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Explicit solutions of the Yang-Baxter-like matrix equation for
diagonalizable coefficient matrix with two distinct nonzero eigenvalues
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Abstract. Let A be a complex diagonalizable matrix with two distinct nonzero eigenvalues λ and µ, the
Yang-Baxter-like matrix equation AXA = XAX is reconsidered. We correct and improve the results in Shen
et al. (2020) when λ2

−λµ+µ2 = 0. We also improve the results in Shen et al. (2020) when λ2
−λµ+µ2 , 0.

We obtain the explicit structure of the solutions X for the Yang-Baxter-like matrix equation AXA = XAX,
which are diagonalizable. Finally, we improve other existing relevant conclusions.

1. Introduction

Let A be an n × n diagonalizable complex matrix with two distinct nonzero eigenvalues. The quadratic
matrix equation

AXA = XAX, (1)

is often called the Yang-Baxter-like matrix equation (also called the star-triangle-like equation in statistical
mechanics; see, e.g., in Part III of [9]) because of its connections with the classical Yang-Baxter equation
arising in statistical mechanics [4, 16, 17]. The Yang-Baxter equation first appeared in theoretical physics,
in a paper by the Nobel laureate C. N. Yang [16], and in statistical mechanics, in R. J. Baxter’s work [4].
Later, it became one of the important equations of mathematical physics. It plays a crucial role in: Knot
theory, braided categories, non-commutative descent theory, quantum computing, integrable systems,
non-commutative geometry, and so on [1–3, 7, 10, 17].

Solving Yang-Baxter-like matrix equation (1) is equivalent to solving a polynomial system of n2 quadratic
equations with n2 unknowns, which solving this system is a very challenging topic. This compelled many
researchers to find solutions for particular A. All solutions have been constructed for rank-1 matrices A in
[15], rank-2 matrices A in [18, 19], non-diagonalizable elementary matrices A in [20], idempotent matrices
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A (A2 = A) in [11], A2 = I in [8, 12], A3 = A in [13], and diagonalizable matrices A with two different
eigenvalues in [14]. However, some results in [14] is false.

In this paper, we solve the Yang-Baxter-like matrix equation (1) to derive all explicit solutions X when
the given diagonalizable matrix A has two distinct nonzero eigenvalues λ and µ. We correct and improve
the results in [14] when λ2

−λµ+µ2 = 0. We also improve the results in [14] when λ2
−λµ+µ2 , 0. We obtain

the explicit structure of the solutions. We prove that the solutions are diagonalizable and the spectrum
contained in the set {λ, µ, 0}. We extend the research for which A is a Householder matrix A = I − 2uuH [6],
A is a class of elementary matrices A = I−uvT (vTu , 0) [5] and A , ±I is an n×n complex matrix satisfying
A2 = I [8, 12], respectively. This is an important step to solve more general matrices.

2. Main results

In this section, we give main results. At first, we give an assumption as follows.

Assumption 2.1. Let A be an n × n complex diagonalizable matrix with two distinct nonzero eigenvalues λ and µ,
that is, A = SJS−1 in which, S is a nonsingular matrix and

J = dia1(λIm, µIn−m).

Recently, in [14], the authors gave the following results.

Theorem 2.1. [14, Theorem 4.4, Theorem 4.5 and Theorem 4.6] Suppose that A satisfies Assumption 2.1.
If λ2

− λµ + µ2 = 0, then all solutions of the Yang-Baxter-like matrix equation (1) have the form

X = S
[

P 0
0 Q

] 
λIt 0 F 0
0 0m−t 0 0
G 0 µIk 0
0 0 0 0n−m−k


[

P−1 0
0 Q−1

]
S−1, (2)

in which, P ∈ Cm×m, Q ∈ C(n−m)×(n−m) are any invertible matrices, 0 ≤ t ≤ m, 0 ≤ k ≤ n −m, F is an arbitrary t × k
matrix, G = (I − F†F)M(I − FF†), M is an arbitrary k × t matrix.

