauchy. Since (x,,, x,+1) € R for all n € Ny, owing to Lemma 2.4, {x,}
is a Cauchy sequence in both (X, p) and (X, d,). Since (X, p) is R-complete, so is (X,d,). Then there always
exists x € X such that x, — x. Then by Ry -continuity of T, we have

lim H,(Tx,, Tx) = 0. 9)
Then
Dy(x, Tx) = inf p(x,y) < p(x, Xp41) + inf p(xur1, y) — pXnt1, Xnt1)
yeTx yeTx
< P(x/ Xnt1) + inf P(Xn+1, y)
yeTx

< P(X, xn+1) + 7_{P(Txnr TX)
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as n — oo and using equation (9) we get lim D,(x, Tx) = 0. Since Tx € C(X) is compact then Tx is closed,
n—oo
which amount to say that x € Tx. This implies that x is a fixed point of T.

Alternately, assume that R is p-self-closed. As {x,} is R-preserving such that x, L 2, the p-self-closedness
of R guarantees the existence of a subsequence {x,,} of {x,,} with [x,,,z] € R (¥ k € Ny).
Now, we claim that (for all k € INp),

1 1

EDp(xnk/ Txnk+1) < p(xnk/ Z) or Eﬂp(xnk-#l/ Txnk+1) < P(Xnk+1/ Z)~ (10)
Arguing by contradiction, we assume that (for some k; € INp)
1 1
_Dp(xnkll Txnkl) > p(xnklzz) and Eﬂp(xnkl +1s Txnlq +1) > p(xnkl +1/Z)‘

2

Applying the triangle inequality of partial metric, we obtain

Dp(xnkl ’ Tx”kl ) < P(xnkl ’ x”k1 +1) < p(xﬂk1 ’ Z) + P(Zr xnkl +1) - P(Zr Z)
< pn,,2) +p(z, X +1)
1 1
< EDP(xnkl 7 Txnkl ) + Eﬂp(xﬂkl +1, Txmq +1)

1 1
< 5.’[)}, (x,,k1 , Txnk1 )+ EDP (x,,k1 , Txnk1 )
1
< E{Z),,(xnk1 Tt ) + Dy, , T )} = Dp(xn,, T ),

which is a contradiction. Therefore, (10) holds for all k € INy immediately.
On using assumption (d), (10), [x,,, z] € R and Proposition 3.16, we have

Dy (X, Tz) < Hy(Txy, Tz) < ¢ (M (xy,, 2)) - (11)
If M(x,,2) = Dy(Tz,z) = @, then we have
Dp(xnk+1/ TZ) = (]-{p(Txnk/ TZ) < ¢ (M (xnklz)) < ¢ (DP(ZI TZ)) < ¢)(C¥)

Taking k — oo, we get

Dy(Tz,z) < ¢a)
a < @) <a,

which is a contradiction. Otherwise, if

M(xy,,z) = max {p(xnk, 2), PXns Xy )s % [Dp(xnk, Tz) + p(z, xnk+1)]} ,

then due to the fact x,, LN z, there always exist N = N(«a) such that

M(xy,2) < 3a forall k > N.
As ¢ is increasing, we have
& (M (xn,2)) < & (Za) Vk > N. (12)
Employing (11) and (12) we have,
Dy(xp,.,, Tz) < Hy(Txy,, Tz) < ¢ (M (¥, 2)) < § (%a) Yk > N.

On taking k — oo and using Lemma 3.10, we get
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az(p(%a) <3a<a,
which is a contradiction. Hence, a = 0, so that
Dy(z,Tz) =a =0
Since Tz € C(X) is compact then Tz is closed, hence z € Tz. Hence, z is a fixed pointof T. O

Example 4.3. Consider the metric space X = [O 1] with the partial metric p defined as p(x, y) = max{x,y} and a
binary relation R = {(x, y) € X X X : x > y > 3} together with a multivalued mapping T : X — C(X) defined by

(5} fos<x<i,

=133 i x=4

3 .
() if L<x<l.

