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The ¢p-mixed affine surface areas
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Abstract. In the paper, our main aim is to introduce a new @-mixed affine surface area Q,,,(K, L) of convex
bodies, which obeys classical basic properties. The new affine geometric quantity in special case yields the
classical L,-affine surface area (,(K), L,-mixed affine surface area Q,(K, L) and the newly established L,,-
mixed affine surface area €, ,(K, L), respectively. As an application, we establish a ¢-Minkowski inequality
for the ¢-mixed affine surface area, which follows the classical Minkowski inequality for mixed affine

surface area Q_ (K, L), L,-Minkowski inequality for L,-affine surface area and L,,-Minkowski inequality for
L,;-mixed affine surface area, respectively.

1. Introduction

A body in IR" is a compact set equal to the closure of its interior. A set K is called a convex body if it
is compact and convex subset with non-empty interiors. Let K" denote the class of convex bodies in R".
Let K" denote the class of convex bodies containing the origin in their interiors in R". A convex body K
was said to have a positive curvature function f(K,-) : S"! — [0, »),, if its surface area measure S(K, ), is
absolutely continuous with respect to spherical Lebesgue measure, S, and (see [1])

dS(K,")
ds - f(Kr ')/ (1‘1)

almost everywhere with respect to S. A convex body K was said to have a positive curvature function
fr(K,+) : §"1 — [0,00), and p > 1, if Sp(K, ), is absolutely continuous with respect to spherical Lebesgue
measure, S, and (see e.g. [2])
as,(K,-)
—5— = K, (1.2)

almost everywhere with respect to S, and where S,(K;, -) denotes the positive Borel measure on S"1 The
subset of K" consisting of convex bodies which have a positive continuous curvature function will be
denoted by . The subset of K consisting of convex bodies which have a positive continuous curvature
function will be denoted by F)'. The class of the origin-symmetric convex bodies with positive and
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continuous curvature function in IR” will be denoted by #_". Lutwak [2] introduced the L,-affine surface
areas: For p > 1, the L,-affine surface area of K € ', denoted by Q,(K), defined by

Q,(K) = fs Fo(K, u)" P dS (u). (1.3)

When p =1, Q,(K) becomes the classical affine surface area ()(K). Moreover, the mixed affine surface area
of convex bodies was introduced in [3]. The classical L,-Blaschke addition of convex bodies K,L € ¥,
denoted by K+L, defined by (see [4])

dS,(K +, L,") = dS,(K,) + dS,(L, ). (1.4)

In the paper, we consider convex and strictly increasing function ¢ : R — [0, c0) with ¢(0) = 0. Let ®
be the class of convex and strictly increasing functions ¢ : [0, 00) — [0, o) such that ¢(0) = 0. Our main
aim is to introduce a new concept call it ¢p-mixed affine surface area Q,,(K, L) of convex bodies K and
L, which obeys classical properties, including continuity, bounded nature and affine invariance. The ¢-
mixed affine surface area ), ,(K, L) in special case yields the classical L,-affine surface area 3,(K), L,-mixed
affine surface area (2,(K, L), and the newly established L,;-mixed affine surface area 2,,(K, L), respectively.
We establish a p-Minkowski inequality for the p-mixed affine surface areas, which follows the classical
Minkowski inequality for mixed affine surface area Q2_1(K, L), L,-Minkowski inequality for L,-mixed affine
surface area and L,;-Minkowski inequality for L,;-mixed affine surface area, respectively. As applications,
some generalized ¢-Minkowski type inequalities are also derived.

For K,L € ', The ¢p-mixed affine surface area of K and L, is denoted by €, ,(K, L), is defined by (see
Section 3 for definition)

K,
Q,p(K L) = inf{/\ >0 fs 4%)@,@, u) < 1}, (1.5)

where p > 1, dQ,(L, u) denotes affine surface area probability measure of L, and (see [3])

dQy, (L, u) = (L, u)" P dS(u).