If λ2
− λµ + µ2 , 0, then all solutions of the Yang-Baxter-like matrix equation (1) are

X = S
[

U 0
0 V

]


λ̂Ir 0 0 C 0 0
0 λIυ 0 0 0 0
0 0 0m−r−υ 0 0 0
D 0 0 µ̂Ir 0 0
0 0 0 0 µIτ 0
0 0 0 0 0 0n−m−r−τ


[

U−1 0
0 V−1

]
S−1, (3)

in which, U ∈ Cm×m, V ∈ C(n−m)×(n−m) are any invertible matrices, 0 ≤ r ≤ min{m,n − m}, 0 ≤ υ ≤ m − r,
0 ≤ τ ≤ n −m − r, λ̂ = µ2

µ−λ , µ̂ = λ2

λ−µ , C is an arbitrary r × r invertible matrix, and D = −λµ(λ2
−λµ+µ2)

(λ−µ)2 C−1.

The result in (2) is false. There is a counterexample as follows.

Example 2.2. Let A = dia1(1, 1, 1+
√

3i
2 ). The eigenvalues of A are 1, 1, and 1+

√
3i

2 . It is easy to verify that

12
− 1 × 1+

√
3i

2 + ( 1+
√

3i
2 )2 = 0 and

X =


1 −

1+
√

3i
2 1

0 1 0

0 1 1+
√

3i
2


is a solution of the Yang-Baxter-like matrix equation (1). In this case, we see that its upper left 2 × 2 corner is not
diagonalizable. So the result in (2) does not hold.
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The false in proving Theorem 4.3 in [14] is that

C̃(1)D̃(1) =

 −λ2
1
λ2

Is1 0
0 0

 and D̃(1)C̃(1) =

 −λ2
2
λ1

Is2 0
0 0

.
If C(1)

∈ Ct1×t2 , D(1)
∈ Ct2×t1 , C(1)([2 : 2 : 2s1], :) = 0, C(1)(:, [1 : 2 : 2s2 − 1]) = 0, D(1)([2 : 2 : 2s2], :) = 0,

D(1)(:, [1 : 2 : 2s1 − 1]) = 0, 2s1 ≤ t1, 2s2 ≤ t2, Suppose that C̃(1) is a matrix obtained from C(1) by deleting the
rows 2 j for j = 1 : s1 and columns 2 j − 1 for j = 1 : s2. D̃(1) is a matrix obtained from D(1) by deleting the
rows 2 j for j = 1 : s2 and columns 2 j − 1 for j = 1 : s1. Suppose that s1 = 1, s2 = 1, t1 = 3, t2 = 3,

C(1) =

 0 c12 c13
0 0 0
0 c32 c33

 , D(1) =

 0 d12 d13
0 0 0
0 d32 d33

 ,
then

C̃(1) =

[
c12 c13
c32 c33

]
, D̃(1) =

[
d12 d13
d32 d33

]
.

It is obvious that C̃(1)D̃(1) is not equal to the matrix[
c13d32 c13d33
c32d32 c33d33

]
obtained from C(1)D(1) by deleting the row 2 and column 1.

According to Lemma 4.1 and 4.2, and Theorem 4.3 in [14], we have the following lemma. Then we will
prove that the solutions of the Yang-Baxter-like matrix equation (1) is diagonalizable and the eigenvalues
are contained in the set {λ, µ, 0}whenever λ2

− λµ + µ2 = 0 or λ2
− λµ + µ2 , 0.

Lemma 2.3. [14, Lemma 4.1 and 4.2, Theorem 4.4] Suppose that A satisfies Assumption 2.1 with λ2
−λµ+µ2 = 0.

Then all solutions of the Yang-Baxter-like matrix equation (1) have the form

X = S
[

P 0
0 Q

] 
λIt +N1 0 F 0

0 0m−t 0 0
G 0 µIk +N2 0
0 0 0 0n−m−k


[

P−1 0
0 Q−1

]
S−1, (4)

in which, P ∈ Cm×m, Q ∈ C(n−m)×(n−m) are any invertible matrices, 0 ≤ t ≤ m, 0 ≤ k ≤ n − m, F ∈ Ct×k, G ∈ Ck×t.
The elements of N1, N2 are zeros except that the second upper diagonal elements may be one or zero. N2

1 = 0, N2
2 = 0,

FG = −λ
2

µ N1, GF = −µ
2

λ N2, N1F = 0, GN1 = 0, FN2 = 0, N2G = 0.

The following lemma is the key to deriving our theorem.

Lemma 2.4. Let B = λI + αN. λ and α are scalars (λ , 0). If N2 = 0, then

B−1 =
1
λ

I −
α

λ2 N.