So X with the partial metric p and the given relation R is a R-complete partial metric space. And we see that the map
T is not continuous because it is upper semi-continuous but not lower semi-continuous. For any x € (3,1] we always

have a point y € Tx = {1+ 7} with x > y such that (x,y) € R. Therefore X(T; R) is non-empty. And we can easily
proved that the relation R is T-closed. Now we see that

H,(Tx, Ty) = max {{Tx}, {Ty}}

3 r
=mux{1+x2,l+y2}

X3

T 142

And we also have p(x,y) = x, Dp(x, Tx) = x, Dp(y, Ty) = v, Dp(x, Ty) = x,Dy(y, Tx) = x and%{l)p(x, Ty) +
Dy(y, Tx)} = %(x + y). Then we conclude that

H,(Tx, Ty) = 1 —
< ¢{ma (xwamnuyww{@mWHmmnw
S¢{ (xxy, (x+y))}
< ()
< %xz for ¢(t) = %tz

So all the hypotheses of the Theorem 4.2 are satisfied. Hence the mapping T has fixed points, namely 0 and 1.

For better visualization of the contraction above, see below the 3D graph (On MATLAB R2015a) where dark
surface represent the right hand side of the contraction whereas light surface represent the left hand side of
the contraction.
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Figure 1: Visualization of the contraction condition

Under the universal relation (i.e., R = X X X), Theorems 4.2 remain sharpened versions of the following
results (in the form of Remarks) in the context of the multivalued mapping, PMS, auxillary function ¢ € @’
and Suzuki condition.

Remark 4.4. If we replace ¢(t) = at for a € [0,1) and the setting M(x,y) to be N(x,y), we obtain a sharpened
version of the Ciri¢ fixed point theorem [7].

Remark 4.5. Under the setting of ¢(t) = pt (B € [0,1)) and M(x,y) = p(x,y) in Theorem 4.2, we obtain the
sharpened version of the Banach contraction principle [1].

Remark 4.6. Under the setting of ¢(t) = p(2t) (B € [0, %)) and M(x,y) = % (Z)p(x, Ty) + D, (v, Tx)) in Theorem
4.2, we obtain an improved version of the Chatterjea fixed point theorem (see [3]).

Remark 4.7. If we replace M(x, y) by the condition M(x, y) = {p(x, y), 3[D,(x, Tx) + Dy(y, Ty)1},
3 [Z),, (x, Ty) + Dy(y, Tx)]}, we obtain a consequences of Theorem 4.2, which remains an improved version of Theorem
1.17 contained in Ahmadullah et al. [31].

5. Stability of fixed point sets

The concept of stability is related to a system’s limiting behaviours. It has been researched in numerous
discrete and continuous dynamical systems settings, see [32, 33]. The stability of fixed points, known as
the relationship between the convergence of a sequence of mappings and their fixed points, has also been
extensively researched in a wide range of contexts, see [34, 35]. If the fixed point sets of a sequence of
mappings converge to the set of fixed points of the limit mapping in the Hausdorff metric, they are said to
be stable. Compared to single-valued mappings, multivalued mappings frequently have more fixed points.
As a result, the set of fixed points for multivalued mappings widens and becomes more intriguing for the
study of stability. In this section, we investigate the stability of the fixed point sets of the multivalued
contraction discussed in the preceding section.

Theorem 5.1. Let (X, p) be a R-complete partial metric space endowed with a locally T-transitive binary relation R
and Tq, T» : X — C(X) be two continuous multivalued mappings. Suppose that each T1, T, satisfies the contractive
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condition (d) of Theorem 4.2, i.e., for all x,y € X with (x,y) € Rand ¢ € ',
1
EZ)p(x, Tx) < p(x, y) = Hy(Tx, Ty) < p(M(x,y)) Y x,y € X with (x,y) € R.