1
QP(L) fp
Remark 1.1 With ¢ = ¢1(t) =t and p = 1, (1.5) turns out that

Q—l(Kr L)

Qp 1(K L) = o)

(1.6)
where Q_1(K, L) is the mixed affine surface area of K and L, and (see [5])
Q(K L) = fs ) FK,u) (L, u) D dS(w).
With ¢ = @,(t) = t1,and q > 1, (1.5) yields that

Qp4(L,K) )Uq ) (1.7

Qp,p(K L) = ( 0,0

where Q, ,(L, K) is the L,;-mixed affine surface area of K and L, and (see [6])

_ fP(K’ u) I n/(n+p)
Q. (K L) = fs ( f,,(L,u)) Fo(L, w) P S (). (1.8)

When g = 1, (1.8) becomes the following result.

Q_,(K L)

O D=0 0

(1.9)
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where Q_,(K, L) is the L,-mixed affine surface area of K and L, and (see [7])

Q,(KL) = fs HE WL, u) PP AS (). (1.10)

In Section 4, we establish the following @-Minkowski inequality for the ¢-mixed affine surface areas
Qy (K, L) of convex bodies K and L.
The p-Minkowski inequality If K, L € F",p > 1, ¢ € D and ¢(cy) = 1, then

CpQqp(K, L) > Q,(K)P/mQ, (L), (1.11)

If @ is strictly convex, equality holds if and only if K and L are homothetic.
Remark 1.2 When ¢ = ¢4(t) = ## and p = 1, (1.11) becomes the following Minkowski inequality
established by Lutwak [5]. If K, L € 7, then

Q_1(K, L) > QK)"D/noyry=n, (1.12)

with equality if and only if K and L are homothetic.
When ¢ = @1(t) = t1 and q > 1, (1.11) becomes the following L,,-Minkowski inequality established in
[6]. fK,L € £ and p,q > 1, then

Q,0(K, L) > Q,(K) ™5 7103, (LY, (1.13)

with equality if and only if K and L are homothetic.
When g = 1, (1.13) becomes the following well-known L,-Minkowski inequality. If K,L € F"and p > 1,
then (see [7])
Q_,(K, L) > Q(K)"PnoyLyv/n, (1.14)

with equality if and only if K and L are homothetic.

We establish also the following generalized ¢-Brunn-Minkowski inequality for three convex bodies K,
K" and L.

The ¢-Brunn-Minkowski type inequality. If K,K’,L € ', p > 1 and ¢(c,) = 1, then

ylen 1 (Q(K+,K)
= 2w QD)

(Qpp(K L) + Qp (K, L) (1.15)

o
If @ is strictly convex, equality holds if and only if K, L and K’ are homothetic.

2 Notations and preliminaries

2.1 Basics regarding convex bodies

For ¢ € GL(n) write ¢' for the transpose of ¢ and ¢~* for the inverse of the transpose of ¢. Write |¢|
for the absolute value of the determinant of ¢p. Observe that from the definition of the support function it
follows immediately that for ¢ € GL(n) the support function of the image K = {¢y : y € K} is given by (see

[8])
h(®K, x) = h(K, ¢'x), 1)

Let d denote the Hausdorff metric on K" (see [9]), i.e., for K, L € K",
d(K, L) = |h(K, u) — h(L, t)|co,

where | - | denotes the sup-norm on the space of continuous functions C(S"™).
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Let @ be the class of convex and strictly increasing functions ¢ : [0, 00) — [0, c0) such that ¢(0) = 0. We
say that the sequence {¢;}, where the ¢; € @, is such that ¢; — ¢y € ® provided

i = ol == max|pi(t) — po()] — 0,

for every compact interval I C R.
For K € K/, rx and Rg are defined by

rk = min f,(K,u), Rg = rnsax1 fp(K u). (2.2)
ues"-

uesSn-1

2.2 Lyy-mixed affine surface areas

The L,;-Blaschke addition of convex bodies K, L € " denoted by +,,, and is defined by (see [6])

fP(K +P'1 L’ u)ﬂ = fP(K/ u)q + fp(Lr u)q/ (23)

for u € S"' and p > 1. Obviously, when g = 1, L,,-Blaschke addition becomes L,-Blaschke addition. The
following result follows immediately form (2.3) with p,g > 1.

g(n +p) lim Qp(K+pge - L) = Qy(L)
n e—0* &

- fsnl (K u)#’p—qu(Ll W1dS(u).

