
Filomat 38:33 (2024), 11929–11938
https://doi.org/10.2298/FIL2433929S

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Estimates for the zeros of a polynomial using matrix inequalities
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Abstract. In this paper, we apply several matrix inequalities to the generalized companion matrix of
monic-polynomial and thereby obtain some new estimates for the moduli of their zeros.

1. Introduction

In the realm of applied mathematics, polynomial is a widely used mathematical entity. It finds its appli-
cation in almost every domain of Science. Finding circular disks in the complex plane C containing all the
zeros of a polynomial is a classical problem and have attracted the attention of numerous mathematicians.
One can refer to [13] for a comprehensive account on classical results on this topic.

It is well-known that matrix methods can be used to obtain classical zero-bounds for polynomials (see
[6, p. 316]). The roots of a given polynomial could be found as the eigenvalues of a companion matrix.

Linden [10] used (generalized) companion matrices, which are based on special multiplicative decom-
positions of the coefficients of the polynomial, to obtain estimates for the zeros of the polynomial p(z) mainly
by the application of Gersgorin’s theorem to the companion matrices or by computing the singular values
of the companion matrices.

Let

p(z) = zn
− a1zn−1

− a2zn−2
− . . . − an (1)

be a monic polynomial of degree n with complex coefficients, then one of the (generalized) companion
matrix due to Linden can be illustrated in the following theorem.

Theorem 1.1. [10] Let p(z) be a monic polynomial of degree n ≥ 1 given by (1). Let there exist complex numbers
c1, c2, . . . , cn and b1(, 0), b2, . . . , bn−1 such that

a1 = c1,

a2 = c2b1,

a3 = c3b2b1,
...

an = cnbn−1bn−2 · · · b2b1,

(2)
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and

C(p) =


0 bn−1 0 · · · 0
0 0 bn−2 · · · 0
...

...
...

. . .
...

0 · · · · · · 0 b1
cn cn−1 · · · c2 c1


. (3)

Then det(zIn − C(p)) = p(z) where In denotes the n × n identity matrix.

In ([1], [3], [4]), using results on the numerical range and the numerical radius of the Frobenius companion
matrix of f (z), bounds for the zeros of f (z) were given: In ([1], [4]) an estimate of the numerical radius of
a matrix is applied to the Frobenius companion matrix, and in [3] a formula for the numerical radius of a
matrix of rank one is applied to the Frobenius companion matrix which was decomposed in the sum of a
matrix of rank one and a right shift matrix. Linden [12] extended these methods and gave further estimates
for the zeros of f (z) using properties of the numerical ranges and the numerical radii of some other types
of companion matrices of f (z). One such type of companion matrix is given by (3).
Let Mn(C) denote the algebra of all n × n complex matrices. For A ∈ Mn(C), let r(A), w(A), and ||A|| denote
the spectral radius, the numerical radius and the spectral norm of A respectively. It is known that [6]

|λ j(A)| ≤ r(A) ≤ w(A) ≤ ||A|| = s1(A),

where λ1(A), λ2(A), . . . , λn(A) and s1(A), s2(A), . . . , sn(A) are respectively the eigenvalues and singular values
of A and are arranged so that |λ1(A)| ≥ |λ2(A)| ≥ · · · ≥ |λn(A)| and s1(A) ≥ s2(A) ≥ · · · ≥ sn(A). Recall that
s2

j (A) = λ j(A∗A) = λ j(AA∗) for j = 1, 2, . . . ,n.
In this paper, we employ certain matrix inequalities concerning spectral radius, numerical radius and

spectral norm to the generalized companion matrix of Linden to estimate new bounds for the zeros of a
polynomial. The technique is similar to that of [8], [9], [14] and [15].

2. Lemmas

To achieve our goal, we need the following two lemmas due to Hou and Du [7].

Lemma 2.1. Let A ∈Mn(C) be partitioned as

A =
[
A11 A12
A21 A22

]
where Ai j is an ni × n j matrix for i, j = 1, 2 with n1 + n2 = n. If

Ã =
[
∥A11∥ ∥A12∥

∥A21∥ ∥A22∥

]
,

then r(A) ≤ r(Ã).

