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Convergence rate of precise asymptotics in the Baum-Katz laws of large
numbers
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following series

Abstract. Let {X,X,,n > 1} be a sequence of independent and identically distributed (i.i.d.) random
variables and S, = X; + Xo + --- + X,,. In the present paper, we study the precise asymptotics for the

i ]P(ISnl > enl/P) forall ¢ >0,

n=1

where 1 < p < 2, and consider the convergence rate of the series, which extends the works in He and Xie
[9].
1. Introduction

Hsu and Robbins [11] introduced the following concept of complete convergence. A sequence {X,,, n > 1}
of random variables is said to converge completely to a constant C if

Z]P(IXH—CI >¢) < oo forall € >0.

n=1

By the Borel-Cantelli lemma, X, — C completely implies X, L5 C. Let {X, X,,n > 1} be a sequence of

independent and identically distributed (i.i.d.) random variables and S, = X; + X, + --- + X,,. Hsu and
Robbins [11] proved that if EX = 0 and [EX? < oo, then for any € >0,

Z]P(|sn| > en) < 0.

n=1

1.1)
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The converse was proved by Erdés [4]. The result of Hsu-Robbins-Erdés is a fundamental theorem in
probability theory and has been generalized and extended in several directions. Spitzer [15] proved that
for any € > 0,

(s8]

Z %]P(lS,,l > en) < 0o 1.2)

n=1

if and only if EX = 0 and E|X| < co. Katz [12] and Baum and Katz [1] generalized the work of Spitzer [15]
and obtained that for0 <p <2andr > p,

i nr 2P (ISnI > enl/”) < oo, for €>0 (1.3)

n=1
if and only if E|X|" < co and whenr > 1, EX = 0.
Heyde [10] studied the limit behavior of the series in (1.1) as ¢ — 0. If EX = 0 and EX? = ¢, then

o 2 ) = 2
lim ¢ Y Pl > en) = 0%, (1.4)
n=1
Spataru [14] considered (1.2) and proved that if EX = 0 and E|X]| < oo, and the distribution of the random
variable X belongs to the domain of attraction of a nondegenerate stable distribution G with characteristic
exponent1 <a <2, ie,

Sn weak
— —a, —> G as n — oo,
by
for suitable a, and b, > 0, then
. 1 1 a
- >en) = ——.
?E»% —loge Z an(ISnl 2 &n) a-1

n=1

Gut and Spdtaru [6] studied (1.3) and obtained that if EX = 0 and [E|X| < oo, and the distribution of the
random variable X belongs to the normal domain of attraction of a nondegenerate stable distribution G
with characteristic exponent 1 < a < 2, then for 1 < p <r < a, we have

(o)
o P r_ o P
limewr 7 2 ni2P(S,| > en'?y = L E|Z)35
e—0 ~ r—p

where Z is a random variable having the distribution G. In particular, if EX = 0 and EX? = 6% < oo, then

2(r-p) p 2(r=p)

lime T ) niP(S,| > en'l?) = E1E|Z| =, (1.5)

=0
n=1

where Z has a normal distribution with mean 0 and variance ¢2.

Furthermore, (1.4) means that 0> can be approximated by ¢2Y”; P(|S,| > en) as ¢ — 0. Klesov [13]
proved that if EX = 0, EX? = 0% < o0 and E|X[® < oo, then

&2 Z P (IS,| > en) — 0 = o(e'/?), as ¢ — 0.

n=1

He and Xie [9] improved the result of Klesov [13] and obtained that if EX = 0, EX? = 62 < oo and E|X]* < oo,
then

SZZ]P(IS,,I > en) — o = o(e), as € — 0.

n=1
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In the equation (1.5), p is assumed to satisfy the condition 1 < p < r < a, which exclude the case r = 2p.
Hence, in the present paper, one aim is to study the precise asymptotics for the following series

2 (o]
Tp ]P |S | > enl/p), as € >0, (1.6)

n=1

where 1 < p < 2. The other aim is to consider the convergence rate of the series (1.6), which extends the
works in He and Xie [9]. Throughout this paper, let C be a constant not depending on #n, which may be
different in different places.