Definition 2.1 Let K,L € #" and p,q > 1, Ly;-mixed affine surface area of K and L, is denoted by
Qy4(K, L), is defined by (see [6])

QK L) = fs K u) (L, u)1dS (). (2.4)

Obviously, when K = L, the L,,-mixed affine surface area €, ;,(K, K) becomes the L, affine surface area
y(K). A fundamental inequality for L,;-mixed affine surface area is the following L,,-Minkowski inequality:
IfK,Le ¥/ andp,q =1, then

Q, (K, L) > Q,(K) ™5 70, (LY, (2.5)

with equality if and only if K and L are homothetic.

2.3 Orlicz mixed affine surface areas

Let us introduce Orlicz mixed affine surface areas convex bodies K and L.
Definition 2.2 For K,L € /", € ® and p > 1, Orlicz mixed affine surface area of K and L, is denoted
by Qy ,(K, L), is defined by (see [6])

i fP(L/u) n%p
QK L) := fs Hlp( fp(K,u))' Fo(K, u) ™7 dS(u). (2.6)

Obviously, when K = L and p > 1, the Orlicz-mixed affine surface area )y ,(K, L) becomes the L,-affine
surface area (),(K). When (t) = t9 and g > 1, the Orlicz Ly-mixed affine surface area Q (K, L) becomes
the L,;-mixed affine surface area €, 4(K, L).

A fundamental inequality for Orlicz mixed affine surface area is the following Orlicz Minkowski in-
equality for Orlicz-mixed affine surface area. If K,L € ", p > 1 and ¢ € @, then (see [6])

(2w =
Qyp(K L) = Q,(K) - am) | 2.7)

If 1 is strictly convex, equality holds if and only if K and L are homothetic.
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When ¢(t) = 7 and g > 1, (2.7) becomes the L,;-Minkowski inequality (1.13) stated in the introduction.
3 The @-mixed affine surface areas

Definition 3.1 (L,-affine surface area measure) Let L € ', p > 1, the L,-affine surface area measure of L,
is denoted by dQ,(L, u), is defined by

dQy (L, u) = ﬁ Fo L, u) P AS(u). (3.1)

Next, we first give the definition of ¢-mixed affine surface area of convex bodies K and L.

Definition 3.2 Let K,L € ¥, p > 1 and ¢ € ®, the p-mixed affine surface area of convex bodies K and
L, is denoted by Q, ,(K, L), is defined by

Qpp(K L) = inf{A >0: f )
Sn—l

Lemma 3.3 (see [10]) If K € 7', p = 1 and A € SL(n), then

( F(K 1)
Af(L, 1)

)de(L, u) < 1}, (3.2)
fP(AKI M) = fp(KrAtu)r (33)

forall u € S"1.
Since ¢ € @, it follows that the function:

5 fp(K u)
A ) ® (A (L, 10)

is also strictly decreasing in (0, c0). This yields that
Lemma3.4 I[fK,.LeF/,p>1and ¢ € O, then

fo(K u) 3
L,] qo(—/\(]fp(L/ u))de(L, u)=1

Qpp(K L) = A,.

) dQ, (L, u)

if and only if

In the following, we prove that the p-mixed affine surface area (), ,(K, L) is continuous.

Lemma 3.5 IfK,L € ", p > 1 and ¢ € ®, then @-mixed affine surface area Q, ,(K,L) : F' X F* — [0, ) is
continuous.

Proof To see this, indeed, let K,L € #, i € IN U {0} be such that K; — Kand L; — L as i — oco. Noting

that
. X fP(Ki/ 1/[) )
Q({,/p(Ki,Li) = mf{/\ >0: L,1 (P(W)de(Lz, 1/[) < 1}
_ 1 fr(Kiy ) L\ )
= inf {/\ >0: Qp(Ll) - (p(m)ﬁ;([,l, u) 4 dS(M) <1;.
Hence
limQ,,(K,L) = inf {)\ 50 f @ ( {;(ﬁ’”:))dgp@, W) < 1}
i—o00 gn-1 p\L,

= QKL

This shows that the ¢-mixed affine surface area (), ,(K, L) is continuous. O
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Lemma3.6 IfK,.L € ¥, p > 1and ¢; € D, then
pi = pe®=Qy (K L) — Q,,(KL).
Proof Noting that ¢; — ¢ € @, implies that
K u K u
i(fp( ))—> (fp( ))eq).