Proof. Since N2 = 0, it is easy to verify that

(λI + αN)(
1
λ

I −
α

λ2 N) = I.

Thus
B−1 =

1
λ

I −
α

λ2 N.

This completes the proof.
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Based on Theorem 2.1, and Lemma 2.3 and 2.4, we give our results in the following theorem.

Theorem 2.5. Suppose that A satisfies Assumption 2.1. Ifλ2
−λµ+µ2 = 0, then all solutions of the Yang-Baxter-like

matrix equation (1) have the form

X = S
[

P 0
0 Q

]
R


λIt 0 0 0
0 0m−t 0 0
0 0 µIk 0
0 0 0 0n−m−k

R−1

[
P−1 0
0 Q−1

]
S−1, (5)

P ∈ Cm×m, Q ∈ C(n−m)×(n−m) are any invertible matrices,

R =


It 0 F

µ−λ 0
0 Im−t 0 0
G
λ−µ 0 Ik 0
0 0 0 In−m−k

 ,
0 ≤ t ≤ m, 0 ≤ k ≤ n −m, F ∈ Ct×k, G ∈ Ck×t, FG = −λ

2

µ N1, GF = −µ
2

λ N2, N1F = 0, GN1 = 0, FN2 = 0, N2G = 0.
The elements of N1, N2 are zeros except that the second upper diagonal elements may be one or zero. N2

1 = 0, N2
2 = 0.

Thus all solutions X of the Yang-Baxter-like matrix equation (1) are diagonalizable and the eigenvalues of X are
contained in the set {λ, µ, 0}.

Proof. According to (4) in Lemma 2.3, let

Y1 =


λIt +N1 0 F 0

0 0m−t 0 0
G 0 µIk +N2 0
0 0 0 0n−m−k

 .
Apply Lemma 2.4 and N2

1 = 0, N2
2 = 0, FG = −λ

2

µ N1, GF = −µ
2

λ N2, N1F = 0, GN1 = 0, FN2 = 0, N2G = 0, we
obtain that the characteristic polynomial of Y1 is

PY1 (x) = det(xI − Y1) = xn−t−k(x − λ)t(x − µ)k.

Thus the eigenvalues λ, µ, and 0 of Y1 have algebraic multiplicity t, k, and n − t − k, respectively. It is easy
to verify that Rank(λI − Y1) = n − t, Rank(µI − Y1) = n − k, Rank(0I − Y1) = t + k. So Y1 is diagonalizable. In
fact, let

R =


It 0 F

µ−λ 0
0 Im−t 0 0
G
λ−µ 0 Ik 0
0 0 0 In−m−k

 .
Since λ2

− λµ + µ2 = 0 and GF = −µ
2

λ N2, we have

det(R) =

∣∣∣∣∣∣∣∣∣∣∣
It 0 F

µ−λ 0
0 Im−t 0 0
G
λ−µ 0 Ik 0
0 0 0 In−m−k

∣∣∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣

It 0 F
µ−λ 0

0 Im−t 0 0
0 0 Ik −

N2
µ−λ 0

0 0 0 In−m−k

∣∣∣∣∣∣∣∣∣∣∣ = 1 , 0.

Thus matrix R is invertible and

R−1 =


It +

N1
λ−µ 0 F

λ−µ 0
0 Im−t 0 0
G
µ−λ 0 Ik +

N2
µ−λ 0

0 0 0 In−m−k

 .
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Then

Y1 = R


λIt 0 0 0
0 0m−t 0 0
0 0 µIk 0
0 0 0 0n−m−k

R−1.

Thus, we get (5). So all solutions X of the Yang-Baxter-like matrix equation (1) are diagonalizable and the
eigenvalues of X are contained in the set {λ, µ, 0}. This completes the proof.