2. Main results

Let {X, X, n > 1} be a sequence of i.i.d. random variables with EX = 0. From (1.3), for 1 < p < 2, we
have

i]l’(LSnl > en'’?) < oo for &> 0 (2.1)

n=1

if and only if E|X? < co. The following Theorem 2.1 gives the precise asymptotics for the series in (2.1) as
e —0.

Theorem 2. 1 Let {X, X, n > 1} be a sequence of i.i.d. random variables with EX = 0, EX? = 0% and B|X|* < oo
for some a > 5 where 1 < p < 2. Then we have

hmszr’ Z]P 1Sl = en'l?) = (i) EX|, 2.2)

2]
where o is the variance of some normal random variable & satisfying EE = 0, BE? = o and IE|§|2-P ]EIXITPV

The following results give the convergence rate of the limit in (2.2).

Theorem 2.2. Let {X, X,,,n > 1} be a sequence of i.i.d. random variables with EX = 0 and E|X|* < oo for some
a> where 6/5 < p < 3/2. Then we have

2p

. il[’(|5n| > en'l?) - (Gi)7 EIX|% = 0(e%7), (23)
n=1 1

2 2
where G% is the variance of some normal random variable & satisfying EE = 0, BE? = G% and ]Elélﬁ = ]EIXI%.

Theorem 2.3. Let {X, X,,,n > 1} be a sequence of i.i.d. random variables with EX = 0 and E|X|* < oo for some

2’; < a <3, where 1 < p < 6/5. Then we have
2 s o Zp pla=2)
77 Z]P(ISnl > enl/’”) - (—) lEIXlz‘P = o(e T ), (2.4)
n=1 91

2, 2p
where o% is the variance of some normal random variable & satisfying IEE = 0, E&? = o% and ]Elcflﬁ = ]EIXIﬁ.
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Remark 2.1. Intuitively, as p — 1, from (2.2) and (2.4), we have
Pg(} SZZ{]P(lsnl > en) = o

and -
&2 Z P(|S,| > en) — o* = o(e“‘z).
n=1

Hence Theorem 2.2 and Theorem 2.3 extend the results in He and Xie [9].

Remark 2.2. In Theorem 2.2 and Theorem 2.3, we have discussed the cases 6/5 < p < 3/2and 1 < p < 6/5
respectively. However, it is still an open problem for the case 3/2 < p < 2.

3. Proof of main results

Lemma 3.1. [2] Let X1, X5, -+ , X,, be independent and not necessarily identically distributed random variables with
zero means and finite variances. Define W = Y., Xy and assume that Var(W) = 1. Let F be the distribution function
of W and @ the standard normal distribution function. Then there exists an absolute constant C such that for every
real number x,

S (EXPIOXd > 1+ 1) EXPIIX] < 1+ )
|F(x) — D(x)| < C; { (1 + |x|)2 * (1 + |x)? }

Furthermore, we have

sup [F(x) — D(x)| < 4.1 Z {EX21(X1 > 1) + BIXLI0Xi| < 1)
x i=1

Lemma 3.2. Let {X, X,,,n > 1} be a sequence of i.i.d. random variables with EX = 0, EX? = 02 and E|X|**® < oo
for some 0 < 0 < 1. Then there exists an absolute constant C such that

sup <

—,
. 10/2

Su )
P{— <x|-D(x
[ <)o
where @ is the standard normal distribution function.

Proof. From Lemma 3.1, the lemma is easy to be obtained. [

Lemma 3.3. Let {X, X,,,n > 1} be a sequence of i.i.d. random variables with EX = 0 and EX? = 62

(1) E|X]? < oo, then there exists an absolute constant C such that for every real number x,

3
]P( Sn < x)_cp(x) < ﬂ,
Vno Vna®(1 + [x])?
where @ is the standard normal distribution function.