Lemma 2.2. Let A ∈Mk(C), B ∈Mk×m(C), C ∈Mm×k(C) and D ∈Mm(C)

and let T =
[
A B
C D

]
. Then

w(T) ≤ w
([
∥A∥ ∥B∥
∥C∥ ∥D∥

])
=

1
2

(
∥A∥ + ∥D∥ +

√
(∥A∥ − ∥D∥)2 + (||B|| + ||C||)2

)
.
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3. Main Results

Through out this paper c1, c2, . . . , cn and b1, b2, . . . , bn−1 denote the complex numbers satisfying (2).
Our first result is obtained by using a property of spectral radius.

Theorem 3.1. All the zeros of polynomial given by (1) of degree n ≥ 3 lie in

|z| ≤
1
2

b + |c1| +

√√√√√
(b − |c1|)2 + 4|b1|

 n∑
j=2

|c j|
2


1/2

 ,
where b = max{|b2|, |b3|, . . . , |bn−1|}.

Proof. Partition the companion matrix C(p) of p(z) defined by (3) as:

C(p) =


0 bn−1 0 · · · 0
0 0 bn−2 · · · 0
...

...
...

. . .
...

0 · · · · · · 0 b1

cn cn−1 · · · c2 c1


=

[
C11 C12
C21 C22

]
,

where C11 =


0 bn−1 0 · · · 0
0 0 bn−2 · · · 0
...

...
...

. . .
...

0 · · · · · · 0 b2
0 0 · · · 0 0


, C12 = [0 0 . . . 0 b1]t,

C21 = [cn cn−1 . . . c2] and C22 = [c1].

Let C̃(p) =
[
∥C11∥ ∥C12∥

∥C21∥ ∥C22∥

]
, therefore,

C̃(p) =


b |b1| n∑

j=2
|c j|

2

1/2

|c1|

 , where b = max{|b2|, |b3|, . . . , |bn−1|}.

Now, by Lemma 2.1, we have

r(C(p)) ≤ r(C̃(p))

=
1
2

b + |c1| +

√√√√√
(b − |c1|)2 + 4|b1|

 n∑
j=2

|c j|
2


1/2

 .
Consequently all the zeros of p(z) lie in

|z| ≤
1
2

b + |c1| +

√√√√√
(b − |c1|)2 + 4|b1|

 n∑
j=2

|c j|
2


1/2

 .
This completes the proof of Theorem 3.1.
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By suitably choosing the parameters c j’s and b j’s satisfying (2), new zero-bounds can be obtained, here we
make some special choices.

Let b j = a1 , 0 for j = 2, 3, . . . ,n− 1, then c j =
a j

a j−2
1 b1

for j = 2, 3, . . . ,n− 1 and cn =
an

an−2
1 b1

. By using these

values in Theorem 3.1, we obtain the following corollary.

Corollary 3.2. Let p(z) be a polynomial as given by (1) of degree n ≥ 3 such that a1 , 0, then all its zeros lie in

|z| ≤ |a1| +

 n∑
j=2

∣∣∣∣∣∣∣ a j

a j−2
1

∣∣∣∣∣∣∣
2

1/4

.

By choosing b1 = b2 = · · · = bn−1 = 1 and c j = a j, j = 1, 2, . . . ,n in Theorem 3.1, the following result due to
Kittaneh [8] can be obtained.

Corollary 3.3. All the zeros of polynomial given by (1) of degree n ≥ 3 lie in

|z| ≤
1
2

|a1| + 1 +

√√√√√
(|a1| − 1)2 + 4

 n∑
j=2

|a j|
2


1/2

 .
Example 1. Let p(z) = z3

− z2
− 2z − 0.5 be a polynomial. Here, a1 = 1, a2 = 2 and a3 = 0.5.

Let b1 = 1, b2 =
1
2 and c1 = 1, c2 = 2, c3 = 1, such that

a1 =c1,

a2 =c2b1,

a3 =c3b2b1.

Then by applying Theorem 3.1 to p(z), it follows that all the zeros of p(z) lie in the disc |z| ≤ 2.2660.Whereas
if we apply the result of Kittaneh [8] (Theorem 1) to p(z), it follows that all the zeros of p(z) lie in the disc
|z| ≤ 2.4357.