Theorem 2.6. Suppose that A satisfies Assumption 2.1. Ifλ2
−λµ+µ2 , 0, then all solutions of the Yang-Baxter-like

matrix equation (1) have the form

X = S
[

U 0
0 V

]
W



λIr 0 0 0 0 0
0 λIυ 0 0 0 0
0 0 0m−r−υ 0 0 0
0 0 0 µIr 0 0
0 0 0 0 µIτ 0
0 0 0 0 0 0n−m−r−τ


W−1

[
U−1 0

0 V−1

]
S−1,

in which, U ∈ Cm×m, V ∈ C(n−m)×(n−m) are any invertible matrices,

W =



λ−µ
λ2−λµ+µ2 C 0 0 λ−µ

λµ C 0 0
0 Iυ 0 0 0 0
0 0 Im−r−υ 0 0 0
Ir 0 0 Ir 0 0
0 0 0 0 Iτ 0
0 0 0 0 0 In−m−r−τ


,

0 ≤ r ≤ min{m,n − m}, 0 ≤ υ ≤ m − r, 0 ≤ τ ≤ n − m − r, and C is an arbitrary r × r invertible matrix. Thus, all
solutions X of the Yang-Baxter-like matrix equation (1) are diagonalizable and the eigenvalues of X are contained in
the set {λ, µ, 0}.

Proof. According to (3) in Theorem 2.1, let

Y2 =



λ̂Ir 0 0 C 0 0
0 λIυ 0 0 0 0
0 0 0m−r−υ 0 0 0
D 0 0 µ̂Ir 0 0
0 0 0 0 µIτ 0
0 0 0 0 0 0n−m−r−τ


and

W =



λ−µ
λ2−λµ+µ2 C 0 0 λ−µ

λµ C 0 0
0 Iυ 0 0 0 0
0 0 Im−r−υ 0 0 0
Ir 0 0 Ir 0 0
0 0 0 0 Iτ 0
0 0 0 0 0 In−m−r−τ


.
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Then det(W) = det(− (λ−µ)3

λµ(λ2−λµ+µ2) C) , 0. Thus matrix W is invertible and

W−1 =



−
λµ(λ2

−λµ+µ2)
(λ−µ)3 C−1 0 0 λ2

−λµ+µ2

(λ−µ)2 Ir 0 0
0 Iυ 0 0 0 0
0 0 Im−r−υ 0 0 0

λµ(λ2
−λµ+µ2)

(λ−µ)3 C−1 0 0 −
λµ

(λ−µ)2 Ir 0 0
0 0 0 0 Iτ 0
0 0 0 0 0 In−m−r−τ


.

Compute

W−1Y2W =



λIr 0 0 0 0 0
0 λIυ 0 0 0 0
0 0 0m−r−υ 0 0 0
0 0 0 µIr 0 0
0 0 0 0 µIτ 0
0 0 0 0 0 0n−m−r−τ


,

so all solutions X of the Yang-Baxter-like matrix equation (1) are diagonalizable and the eigenvalues of X
are contained in the set {λ, µ, 0}. This completes the proof.

3. Application

Next we apply Theorem 2.5 and 2.6 to the case that A = I − uvT (vTu , 0) in [5]. Since the matrix A is
I − uvT with two given nonzero n-dimensional complex vectors u and v such that vTu , 0. Clearly A is
diagonalizable. In fact, let v1, . . . , vn−1 be linearly independent vectors such that vTv j = 0 for j = 1, . . . ,n− 1,
the matrix S = [v1, . . . , vn−1,u] is nonsingular such that A = SJS−1, where J = dia1(In−1, 1 − vTu). If vTu , 0
and vTu , 1, since A is diagonalizable with two distinct nonzero eigenvalues, applying Theorem 2.5 and
2.6 , we have the following results.

Theorem 3.1. Suppose A = I − uvT with vTu , 0 and vTu , 1. Let A = SJS−1, where J = dia1(In−1, 1 − vTu). If
vTu = 1±

√
3i

2 , then all solutions of the Yang-Baxter-like matrix equation (1) have the form

X = S
[

P 0
0 q

]  It 0 0
0 0n−1−t 0
0 0 0


[

P−1 0
0 q−1

]
S−1,

or

X = S
[

P 0
0 q

]
R


It 0 0
0 0n−1−t 0

0 0 1∓
√

3i
2

R−1

[
P−1 0
0 q−1

]
S−1,

q , 0, P ∈ C(n−1)×(n−1) is any invertible matrix,

R =


It 0 −1±

√
3i

2 f
0 In−1−t 0

1∓
√

3i
2 1 0 1

 ,
0 ≤ t ≤ n− 1, f ∈ Ct×1, 1 ∈ C1×t. The elements of N1 is zeros except that the second upper diagonal elements may be
one or zero. N2