(2) IFEIX|**° < oo for some 0 < & < 1, then there exists a bounded and decreasing function ¢(x) defined on the
interval (0, c0) such that lim,_. ¢(x) = 0 and

5, O(V(L+ 1)
‘IP( 2 < —qD(x)‘ e
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Proof. From Lemma 3.1, we have

‘]P( S < x) — d(x)

\Vho
<C {EX21(|X| > (1 + |x]) Vo) N EIXPI(X] < (1 + |x]) \/ﬁo)}
- 02(1 + [x])? Viod3(1 + |x|)?
CE|X!

<
Vna3(1 + |x)?
and

C
sup < —.

X

Sn
P{— <x|-D(x
( Vno ) ®
Furthermore, it is easy to see

EX?I(X] > (1 + ) Vo) _ EIXPI(X| > (1 + |x) Vo)
02(1 + |x|)2 = nO/262+9(1 + |x[)2+0

and
EIXPI(X] < (1 + |x]) Vno)

Vnod(1 + [x])3

]E|X|3I( J@ + [x)) Vo < 1X] < (1 + |x)) \/ﬁa)

Vo3 (1 + [x)?

IE|X|3I(|X| < J +1x)) \/ﬁa)

Vna®(1 + [x])®

lEIXl“‘SI(\/(l + |x|) Vino < 1X] < (1 + |x]) \/50)

n0/262+9(1 + [x[)2+0

IE|X|2+5I(|XI < @+ ) vza)
+

nA+0)/AgG+)/2(1 + |x|)6+0)/2

E|X[>*I (|X| > Af(1+]x) \/ﬁo)
<

n6/202+6(1 + |x|)2+6

2406
E|X]| I(|X| < 1/(1+|x|)\/ﬁa) )

1n8/2g2+5(1 + |x[)2+0 nA=0)/45(1-0)/2"

EIXPHI(X] > /(1 + |x]) Vito) E|XP
+

o2+o n(1-0)/456-8)/2"

+

<

+

Hence if we take

O(Vn(l + ) =

then the desired result can be obtained. [

Proof. [Proof of Theorem 2.1] From the following elementary inequalities: for any random variable Y with
E[Y] < oo,

Z P(Y| > n) < EJY| < Z P(Y| > n),
n=1 n=0
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then we have

= 2 pgd & .
5 o(E £0%)<(2) B L P (8. 5%
n= o1 ey n=0 91 o

which implies that

2p
. 2 |E] = o\ 2
= ny | =— 2
PE)I(}& pznzl (01 o ) (01) Elef=r. G

In order to obtain (2.2), it is enough to show

For(5L %) Er( 5o

2
lim ez
-0

For every n, define

S
A, = sup ]P( 154 Zx)—]P(EZX) ,
—co<x<co \/7_10' 01
then from Lemma 3.2, we have
Iim A, =0
n—oo
Hence, for any M > 0, we have
_» _w
[Me 2-7] [Me 2-7]
2 1Syl 2p (IEI € 21)
lim = 7 |- P(—= > - =0. 3.3
e L (\/‘o- ””) L *lo e Y

By taking t > 0 such that t > 22__pp we get

o _, sl t
o Z (IEI nZ:f)gC 2 Z EE]"

Ty,
3 9 9 R
n=[Me 277 ]+1 n=[Me 27 ]+1
2 1 C
<Cex! <
2p 2-p 2-p 7
(Mg—g)jt—l Ml
which implies
T & e =
lim lim e>» Z P{—=>=-n?2)=0. (3.4)
M—o0 -0 01 o

2
n=[Me 277 ]+1

By using Rosenthal’s inequality (noting a > 2), we have

(9] (9]

2 2 E|S,|*
v Z ]P(|Sn| > snl/”) < ez Z 1Sl
Eana/p
e 2w
n=[Me 277 ]+1 n=[Me 277 ]+1
0 n a/2 n
2 1
<Ce@n " Z 7 Z EX?| + Z E|X;|*
n . .
-1 =1
n=[Me" 2 1”]+1 ! !
_ - 1
<Cem ™ Y —EXF
2p nr 2
n=[Me 27 ]+1
2
<Ceri ™ ! < ¢

a_1 — a_a_
2 My 2
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which yields

(o]

T 1p) —
lim lim e 2; P (1S4l > en'’?) = 0. (3.5)

n=[Me 27F’] 1

From (3.3), (3.4) and (3.5), the claim (3.2) holds. O

Proof. [Proof of Theorem 2.2] Since p > 6/5, we have a > 3. By using non-uniform estimate of the central
limit theorem (see Lemma 3.3), for any x € R, we have
CEIX?