Then H,(F(T1), F(T2)) < W(L) where L = sup H,(T1(x), Ta(x)) and W(t) = ¢ ().
xeX

Proof. From Theorem 4.2 the set of fixed points of Ty, T, are non empty. Let xg € F(T7) that is xo € T1(xo).
Then by Lemma 2.5 there exists a x; € T»(xp) such that

p(xo, x1) < Hy(T1(x0), T2(x0)) (13)
since x1 € T(xg) then by Lemma 2.6 there exists x, € T>(x1) such that
p(x1, x2) < Hy(T1(x0), Ta(x1)). (14)

Then same as the proof of Theorem 4.2 we have x,41 € Tox, and p(xn+1, Xnt2) < P(P(xn, Xps1)) Which by
properties of ¢ we get
P01, Xns2) < QP(n, Xna1)) < (a1, %)) < -+ < " (p(x0, x1)). (15)
So the sequence {x,} will be Cauchy sequence as same as in Theorem 4.2. Then there exists a x € X such that
Xy > X asn— o (16)
and x is fixed point of T, i.e., x € Tox. Now using (13) and definition of L, we have

p(xo, x1) < Hy(T1xo, T2(x0)) < L = sup Hy(T1(x), Ta(x)) 17)

xeX

Then using triangle inequality, locally T-transitivity and using (15), we have

p(x0, Xn+1) + P(Xns1, X) — P(Xn+1, Xn+1)
p(xo, Xn+1) + P(Xn+1,X)

P(p(xo, xn)) + P(p(xn, X))

¢"(p(xo, x1)) + " (p(x1, X))

W(L) + W(L)

2W(L).

P(x0/ X)

INININ A IA

Thus for given arbitrary xo € F(T;) we always have x € F(T5) with p(xo, x) < W(L).
Similary, we can prove that for arbitrary yo € F(T3), there exists a y € F(T) such that p(yo, v) < W(L). Hence
we can conclude that H,(F(Ty), F(T2)) < 2W(L). O

Lemma 5.2. Let (X, p) be a R-complete partial metric space endowed with a locally T-transitive binary relation R
and {T,, : X = C(X) forall n € IN} be a sequence of multivalued mappings uniformly convergent to multivalued
mapping T : X — C(X). If {T,} satisfies the contractive condition of Theorem 4.2 for everyn € N and ¢ € O then T
also satisfy the contractive condition of Theorem 4.2.

Proof. Since {T,} satisfy the contractive condition of Theorem 4.2 for every n € IN, we have

%Z)p(x, Tux) < plx, y) = Hy(Tux, Tuy) < ¢M(x, ) YV x,y € X with (x,y) € R.

Since {T},} is uniformly convergent to T. Then using the properties of ¢ and taking limit # — oo of the above
contractive condition we get

%Z)p(x, Tx) < p(x,y) = H,(Tx, Ty) < p(M(x,y)) ¥V x,y € X with (x,y) € R.

which conclude that T also satisfy the contractive condition of Theorem 4.2. [
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Next we are going to prove the stability result for our setting.

Theorem 5.3. Let (X, p) be a R-complete partial metric space endowed with a locally T-transitive binary relation R
and {T,, : X = C(X) forall n € IN} be a sequence of multivalued mappings uniformly convergent to multivalued
mapping T : X — C(X). Consider {T,} satisfies the contractive condition of Theorem 4.2 for every n € IN with ¢ € ®.
Then

lim H,(F(T,), F(T)) = 0.

Then we conclude that fixed points sets of {T,,} are stable.

Proof. By Lemma 5.2 we say that T satisfies the contractivity condition of Theorem 4.2. Assume that
L, =sup ?(,,(Tnx, Tx). Since T, is uniformly convergent to T on X. Then

xeX
lim L, = lim H,(T,x, Tx) = 0. (18)

Then by Theorem 5.1, we get
H,(F(Ty), F(T)) < W(Ly) for every n e IN. (19)

Then using (19) we get
lim H,(F(T,), F(T)) < lim W(L,) = 0.