If a j , 0, j = 1, 2, . . . ,n, then by taking b1 = c1 = a1, b j = c j =
a j

a j−1
, j = 2, 3, . . . ,n − 1, cn =

an

an−1
, in

Theorem 3.1, we obtain the following result:

Corollary 3.4. All the zeros of polynomial given by (1) of degree n ≥ 3 lie in

|z| ≤
1
2

b + |a1| +

√√√√√
(b − |a1|)2 + 4|a1|

 n∑
j=2

∣∣∣∣∣ a j

a j−1

∣∣∣∣∣2


1/2
 ,

where b = max
{∣∣∣ a2

a1

∣∣∣, ∣∣∣ a3
a2

∣∣∣, . . . , ∣∣∣ an−1
an−2

∣∣∣} .
Next, if we choose b1 = b2 = · · · = bn−1 = b = max

2≤ j≤n
|a j|

1/ j, c j =
a j

b j−1
, j = 1, 2, . . . ,n, in Theorem 3.1, we get

the following result:

Corollary 3.5. All the zeros of polynomial given by (1) of degree n ≥ 3 lie in

|z| ≤
1
2

b + |a1| +

√√√√√
(b − |a1|)2 + 4b

 n∑
j=2

∣∣∣∣∣ a j

b j−1

∣∣∣∣∣2


1/2
 ,

where b = max
2≤ j≤n

|a j|
1/ j.
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Our next result is obtained by using some properties of the numerical radius of a matrix.

Theorem 3.6. All the zeros of polynomial given by (1) of degree n ≥ 3 lie in

|z| ≤
1
2

|c1| +

√√√ n∑
j=1

|c j|
2 + b +

√
b2 + |b1|

2

 ,
where b = max{|b2|, |b3|, . . . , |bn−1|}.

Proof. The companion matrix C(p) of p(z) given by (3) can be expressed as

C(p) = Q + R,

where Q =


0 0 0 · · · 0
0 0 0 · · · 0
...

...
...
. . .

...
0 · · · · · · 0 0
cn cn−1 · · · c2 c1


and R =


0 bn−1 0 · · · 0
0 0 bn−2 · · · 0
...

...
...

. . .
...

0 · · · · · · 0 b1
0 0 · · · 0 0


.

Now partition Q as

Q =


0 0 0 · · · 0
0 0 0 · · · 0
...

...
...
. . .

...
0 · · · · · · 0 0
cn cn−1 · · · c2 c1


=

[
D11 D12
D21 D22

]
,

where D11 =


0 0 0 · · · 0
0 0 0 · · · 0
...
...

...
. . .

...
0 · · · · · · 0 0
0 0 · · · 0 0


, D12 = [0 0 . . . 0 0]t,

D21 = [cn cn−1 . . . c3 c2] and D22 = [c1].

Invoking Lemma 2.2, we get

w(Q) ≤w
([
∥D11∥ ∥D12∥

∥D21∥ ∥D22∥

])

=
1
2

|c1| +

√√√√
|c1|

2 +

 n∑
j=2

|c j|
2




=
1
2

|c1| +

√√√ n∑
j=1

|c j|
2

 .
Partition R as

R =


0 bn−1 0 · · · 0
0 0 bn−2 · · · 0
...

...
...

. . .
...

0 · · · · · · 0 b1

0 0 · · · 0 0


=

[
E11 E12
E21 E22

]
,
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where E11 =


0 bn−1 0 · · · 0
0 0 bn−2 · · · 0
...

...
...

. . .
...

0 · · · · · · 0 b2
0 0 · · · 0 0


, E12 = [0 0 . . . 0 b1]t,

E21 = [0 0 . . . 0] and E22 = [0].

Employing Lemma 2.2 again , we get

w(R) ≤ w
([
∥E11∥ ∥E12∥

∥E21∥ ∥E22∥

])
=

1
2

{
b +

√
b2 + |b1|

2
}
,where b = max{|b2|, |b3|, . . . , |bn−1|}.

Now by using sub-additive property of numerical radius, we have

w(C(p)) = w(Q + R)
≤ w(Q) + w(R)

=
1
2

|c1| +

√√√ n∑
j=1

|c j|
2 + b +

√
b2 + |b1|

2

 .
Accordingly, all the zeros of polynomial p(z) lie in

|z| ≤
1
2

|c1| +

√√√ n∑
j=1

|c j|
2 + b +

√
b2 + |b1|

2

 .
This completes the proof of Theorem 3.6.

By suitably choosing the parameters c j’s and b j’s satisfying (2), new zero-bounds can be obtained, here we
make some special choices.