Pl T
Vio © Vi 1+ 7

where C is an absolute positive constant, 62 is the variance of X and @(-) is the distribution function of
standard normal random variable. Let {&, £y, 1 > 1} be a sequence of i.i.d. normal random variables with

2 2}
E&E =0, E&? = 0% and ]ElEIﬁ = ]ElXIﬁ, then we have

- (D(x)‘ < (3.6)

2]

o
P (5,1 > en?) - ()7 Bl
1

1 £ 2 - 1 £
]P—|S|>—n2v)— P > nzr’
( no ! Y ; \/ﬁGl o

2
& Zp o \2r 2p
>—nw —(—) E[X|7»
o 01

&k

k=1

(3.7)

=1, + II,,.

It is easy to see that — \F Y r-1 &k is a standard normal random variable. Let 1) be a standard normal random

& 2
> —-n
o

variable, then from (3. 6), we have

1 2y 1 v
P|—|S,|> —-n> Pr é
[t o) (vaol e

p(—Lis, > EnF P0|> U)
=|P|— -n -n
Vo o m=5

2-p 3"
Vo (1 +|inw )
Hence we have
2 v CE|X]?
I, se - Z A 2y \3
n=1 \/ng? (1 +|tnw )
|| (3.8)
B C ) - C P
<gzr e < Cezr
— n 2p £ » 3
" ey Vil
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Now we estimate the term II,. It is easy to check that

£ 2 ER £ 2
>—-nx :e-VZ]PIn|>—n2P
o o

n=1 n
and

2 2 21 » -2
E|X|77 =E|§|77 = 4/ = — X e % dx
7‘(01 0
2 © > 2
:w/—f (tal)Z-’;’e_?dt

£(n+1) 5 w2
f - (to1)zve 2 dt.
£y 2p
Hence we have

;10

n

2p

i _M] - (&) Exi
o 01
2-p
2 b f?<”+1)2p 2 2 f? 2 2
S\/;Zfzp (ne™ - 0)7% )t + Efo (to)re 2t

For every n > 1, by using the integral mean value theorem, there exists a constant a,, ( n¥
such that

R 2-p
e (e ,§(n+1)2V),
2-p

Sn+1) ¥ 2
fzp (nez-ﬂ—(to)“)e St
En2p

2-p

i i(ﬂ‘i-l)j 2p 2p
=e 2f 1y (neﬁ—(to)g)dt
s
(1) 2
=e 7(—)82 [ ((n+1)2v —nzv )]
o
a2 1 24p 2— 24p 24p
—-e 2(—)82‘P ((n+l)2P—n2P).
o 2+p

By using Taylor formula, we have

2 2y
nn+1)» —n2

)
=¥ (1+1) "1
n
_2opom 2-p)2-3p) 2

2 ol 2
nr +0(n>
2p 8p? ( )
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and
2 2 p 2 1 2z+
- Zp 2Zp - 2p P
P(n+1)2P—nZP = n¥» (1+—) -1
2+p 2+p n
2— 2-p 2 —p)? 23 2-5p
= pn?+( p) n7+O(n7)
2p 8p?
which implies that
; 2p
e PR 2 2 [ 23 25
2p (nez-ﬂ’ - (to) 2‘*’)e‘ﬂit‘ <Ce 2eZv (n ¥+ O(n % ))
s
Since
o
£ Ze_Tn 2
n=1
2+p 0 2-3p lﬁxz;—p
<Ce=» Xwe 22 dx
1
o 3 P
24p t\2@p (1 \2» -2 1t
=Ce2r (—) ' (—) P t77 e 2 dt
2 \&2 ) 2-p
2
<Ce?v,
we get
2
i {E(n"'l) » 2 2p 2 2
f . (nez-r’ - (to)Z-V)e‘Tdt < Ce?,
el [V En

Furthermore, we have
soow g 2 A
f (to)zre  2dt < Ce < Ce?v.
0
By (3.9) and (3.10), we get
2p
II,, < CeZ».

