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Abstract. In this research article, we introduced certain hybrid and matrix special polynomial associated
to λ polynomials and established their properties. Further, the monomiality principle and differential
equations for these newly introduced hybrid special polynomials are obtained. Next, the determinantal
representations of the special matrix polynomials and hybrid special polynomials associated with Appell-
λ polynomials are obtained. Also, we derive several intrinsic outcomes for the special cases of these
polynomials. The proposed approach in this article is symbolic. The Bernoulli-λ numbers and Euler-λ
numbers are also obtained. The graphical representations are also given.

1. Introduction

The theory of special matrix functions can be considered as generalization of the special functions [24].
The special matrix polynomials represent the system of equations and hence, due to several applications
of system of equations in certain areas like physics, mathematics and computers the importance of special
matrix polynomials is realized. Matrix analogues of certain polynomials such as Hermite, Laguerre and
Legendre polynomials and their corresponding differential equations are established in [11, 12]. The ex-
tensions and generalizations of the Hermite matrix polynomials, in which matrix is used as a parameter
have been established and investigated for matrices in Cm×m such that their all eigenvalues are located at
the right open half-plane [11, 13].

Throughout this paper, we consider that M is a positive stable matrix in Cm×m, i.e., M satisfies the following
condition:

Re(µ) > 0; ∀ µ ∈ σ(M), (1)

where σ(M) represent the set of all the eigenvalues of M. If D0 is the complex plane, which is cut along
its negative real axis and lo1(z) represents the principal logaritheorem of z, then z

1
2 denotes exp( 1

2 lo1(z)). If
matrix M ∈ Cm×m with σ(M) ⊂ D0, then M

1
2 =
√

M denotes the image by z
1
2 of the matrix functional calculus
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[10] acting on the matrix M.

The class of Appell polynomials was introduced and characterized completely by Appell [2] in 1880. Fur-
ther, Srivastava et. al [18, 19] studied this class of polynomials from different points of view. The Appell
sets [2] can be defined by making use of the following conditions which are equivalent to each other [17,
p.398]:
An(x) (n ∈N0), is said to be an Appell polynomial (An being of degree atmost n), if either

(i) d
dx An(x) = nAn−1(x), (n ∈N0); or

(ii) there exists a generating function of the following form

∞∑
n=0

An(x)
tn

n!
= A(t) exp(xt), (2)

where A(t) can be expressed as:

A(t) =
∞∑

n=0

An
tn

n!
, A0 , 0. (3)

The function A(t) is referred as determining function of the set {An(x)}, n ∈ N. The Appell polynomials
are quasi-monomials with their respective multiplicative and derivative operator. The Appell polynomials
show different significance in the field of applied mathematics and pure mathematics as well. Recently
Srivastava investigated certain properties satisfied by Appell and q-Appell polynomials[22]. Further, most
of the researchers are working on the study of q-Appell polynomials due to its considerable popularity and
importance to serve as a bridge between mathematics and physics [20, 25].

The study of special polynomials and special functions, becomes more simple and easy by the use of sym-
bolic method in a unified manner [27, 28]. This method have been established recently to deal with Laguerre
polynomials [3] and Bessel functions [7]. In fact, Bessel polynomials continue to serve as an important tool
in numerical and approximation techniques to solve a wide variety of problems stemming from mathemat-
ical, physical, chemical, biological and engineering sciences [15]. Before going to the specific details of this
paper, first, we present main formalism and idea, which we will be present here to establish new hybrid
families of special polynomials. Dattoli et al. provided a link between trigonometric function and Laguerre
polynomials. They made strategy to introduce a new family of polynomials, which works like a bridge
between Laguerre and trigonometric functions and this family of polynomials called, λ polynomials [8].
They further generalized it to associated-λ polynomials by introducing a parameter β.