Then we have lim H,(F(T,,), F(T)) = 0, which amount to say that fixed points set of T,, are stable. [

6. Application to Fractal Space

Let (X, p) be a Partial metric space and C(X) be the collection of all non-empty compact subsets of X.
Define,
rp(U, V) :=inf {r(u,v) : u € U,v € V}.

pp(U, V) := sup {rp(u, V):ue LI} = sup in‘ﬁp(u, ).

uell €
So, then
pp(V, U) := sup {r,,(v, U):ve V} = sup inf p(v, u).

ey el

Then the Hausdorff metric induced by p is defined by

H,(U, V) = max {sup p(u, V), supp(v, U)} = max {p,,(ll, V), pp(V, U)}

uel veV
forall U,V € C(X) where p(u, V) = in‘g p(u, ).
ve

Hutchinson [36] and Barnsley [37] initiated an ingenious way to define and construct fractals as compact
invariant subsets of an abstract complete metric space with respect to the union of contractions T;(i =
1,2,...n). Hutchinsons established that the operator

FU) =Ty(W)UT,(U)U...UT,U), UcX

is a contraction with respect to the Hausdorff distance. Thus, the contraction mapping principle can be
applied to the iteration of Hutchison operator F. Consequently, whatever the initial image is chosen to start
the iteration under the Iterated Function System (IFS), for example Uy, the generated sequence

U = F(Uy) k=0,1,...

will tend towards a distinguish image, the attractor U, of the IFS. Moreover, this image is invariant, i.e.,
F(Us) = Uco.

Now, we construct a results in the form of Lemma 3.2 contained in [38] for the partial metric space under
the Suzuki-generalized Ciri¢ type Matkowski-contractive mapping.
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Lemma 6.1. Let (X,p) be a partial metric space and T : X — X a continuous Suzuki-generalized Ciri¢ type
Matkowski contractive mapping w.r.t. operator F, i.e.,
FH, (U, T(U)) < Hy(U, V) = H,y(Fr(U), Fr(V)) < pMr(U,V)) forall U,V € C(X) where,

MU, V) = max{H,(U, V), H,(U, TUD)), Hy(V, T(V)), HH, (U, T(V)) + Hy(V, TU)]). Then Fr : C(X) — C(X)
is also a Suzuki-generalized Ciri¢ type Matkowski contractive mapping, where ¥ Z € C(X), Fr(Z) = T(Z).

Proof. Let U,V € C(X) and any point #y € U. Using the compactness of U, there always exists v, € V such
that in‘l; p(uo,v) = p(uo, vy,). Then we have
ve

inf ¢(p(io, ) < 9(pluo, o) = b (nf po, ).

Because ¢ : [0, 0) — [0, o) is increasing, it follows that

¢ (Zigp(uo, v)) <¢ (sup inf p(u, v)) <¢ (Wp(u, V))-

uel v

Since ug was arbitrary, then sup ¢ (in‘g p(u, v)) <o (W,,(u, V)).
uell W€
Then for all u € U and v € V, we have

sup }}né O(p(u,v)) < sug qb(zi;gp(u, v)) < dMr(U, V).

uell v

sup inf ¢(p(u, v)) < sup ¢(inf p(u, v)) < (M (U, V)).
vey uel veV uell
Further forallu e Uand v e V,

Ip(u, Tu) < p(u,v) = Lp,(U T(U)) < 1H,(U T(U)) < H,(U, V).
and

(@, To) < p(u,0) = 3p,(V, T(V)) < 3H,(V, T(V)) < H,(U, V).
Next, we have

pp (Fr(U),Fr(V)) = sup _inf p(Tu,Tv) = sup inf p(Tu, Tv).
TueF(Uy) ToEE(V) uell vV

Since T is Suzuki-generalized Ciri¢ type Matkowski mapping, we have %p,,(ll, T)) < %(H,,(U, T(U)), then
the above inequality reduces to

pp (Er(U), Fr(V)) = sup inf p(Tu, Tv) < ¢(Mr(U, V)).

uel v
Similarly, 1p,(V, T(V)) < 2H,(V, T(V)) we always have,
pp (Fr(V), Fr(U)) = sup inf p(Tu, To) < PMr(U, V).
veV U