At last, from (3.7), (3.8) and (3.11), we have

e — 2
e Z]P('Sn —nu| > snl/p) - (Oi)z ’ ]E|X|ﬁ
1

n=1

O

11947

(3.9)

(3.10)

(3.11)

Proof. [Proof of Theorem 2.3] For the case 1 < p < 6/5, we have 2 < @ < 3. By using non-uniform estimate
of the central limit theorem (see Lemma 3.3), there exists a bounded and decreasing function ¢(x) defined

on the interval (0, o) such that lim,_,., ¢(x) = 0 and

P(Vn(l + Ix1)

n0/2(1 + |x[)2+0

forany x € R,

‘]P( 550 < x) —(D(x)‘ <

(3.12)
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where 0 < 6 = @ — 2 < 1, 62 is the variance of X and ®(-) is the distribution function of standard normal
random variable. As the similar proof as Theorem 2.2, let {£,&,,n > 1} be a sequence of i.i.d. normal
2, 2,

random variables with E& = 0, E&? = 07 and Elélﬁ = lEleﬁ, then we have

2p
o0 \2»r 2
_) "EIX|7

(e5)
N
i1
I
%
—_
wn
=
v
(e2)
S
.
3
SN—
|
—_—

(3.13)

=1, +1I,.

It is easy to see that ﬁ Y.i-1 & is a standard normal random variable. Let ) be a standard normal random

variable, then from (3.12) we have
E Z»r
>-—-nw
O' ]

&k

k=1

£
)‘“’("7'>5”’)

P(L|S|>5nzzf)—]1> L
Vo o Vnoy

1 & 2
=[P| —ISu > —n?
‘ [t
o1+
<

2-p
En 2p
[

1)

- 2-p \2+0
nd/2 (1 +|inw )
Hence we have
2-p
o)
In =5 2-p 2+0
n=1 p0/2 (1 +|tnw )
: 3.14
)7 N . (3.14)
2 Uy (V) s ¢ (/%)
<Ce?» prTp + Ce?r 2 T
n=1 E2 n p
w5
It is easy to see that § + %;“6) > 1, then we have
P
b § 2lo)
€ &, 2=p)2+d)
2p n2+ 2p
() |
2] 5 (2-p)2+0)
SCE%’_Z_O(P ((g)zpp)(g)zpp(l‘;‘pm) (3.15)
€ €
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Since 0 < 6 < 1, then we have

)
()% ()5
ZP[ ]ﬂb(‘/ﬁ) ZV[ ] 1
gz - <Ce?2r —_
11572 17572
n=1 n=1
2p o ZLLP 1_% 2 _ P oq_d P o
<Cezv (_) < Cezr 5 (1-3) _ C€2—p(1+2)
&
and
2 2
Ok (G5

which implies

Zz_p[(f)ﬂ] o(vF)

e S

i PYR T G Y

=& o TeET 11012
=t n:[(g)ﬁ]u

Here we used the fact
a-3) s
z-:}qz—p2 — 0 and (ﬁ)((G)Z(2 p))—>0

&

as ¢ — 0. From (3.14), (3.15) and (3.16), we have

2
I, = 0(82,7’).

Now we estimate the term II,. By using the same discussions as Theorem 2.2, we get

2 o
I, < Ce?r = o(ezfr’).

11949

(3.16)

(3.17)

(3.18)



Y. Miao, X. F. Sun / Filomat 38:33 (2024), 11939-11950 11950

At last, from (3.13), (3.17) and (3.18), we have

2

2 b 22— 2 0
3= Z]P(lsn —nul > enl/’”) - (Gi)z ' ]EIXIﬁ = 0(52%).
1

n=1
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