1 = 0, f1 = −1∓
√

3i
2 N1, N1 f = 0, 1N1 = 0.
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If vTu , 1±
√

3i
2 , then all solutions of the Yang-Baxter-like matrix equation (1) have the form

X = S
[

P̃ 0
0 q̃

]  Ir 0 0
0 0n−r−1 0
0 0 l


[

P̃−1 0
0 q̃−1

]
S−1,

or

X = S
[

P̃ 0
0 q̃

]
W


1 0 0 0
0 Ik 0 0
0 0 0n−2−k 0
0 0 0 1 − vTu

W−1

[
P̃−1 0
0 q̃−1

]
S−1,

in which, q̃ , 0, P̃ ∈ C(n−1)×(n−1) are any invertible matrices, 0 ≤ r ≤ n − 1, l is either 0 or 1 − vTu, 0 ≤ k ≤ n − 2,

W =


vTu

1−vTu+(vTu)2 c 0 0 vTu
1−vTu c

0 Ik 0 0
0 0 In−2−k 0
1 0 0 1

 , ∀ c , 0.

When vTu = 1±
√

3i
2 , since N2

1 = 0, f1 = −1∓
√

3i
2 N1, N1 f = 0, 1N1 = 0, if f = 0 or 1 = 0, then N1 = 0. If

f1 , 0, then rank(N1) = 1. If vTu , 0 and vTu , 1, the formula X in Theorem 3.1 are more general than the
formula in Theorem 2.1 by J. Ding and H. Tian [5]. We obtain the explicit structure of the solutions X for
the Yang-Baxter-like matrix equation AXA = XAX when A = I − uvT with vTu , 0 and vTu , 1. Also, we
prove that the solutions X are diagonalizable and the eigenvalues are contained in the set {1, 1 − vTu, 0}.

As a direct consequence of Theorem 2.6 and 3.1, we look for all solutions of the Yang-Baxter-like matrix
equation (1) with a Householder matrix A = I− 2uuH, where u is a unit vector in Cn and uH is the conjugate
transpose of u. Householder transformations are widely used in numerical linear algebra, for example,
to annihilate the entries below the main diagonal of a matrix to perform QR decompositions and in the
first step of the QR algorithm. They are also widely used for transforming to a Hessenberg form. 1 is an
eigenvalue of A with multiplicity n−1 and−1 is the other eigenvalue of A with multiplicity 1. Let u1, . . . ,un−1
be orthonormal vectors such that uHu j = 0 (uH

j u j = 1) for j = 1, . . . ,n − 1, the matrix S = [u1, . . . ,un−1,u] is a
unitary matrix such that A = SJS−1, where J = dia1(In−1,−1). Thus we have the following results.

Theorem 3.2. Suppose A = I − 2uuH with uHu = 1. Let A = SJS−1, where J = dia1(In−1,−1). Then all solutions of
the Yang-Baxter-like matrix equation (1) have the form

X = S
[

P̃ 0
0 q̃

]  Ir 0 0
0 0n−r−1 0
0 0 l


[

P̃−1 0
0 q̃−1

]
S−1,

or

X = S
[

P̃ 0
0 q̃

]
W


1 0 0 0
0 Ik 0 0
0 0 0n−2−k 0
0 0 0 −1

W−1

[
P̃−1 0
0 q̃−1

]
S−1,

in which, q̃ , 0, P̃ ∈ C(n−1)×(n−1) are any invertible matrices, 0 ≤ r ≤ n − 1, l is either 0 or −1, 0 ≤ k ≤ n − 2,

W =


2
3 c 0 0 −2c
0 Ik 0 0
0 0 In−2−k 0
1 0 0 1

 , ∀ c , 0.
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We obtain the explicit structure of the solutions X for the Yang-Baxter-like matrix equation (1) when A
is a Householder matrix. Also, we prove that the solutions X are diagonalizable and the eigenvalues are
contained in the set {1,−1, 0}. Thus, the formula X in Theorem 3.2 are better than the formula in Corollary
3.1 and Theorem 4.1 by Q. Dong and J. Ding [6].

Let A , ±I be an n×n complex matrix satisfying A2 = I. The matrix A is diagonalizable with eigenvalues
1 and−1. Let m be the multiplicity of 1. Then A = SJS−1 for a nonsingular matrix S, where J = dia1(Im,−In−m).