Since Hausdorff metric is symmetric (i.e., H,(U, V) = H,(V, U)) we get

H, (Fr(U), Fr(V)) = max{p, (Fr(U), Fr(V)) , p, (Fr(V), Fr(U))},

hence we always have
SHULT(U) < Hy(U, V) = Hy (Ex(U), Fr(V) < oM (UL, V)

for all U, V € C(X). Therefore, Fr is a Suzuki-generalized Ciri¢ type Matkowski contractive mapping.
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Lemma 6.2. [39] Let (X, p) be a complete partial metric space. Then (C(X), H,) is also a complete partial metric
space.

Lemma 6.3. Let (X,p) be a partial metric space and T, : C(X) — C(X)(n = 1,2,...,p) continuous Suzuki-
generalized Ciri¢ type Matkowski contractive mapping, i.e., for all U,V € C(X),

T HU, Ty(W) < Hy(U, V) = Hy(Tu(U), Tu(V)) < pu(M, (U, V).

Define T : C(X) — C(X) by T(U) = Ty(U) U To(U) U --- U T,(U) = Uzlen(U) for each U € C(X). Then T also
satisfies

3 H,(U T(U)) < Hy(U, V) = H, (T(U), T(V)) < AMz(U, V)

forall 'V € C(X), where A = max{¢, :n=1,2,...,p}.

Proof. We prove the above lemma by the principle of mathematical induction. For n = 1 the result is
obvious. For n = 2, we have

Hy(T(U), T(V)) = H,(T1(U) U To(U), T1(V) U Ta(V))
< max {H,(Ty(U), Ty(V)), Hy(T1(V), Ta(V)}

Since each T; and T, are Suzuki-generalized Ciri¢ type Matkowski contractive, that is

MU, T1i(U)) < Hy(U, V) = Hy(T1(U), T1(V)) < p1(Mr, (U V)
2 H(U, To(U) < Hy(U, V) = Hy(To(U), To(V)) < p2(Mr, (U V),

then we have
Hy(T(U), T(V)) < max {1 (Mr, (U, V), p2(Mr, (U, V)]
= Amax{H,(U, V), Hy(U, T1(U) U Ta(U)), H,(V, Ty(V) U Ta(V)),
2 [ T () U ToV) + 4,0, T U T
= A (max (H,(U, V), H,(U, TU), H,(V, TV)})
= AMr(U, V),

where A = max{¢1, P2}
Now as a consequences of Theorem 4.2 and Lemmas 6.1 and 6.3, we get the following result in fractal
spaces.

Theorem 6.4. Let (X, p) be a complete partial metric space and T,, : C(X) — C(X) continuous Suzuki-generalized
Ciri¢ type Matkowski contractive mapping. Then the transformation T : C(X) — C(X) defined by T(U) = U’ _ T,,(U)
for each U € C(X) satisfying the following condition

SHUTWD) < H(UV) = H, (TW), T(V) < AMU,V)),

forall UV € C(X), where A = max{¢, :n=1,2,...,p}.
Moreover,

(1): T has a unique fixed point U in C(X); and

(2): ’}g{}o T(V)=U forall Ve C(X).
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Proof. Define the binary relation as
R = {(u, V) € C(X) x C(X) such that U C V}.

Then T is well-defined and R on C(X) is T-closed. As given that one of T,,(U) € U then T(U) = UZ LU cu
implies that (U, T(U)) € R, which amount to say that X(T,R) is non-empty. By Lemma 6.3 we can say that
the mapping T satisfies Suzuki-generalized Ciri¢ type Matkowski contractive mapping for any (U, V) € R.
Also T is R-continuous being union of continuous map. Then by Theorem 4.2 we can say that T has
fixed point. Then by the help of Theorem 3.1 of [38] we can say that T has a fixed point U in C(X) and
lim T"(V)=U forall Ve(C(X). O

n—oo

Remark 6.5. If we see the results of Rhoades [40] in setting of partial metric space, Theorem 4.2 and 6.4 generalizes
certain results of [36, 38].
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