Let b j = a1 , 0 for j = 2, 3, . . . ,n− 1, then c j =
a j

a j−2
1 b1

for j = 2, 3, . . . ,n− 1 and cn =
an

an−2
1 b1

. By using these

values in Theorem 3.6, we obtain the following corollary.

Corollary 3.7. Let p(z) be a polynomial as given by (1) of degree n ≥ 3 such that a1 , 0, then all its zeros lie in

|z| ≤ |a1| +
1
2


√√√
|a1|

2 +

n∑
j=2

∣∣∣∣∣ a j

a j−2
1 b1

∣∣∣∣∣2 + √
|a1|

2 + |b1|
2

 .
By choosing b1 = b2 = · · · = bn−1 = 1 and c j = a j, j = 1, 2, . . . ,n in Theorem 3.6, the following result can be
obtained.

Corollary 3.8. All the zeros of polynomial given by (1) of degree n ≥ 3 lie in

|z| ≤
1
2

|a1| +

√√√ n∑
j=1

|a j|
2 +
√

2 + 1

 .
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If a j , 0, j = 1, 2, . . . ,n, then by taking b1 = c1 = a1, b j = c j =
a j

a j−1
, j = 2, 3, . . . ,n − 1, cn =

an

an−1
, in Theorem

3.6, we obtain the following result:

Corollary 3.9. All the zeros of polynomial given by (1) of degree n ≥ 3 lie in

|z| ≤
1
2

|a1| +

√√√√
|a1|

2 +

 n∑
j=2

∣∣∣∣∣ a j

a j−1

∣∣∣∣∣2
 + b +

√
b2 + |b1|

2

 ,
where b = max

{∣∣∣ a2
a1

∣∣∣, ∣∣∣ a3
a2

∣∣∣, . . . , ∣∣∣ an−1
an−2

∣∣∣} .
Next, if we choose b1 = b2 = · · · = bn−1 = b = max

2≤ j≤n
|a j|

1/ j, c j =
a j

b j−1
, j = 1, 2, . . . ,n, in Theorem 3.6, we get

the following result:

Corollary 3.10. All the zeros of polynomial given by (1) of degree n ≥ 3 lie in

|z| ≤
1
2

|a1| +

√√√√ n∑
j=1

∣∣∣∣∣ a j

b j−1

∣∣∣∣∣2
 + (

1 +
√

2
)
b

 ,
where b = max

2≤ j≤n
|a j|

1/ j.

Example 2. Let p(z) = z3
− 3z2

− 4z + 0.5 be a polynomial. Here, a1 = 3, a2 = 4 and a3 = −0.5.
Let b1 = 2, b2 = −0.5 and c1 = 3, c2 = 2, c3 =

1
2 , such that

a1 =c1,

a2 =c2b1,

a3 =c3b2b1.

Then by applying Theorem 3.6 to p(z), it follows that all the zeros of p(z) lie in the disc |z| ≤ 4.6007.Whereas
if we apply the result of Linden [11] to p(z), it follows that all the zeros of p(z) lie in the disc |z| ≤ 5.0207.

Our third result is obtained by using again a property of numerical radius.

Theorem 3.11. All the zeros of polynomial given by (1) of degree n ≥ 3 lie in

|z| ≤
1
2

b + |c1| +

√√√√√√
(b − |c1|)2 +

|b1| +

√√√ n∑
j=2

|c j|
2


2
 ,

where b = max{|b2|, |b3|, . . . , |bn−1|}.

Proof. Let u = [0 0 . . . 0 b1]t be the (n−1) column vector and v = [cn cn−1 . . . c3 c2] be the (n−1)
row vector. Then the companion matrix C(p) of p(z) given by (3) can be expressed as

C(p) =
[
T u
v c1

]
, where T =


0 bn−1 0 · · · 0
0 0 bn−2 · · · 0
...

...
...

. . .
...

0 · · · · · · 0 b2
0 0 · · · 0 0


n−1×n−1

.
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Now in the light of Lemma 2.2, we have

w(C(p)) ≤ w
([
∥T∥ ∥u∥
∥v∥ ∥c1∥

])

=
1
2

b + |c1| +

√√√√√√
(b − |c1|)2 +

|b1| +

√√√ n∑
j=2

|c j|
2


2
 ,

where b = max{|b2|, |b3|, . . . , |bn−1|}.
Hence all the zeros of p(z) lie in

|z| ≤
1
2

b + |c1| +

√√√√√√
(b − |c1|)2 +

|b1| +

√√√ n∑
j=2

|c j|
2


2
 .