Theorem 3.3. Suppose A2 = I and A , ±I. Let A = SJS−1, where J = dia1(Im,−In−m). Then all solutions of the
Yang-Baxter-like matrix equation (1) have the form

X = S
[

U 0
0 V

]
W



Ir 0 0 0 0 0
0 Iυ 0 0 0 0
0 0 0m−r−υ 0 0 0
0 0 0 −Ir 0 0
0 0 0 0 −Iτ 0
0 0 0 0 0 0n−m−r−τ


W−1

[
U−1 0

0 V−1

]
S−1,

in which, U ∈ Cm×m, V ∈ C(n−m)×(n−m) are any invertible matrices,

W =



2
3 C 0 0 −2C 0 0
0 Iυ 0 0 0 0
0 0 Im−r−υ 0 0 0
Ir 0 0 Ir 0 0
0 0 0 0 Iτ 0
0 0 0 0 0 In−m−r−τ


,

0 ≤ r ≤ min{m,n −m}, 0 ≤ υ ≤ m − r, 0 ≤ τ ≤ n −m − r, and C is an arbitrary r × r invertible matrix.

We have constructed the structure of the solutions of the Yang-Baxter-like matrix equation (1). The
solutions X are diagonalizable. The eigenvalues of X constitute a subset of {0, 1,−1}. The formula X in
Theorem 3.3 are better than the results in [8, 12].

4. Numerical examples

This section contains two examples to illustrate our theoretical results.

Example 4.1. Let u = (1, 0,−i)H, v = ( 1
2 , 1,

√
3

2 )H, and

A = I − uvH =


1
2 −1 −

√
3

2
0 1 0
−

1
2 i −i 1 −

√
3

2 i

 .
We choose v1 = (2,−1, 0)T and v2 = (

√
3, 0, 1)T so that A = SJS−1, where

S =

 2
√

3 1
−1 0 0
0 1 i

 and J =


1 0 0
0 1 0
0 0 1−

√
3

2

 .
Since vHu = 1+

√
3i

2 , by Theorem 3.1, we get the follow solutions.
Case I: t = 0

X = 0, X =


1
2 1

√
3

2
0 0 0
i
2 i −

√
3i

2

 .
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Case II: t = 1

X =


−

(2
√

3−2i)p1p2+(3−
√

3i)p2p3

4(p1p4−p2p3) −
4p1p4+(2

√
3−2i)p1p2+2

√
3p3p4+(3−

√
3i)p2p3

2(p1p4−p2p3) −
(2+2

√
3i)p1p2+(

√
3+3i)p2p3

4(p1p4−p2p3)
(
√

3−i)p1p2

4(p1p4−p2p3)
2p1p4+(

√
3−i)p1p2

2(p1p4−p2p3)
(1+
√

3i)p1p2

4(p1p4−p2p3)

−
(
√

3−i)p2p3

4(p1p4−p2p3) −
2p3p4+(

√
3−i)p2p3

2(p1p4−p2p3) −
(1+
√

3i)p2p3

4(p1p4−p2p3)

 ,
for all pi ∈ C, i = 1, 2, 3, 4, p1p4 − p2p3 , 0.

X =


−

(2
√

3−2i)p1p2+(3−
√

3i)p2p3+(
√

3−i)qp21

4(p1p4−p2p3) + 1
2 −

4p1p4+(2
√

3−2)p1p2+2
√

3p3p4+(3−
√

3i)p2p3+2qp41+(
√

3−i)qp21

4(p1p4−p2p3) + 1
(
√

3−i)p1p2

4(p1p4−p2p3)
2p1p4+(

√
3−1)p1p2

2(p1p4−p2p3)

−
(
√

3−i)p2p3+(1+
√

3i)qp21

4(p1p4−p2p3) + i
2 −

2p3p4+(
√

3−i)p2p3+2iqp41+(1+
√

3i)qp21

2(p1p4−p2p3) + i

−
(2+2

√
3i)p1p2+(

√
3+3i)p2p3+(1−

√
3i)qp21

4(p1p4−p2p3) −

√
3

2
(1+
√

3i)p1p2

4(p1p4−p2p3)

−
(1+
√

3i)p2p3+(−
√

3+i)qp21

4(p1p4−p2p3) −

√
3i

2


for all q, 1, pi ∈ C, i = 1, 2, 3, 4, p1p4 − p2p3 , 0.