ALuwy) 7 P\ )
Further o) ko
. P 7 u N 14 4 u
fs ¢ (Afp(L’ u))de(L, ) fs ¢ (Afp(L, u))de(L, 1).
Hence
1 _ : . fP(K/ u)
llgg Qp (K L) = inf {)\ >0: fsn_l (P(—)\fp(L, u))de(L, u) < 1}

Q. (K L).

This completes the proof.

Lemma 3.7 IfK,L € ", p > 1 and ¢ € ®, then @-mixed affine surface area Q, ,(K, L) is bounded.

Proof For ¢ € @, there must be a real number 0 < ¢, < oo such that ¢(c,) = 1, and let
Q, (K, L) = Ag.

Hence

[N
Il

P(cp)

fr(K u)

fs ¢ ()\0 (L, 10) ) 4O (L, u)
)

¢ (fs (/\0 7w 4y (L, u)
K

(P(L,l mde(L, M))

()
PA\XR. )

Since @ is monotone increasing on [0, o), from this we obtain the lower bound,

ry
Ao = .
C(pRK

In a similar approach, we can obtain upper bound for Q, (K, L),

This completes the proof.

1148

(3.4)

O

We easy find that the ¢-mixed affine surface area Q,, ,(K, L) is invariant under simultaneous unimodular

centro-affine transformation.
Lemma 3.8 IfK,.Le ¥/, p>1, A €SL(n)and ¢ € O, then

Q,p(AK, AL) = Q) (K, L).

(3.5)
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Proof From (3.2) and (3.3), we obtain

. ) fp(Kr u)
ll'lf{/\ >0: js\nl @(W)dQP(AL, M) < 1}

L fp(K’ u) n/(n+
Qp(L) Jgit (P(m)fp(LfAt”) [P AS(u) < 1}

1 ( £ (K, A~
Q1) Jo: P\TAR @ )
FATK 1)

= 1nf{)\ >0: j;,,_1 @(W)dQP(L, 1/[) < 1}
= Qu,(A"'KL).

Qpp(K,AL)

= inf{)\>0:

= inf{)\ >0: ) fol L, u) P AS(A™ ) < 1}

Hence
Qpp(AK AL) = Q, (K, L).

This completes the proof. m]
4 The p-Minkowski inequality for p-mixed affine surface areas

Lemma 4.1 (Jensen’s inequality) Let u be a probability measure on a space X and g : X — I C Risa
u-integrable function, where 1 is a possibly infinite interval. If 1 : I — R is a convex function, then

f ¢<g<x>>du<x>z¢( f g(x)du(x)). (1)
X X

If ¢ is strictly convex, equality holds if and only if g(x) is constant for u-almost all x € X (see [11, p.165]).
Lemma4.2 Let K,Le Fandp > 1.
(1) If K and L are homothetic, then K and K +, L are homothetic.
(2) If Kand K +, L are homothetic, then K and L are homothetic.
Proof Suppose exist a constant 6 > 0 such that L = 6K, for p > 1, we have

fo(K+, Lu) = (1 +06"7) f,(K, u).
On the other hand, the exist unique constant n > 0 such that

frmK u) = (1 +06"7) f, (K, u),

where 7 satisfies that
n=1[1+ 5*4*?)]1/(14*10)'

This shows that K +, L = K.
For p > 1, suppose exist a constant 6 > 0 such that K +, L = 6K. Then

fo(L, u)

= 5P —
£ 1) 0 1.