This completes the proof of Theorem 3.11.

By suitably choosing the parameters c j’s and b j’s satisfying (2), new zero-bounds can be obtained, here we
make some special choices.

Let b j = a1 , 0 for j = 2, 3, . . . ,n− 1, then c j =
a j

a j−2
1 b1

for j = 2, 3, . . . ,n− 1 and cn =
an

an−2
1 b1

. By using these

values in Theorem 3.11, we obtain the following corollary.

Corollary 3.12. Let p(z) be a polynomial as given by (1) of degree n ≥ 3 such that a1 , 0, then all its zeros lie in

|z| ≤ |a1| +
1
2


√√√√√√√√|b1| +

√√√√ n∑
j=2

∣∣∣∣∣∣∣ a j

a j−2
1 b1

∣∣∣∣∣∣∣
2


2


By choosing b1 = b2 = · · · = bn−1 = 1 and c j = a j, j = 1, 2, . . . ,n in Theorem 3.11, the following result can be
obtained.

Corollary 3.13. All the zeros of polynomial given by (1) of degree n ≥ 3 lie in

|z| ≤
1
2

|a1| + 1 +

√√√√√√
(|a1| − 1)2 +

1 +

√√√ n∑
j=2

|a j|
2


2
 .

If a j , 0, j = 1, 2, . . . ,n, then by taking b1 = c1 = a1, b j = c j =
a j

a j−1
, j = 2, 3, . . . ,n − 1, cn =

an

an−1
, in Theorem

3.11, we obtain the following result:

Corollary 3.14. All the zeros of polynomial given by (1) of degree n ≥ 3 lie in

|z| ≤
1
2

b + |a1| +

√√√√√√
(b − |a1|)2 +

|a1| +

√√√ n∑
j=2

∣∣∣∣∣ a j

a j−1

∣∣∣∣∣2


2
 ,

where b = max
{∣∣∣ a2

a1

∣∣∣, ∣∣∣ a3
a2

∣∣∣, . . . , ∣∣∣ an−1
an−2

∣∣∣} .
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Next, if we choose b1 = b2 = · · · = bn−1 = b = max
2≤ j≤n

|a j|
1/ j, c j =

a j

b j−1
, j = 1, 2, . . . ,n, in Theorem 3.11, we get

the following result:

Corollary 3.15. All the zeros of polynomial given by (1) of degree n ≥ 3 lie in

|z| ≤
1
2

b + |a1| +

√√√√√√
(b − |a1|)2 +

b +

√√√ n∑
j=2

∣∣∣∣∣ a j

b j−1

∣∣∣∣∣2


2
 .

where b = max
2≤ j≤n

|a j|
1/ j.

Example 3. Let p(z) = z3
− 3z2

− 4z − 6 be a polynomial. Here, a1 = 3, a2 = 4 and a3 = 6.
Let b1 = 2, b2 = 1 and c1 = 3, c2 = 2, c3 = 3, such that

a1 =c1,

a2 =c2b1,

a3 =c3b2b1.

Then by applying Theorem 3.11 to p(z), it follows that all the zeros of p(z) lie in the disc |z| ≤ 4.9758.Whereas
if we apply the result of Fujii and Kubo [3] to p(z), it follows that all the zeros of p(z) lie in the disc |z| ≤ 6.1122.

Now we set up an example where we compare our results with the classical results concerning to the
zero bounds of polynomials obtained by famous mathematicians.
Example 4. Consider the polynomial equation p(z) = z4

− z2
− z + 3 = 0. Here, a1 = 0, a2 = 1, a3 = 1, and

a4 = −3.
Let b1 = 2, b2 = 1, b3 =

1
2 and c1 = 0, c2 =

1
2 , c3 =

1
2 , c4 = −3 such that

a1 =c1,

a2 =c2b1,

a3 =c3b2b1,

a4 =c4b3b2b1.

Then the upper bounds for the zeros of this polynomial equation z4
− z2
− z+ 3 = 0 estimated by our results

are much better than the estimates obtained by different mathematicians as shown in table below:

Bound Value Bound Value
Theorem 3.1 3.0326 Cauchy [5] 4
Theorem 3.2 3.1591 Montel [2] 5
Theorem 3.3 3.0898 Carmichael and Mason [5] 3.4641
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