X =


−

(2
√

3−2i)p1p2+(3−
√

3i)p2p3

4(p1p4−p2p3) +
(2+2

√
3i)p1 f+(

√
3+3i)p3 f

4q + 1
2 −

4p1p4+(2
√

3−2i)p1p2+2
√

3p3p4+(3−
√

3i)p2p3

2(p1p4−p2p3) +
(2+2

√
3i)p1 f+(

√
3+3i)p3 f

2q + 1
(
√

3−i)p1p2

4(p1p4−p2p3) −
(1+
√

3i)p1 f
4q

2p1p4+(
√

3−i)p1p2

2(p1p4−p2p3) −
(1+
√

3i)p1 f
2q

−
(
√

3−i)p2p3

4(p1p4−p2p3) +
(1+
√

3i)p3 f
4q + i

2 −
2p3p4+(

√
3−i)p2p3

2(p1p4−p2p3) +
(1+
√

3i)p3 f
2q + i

−
(2+2

√
3i)p1p2+(

√
3+3i)p2p3

4(p1p4−p2p3) −
(2
√

3+6i)p1 f+(3+3
√

3i)p3 f
4q −

√
3

2
(1+
√

3i)p1p2

4(p1p4−p2p3) +
(
√

3+3i)p1 f
4q

−
(1+
√

3i)p2p3

4(p1p4−p2p3) −
(
√

3+3i)p3 f
4q −

√
3i

2


for all q, f , pi ∈ C, i = 1, 2, 3, 4, q , 0, p1p4 − p2p3 , 0.

Case III: t = 2

X =


3−
√

3i
4 −

1+
√

3i
2

√
3+3i
4

0 1 0
√

3−i
4

√
3−i
2

1+
√

3i
4

 , X =


5−
√

3i
4

1−
√

3i
2

−
√

3+3i
4

0 1 0
√

3+i
4

√
3+i
2

1−
√

3i
4

 ,
and

X =


(
√

3−i)q(12p1−11p2)
4(p1p4−p2p3) +

(2+2
√

3i)(p1 f1+p2 f2)+(
√

3+3i)(p3 f1+p4 f2)
4q + 1

2
−2q(11p4−12p3)+(

√
3−i)q(12p1−11p2)

2(p1p4−p2p3) +
(2+2

√
3i)(p1 f1+p2 f2)+(

√
3+3i)(p3 f1+p4 f2)

2q − 1

−
(1+
√

3i)(p1 f1+p2 f2)
4(p1p4−p2p3) 1 − (1+

√
3i)(p1 f1+p2 f2)

2q
(1+
√

3i)q(12p1−11p2)
4(p1p4−p2p3) +

(1+
√

3i)(p3 f1+p4 f2)
4q −

i
2

−2iq(11p4−12p3)+(1+
√

3i)q(12p1−11p2)
2(p1p4−p2p3) +

(1+
√

3i)(p3 f1+p4 f2)
2q − i

(1+
√

3i)q(12p1−11p2)
4(p1p4−p2p3) −

(2
√

3+6i)(p1 f1+p2 f2)+(3+3
√

3i)(p3 f1+p4 f2)
4q +

√
3−2+(3+2

√
3)i

4
(
√

3+3i)(p1 f1+p2 f2)
4q

(−
√

3+i)q(12p1−11p2)
4(p1p4−p2p3) −

(
√

3+3i)(p3 f1+p4 f2)
4q +

1−2
√

3+(
√

3−2)i
4

 ,
for all pi, f j ∈ C, i = 1, 2, 3, 4, j = 1, 2, q , 0, f111 + f212 = 0,

[
f111 f112
f211 f212

]
= 0.
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Example 4.2. Let u = (− 1
√

2
, 0, 1

√
2
)T, and

A = I − 2uuT =

 0 0 1
0 1 0
1 0 0

 .
We choose v1 = (1, 0, 1)T and v2 = (0, 1, 0)T so that A = SJS−1, where

S =


1 0 −

1
√

2
0 1 0
1 0 1

√
2

 and D =

 1 0 0
0 1 0
0 0 −1

 .
By Theorem 3.2, we get the follow solutions.