This shows that K and L are homothetic.
This completes the proof. m]
Lemma4.3 IfK,K',Le ¥/, p>1and ¢ € ©, then

Qpp(K+, K, L) < Q, (K, L) + Q, (K, L). 4.2)

If @ is strictly convex, equality holds if and only if K 4+, K’ and L are homothetic.
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Proof LetQ,,(K,L) = A1 and Q,,(K’,L) = A,, then

f(K, u) ) )
fsnl (p(—/\lfp(L, ” de(L, u)y=1,

fP(K// Ll) )
(T dQ L/ u)= 1,
fS”l 4 (/\1fp(L, 1) p(L 1)
Combining the convexity of the function, we obtain
M f ( fpo(K, u) )
1 = SEW N 6w
Al + /\2 gn-1 (P Alfp(L/ u) p( )
Az fP (K,/ 1/[)
R f51 i (/\2 A ) L)

f (fp(K, u) + fp(K’, u)
gn-1 (/\1 + Az)l’l(L, M)

) £ (K +, K, 1)
- fs ¢ (()\1 + AL, u))dQ”(L’ "

Qpp(K +, K, L)

and

) QY (L, u)

Hence

IA

A+ A
Qpp(K, L) + Qp (K, L).

1150

If @ is strictly convex, from the equality of Jensen’s inequality, it follows that the equality in (4.2) holds

if and only if K 4+, K" and L are homothetic
This completes the proof.

O

Theorem 4.4 (p-Minkowski inequality for ¢-mixed affine surface area) If K,.L € ", p > 1, ¢ € ® and

¢(cy) =1, then

1
Q(P/P(Kf L)> C_Qp(K)(n+p)/nQP(L)_(n+p)/n.
¢

If @ is strictly convex, equality holds if and only if K and L are homothetic.
Proof For ¢ € ®, let
Q, (K L) = A.

fo(K,u) ) )
L,l (P(—Afp(L/ " de(L, u)=1

Then

By using Jensen’s inequality and L,-Minkowski inequality (1.14), we obtain

1

p(cp)

(K u)
fsn-l ¢ (/\ A0 u))dQ”(L’ )

1
v (A%(L) fs foKw (L) (’””’dsw)
1 M)

=9

>~

( Qpy
1 Qp(K)("ﬂ’)/nQp(L)—P/H
Pl Q,(L)

v

4.3)

(4.4)
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Hence 1
Qpp(K L) > C—Qp(K)<”+P>/”Q,,(L)—<”+P>/". (4.5)
¢

If ¢ is strictly convex, from equalities of Jensen’s inequality and L,-Minkowski inequality (1.14), it yields
the equality in (4.5) holds if and only if K and L are homothetic.

This completes the proof. m]

We establish also the following ¢-Brunn-Minkowski inequality for three convex bodies K, K’ and L.

Theorem 4.5 (The @-Brunn-Minkowski inequality for p-mixed affine surface areas) If K,K’',L € ¥/,
P €®,p=1and p(cy) =1, then

7\ (n+p)/n

(M) 46)

1
Q,,(KL)+Q,,(K,L)> —
(p,p( ,L) + qo,p( ,L) 2 c QP(L)

¢

If @ is strictly convex, equality holds if and only if K, L and K’ are homothetic.
Proof This follows immediately from Theorem 4.4 and Lemmas 4.2-4.3, ]
Corollary 4.6 (The Brunn-Minkowski type inequality for mixed affine surface area) IfK,K’,L € ¥, then

Q1 (K,L)+ Q_ (K, L) > Q(K + K")+Dingypy=tm, 4.7)

with equality if and only if K, L and K’ are homothetic.
Proof This follows immediately from (1.6) and Theorem 4.5 with p = 1. O
When K’ = K, (4.7) becomes the following well-known Minkowski inequality for mixed affine surface
area, which was established by Lutwak [5]. If K, L € /", then

Q_1(K,L)" > QK" toyr) ™, 4.8)

with equality if and only if K and L are homothetic.
Corollary 4.7 (The L,;-Brunn-Minkowski type inequality for p-mixed affine surface areas) IfK,K’, L € ¥
and p,q > 1, then
Q, (L, K)Y + Qq(L, K > Q,(K +, K')("+P)/HQP(L)(H—ﬂ(ﬂ+P))/("q)_ (4.9

If @ is strictly convex, equality holds if and only if K, L and K’ are homothetic.
Proof This follows immediately from (1.7) and Theorem 4.5 m|
When K’ = K, (4.9) becomes the following L,,-Minkowski inequality, which was established in [6]. If
K.Le ¥/ andp,q > 1, then
Qpa(K L) > Q,(K)™ 10, (L), (4.10)

with equality if and only if K and L are homothetic
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