Case I: r = 0

X = 0, X =

 −
1
2 0 1

2
0 0 0
1
2 0 −

1
2

 ,
and

X =


−

4cu1u4+3
√

2vu4
16c(u1u4−u2u3) −

√
2u1c
2v + 1

4
4cu1u2+3

√
2vu2

8c(u1u4−u2u3) −
4cu1u4+3

√
2vu4

16c(u1u4−u2u3) +
√

2u1c
2v −

1
4

−
u3u4

4(u1u4−u2u3) −

√
2u3c
2v

u2u3
2(u1u4−u2u3) −

u3u4
4(u1u4−u2u3) +

√
2u3c
2v

−4cu1u4+3
√

2vu4
16c(u1u4−u2u3) −

√
2u1c
2v −

1
4

4cu1u2−3
√

2vu2
8c(u1u4−u2u3)

−4cu1u4+3
√

2vu4
16c(u1u4−u2u3) +

√
2u1c
2v + 1

4

 ,
for all c, v,ui ∈ C, i = 1, 2, 3, 4, v , 0, c , 0, u1u4 − u2u3 , 0.

Case II: r = 1

X =


u1u4

2(u1u4−u2u3) −
u1u2

u1u4−u2u3

u1u4
2(u1u4−u2u3)

u3u4
2(u1u4−u2u3) −

u2u3
u1u4−u2u3

u3u4
2(u1u4−u2u3)

u1u4
2(u1u4−u2u3) −

u1u2
u1u4−u2u3

−
u1u4

u1u4−u2u3

 ,
for all ui ∈ C, i = 1, 2, 3, 4, u1u4 − u2u3 , 0.

X =


u1u4

2(u1u4−u2u3) +
1
2 −

u1u2
u1u4−u2u3

u1u4
2(u1u4−u2u3) −

1
2

u3u4
2(u1u4−u2u3) −

u2u3
u1u4−u2u3

u3u4
2(u1u4−u2u3)

u1u4
2(u1u4−u2u3) −

1
2 −

u1u2
u1u4−u2u3

−
u1u4

u1u4−u2u3
+ 1

2

 ,
for all ui ∈ C, i = 1, 2, 3, 4, u1u4 − u2u3 , 0.

X =


−

4cu1u4+8cu2u3+3
√

2vu4
16c(u1u4−u2u3) −

√
2u1c
2v + 1

4
12cu1u2+3

√
2vu2

8c(u1u4−u2u3) −
4cu1u4+8cu2u3+3

√
2vu4

16c(u1u4−u2u3) +
√

2u1c
2v −

1
4

−
3u3u4

4(u1u4−u2u3) −

√
2u3c
2v

u2u3+2u1u4
2(u1u4−u2u3) −

3u3u4
4(u1u4−u2u3) +

√
2u3c
2v

−
4cu1u4+8cu2u3−3

√
2vu4

16c(u1u4−u2u3) −

√
2u1c
2v −

1
4

12cu1u2−3
√

2vu2
8c(u1u4−u2u3) −

4cu1u4+8cu2u3−3
√

2vu4
16c(u1u4−u2u3) +

√
2u1c
2v + 1

4

 ,
for all c, v,ui ∈ C, i = 1, 2, 3, 4, v , 0, c , 0, u1u4 − u2u3 , 0.

Case III: r = 2

X =


1
2 0 1

2
0 1 0
1
2 0 1

2

 , X =

 0 0 1
0 1 0
1 0 0

 .
5. Conclusions

When the given matrix A is diagonalizable matrix with two distinct nonzero eigenvalues λ and µ, we
have derived all explicit expression for the solutions X of the Yang-Baxter-like matrix equation (1) under
the conditions that λ2

−λµ+µ2 = 0 and λ2
−λµ+µ2 , 0, respectively. We correct and improve the results in
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Shen et al. [14] when λ2
−λµ+µ2 = 0. We also improve the results in Shen et al. [14] when λ2

−λµ+µ2 , 0.
We prove that the solutions are diagonalizable and the spectrum contained in the set {λ, µ, 0}. We improve
the research for which A is a Householder matrix A = I − 2uuH [6], A is a class of elementary matrices
A = I − uvT (vTu , 0) [5] and A , ±I is an n× n complex matrix satisfying A2 = I [8, 12], respectively. This is
an important step to solve more general matrices. Finding all the solutions of the Yang-Baxter-like matrix
equation (1) for a general matrix A is a hard task, which is continuing research work in the future.
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