The symbolic definition of associated-λ polynomials is as follows [8]:

λ
(β)
n (x, y) = Ĉβ(y − Ĉx)nψ0, (4)

where Ĉ denotes a symbolic operator given by Dattoli et al. [5], which operates on the vacuum function ψ0
as:

Ĉrψ0 =
Γ(r + 1)
Γ(2r + 1)

(r ∈ R), (5)

such that

ĈnĈm = Ĉn+m. (6)

The generating relation and explicit form of associated-λ polynomials are [8]
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∞∑
n=0

tn

n!
λ

(β)
n (x, y) = eyt cos (

√
xt; β), (7)

λ
(β)
n (x, y) = n!

n∑
r=0

(−1)r Γ(β + r + 1)yn−rxr

r!(n − r)!Γ(2(β + r) + 1)
. (8)

The associated cosine function cos(x; β) is symbolically defined as [8]:

cos(x; β) = Ĉβ e−Ĉx2
ψ0 =

∞∑
r=0

(−1)r(β + r)!x2r

r![2(β + r)]!
(β ∈N). (9)

For β = 0, the associated cosine function reduces to ordinary cosine function and consequently, the
associated-λ polynomials reduce to λ polynomials.

The ordinary generating relation for λ polynomials is given by[8]

∞∑
n=0

tnλn(x, y) =
1

1 − yt
e0

( xt
1 − yt

)
, (10)

where e0(x) is the function defined as [8]:

e0(x) =
∞∑

r=0

(−1)r r!
(2r)!

xr. (11)

The symbolic definition for e0(x) is given by

e0(x) =
1

1 + Ĉx
ψ0. (12)

The abstraction of poweroid, given by Steffensen [26], gives the idea of the monomiality. This concept was
reformulated and established by Dattoli [6]. Further, he has explored monomiality principles for classical
special polynomials with other researchers [9].

The monomiality principle states that:
The term “quasi-monomial” refers to the polynomial sequence {Sn(x)}∞n=0, which has two operators, namely
multiplicative operator M̂ and derivative operator P̂ satisfying the following relations [6]:

M̂{Sn(x)} = Sn+1(x) (13)

and

P̂{Sn(x)} = nSn−1(x), (14)

respectively.

The operators M̂ and P̂ satisfy the following commutation relation:

[P̂, M̂] = P̂M̂ − M̂P̂ = 1̂. (15)

Thus, the operators M̂ and P̂ show a weyl group structure [6]. Using the operators M̂ and P̂, several
characteristics of polynomial Sn(x) can be obtained. If M̂ and P̂ have differential realizations, then the
polynomials Sn(x) satisfy the differential equation

M̂P̂{Sn(x)} = nSn(x). (16)
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In this research paper, we instigate the λ matrix polynomials λ(M)
n (x, y) and then we make the convolution

of Appell polynomials with λ matrix polynomials to introduce the family of Appell-λ matrix polynomials

Aλ
(M)
n (x, y) by using symbolic methods. Several characteristics of this family associated with λ matrix

polynomials are established and some special cases of this family are discussed. The determinantal form
of the Appell-λ associated families are obtained. Bernoulli-λ and Euler-λ numbers are also introduced.

2. Appell-λmatrix polynomials

In this section, first we define λ matrix polynomials then we introduce Appell-λ matrix polynomials
and study their properties. We recall that the matrix cosine functions are defined, for all X ∈ Cm×m as [1]:

cos X =
∞∑

r=0

(−1)rX2r

(2r)!
. (17)

In view of equations (9) and (17), the symbolic definition for cosine-matrix function is given by

cos X = e−ĈX2
ψ0, (18)

where X is a positive stable matrix in Cm×m.

For introducing λ matrix polynomials, we define the matrix exponent of symbolic operator Ĉ as:

ĈMψ0 = Γ(M + I)(Γ(2M + I))−1, (19)

such that

ĈMĈD = ĈM+D, (20)

where M and D are positive stable matrices in Cm×m and I ∈ Cm×m.

Now, in view of equations (12) and (9), we define associated matrix e0 functions e0(x; M) and associated
cosine matrix function by means of the following symbolic definitions:

e0(x; M) = ĈM 1

1 + Ĉx
ψ0 (21)

and

cos(x; M) = ĈM e−Ĉx2
ψ0, (22)

respectively.

Also, expanding the exponential of equation (22) and then using equations (19) and (20), the series expan-
sion for the associated cosine matrix function can be obtained.

Differentiating equation (22) partially with respect to x, we find

d
dx

cos(x; M) = −2xĈM+I e−Ĉx2
ψ0 = − sin(x; M), (23)

which for M = 0 ∈ C1×1, reduces to the sine function sin x.

Now, we are able to introduce the symbolic definition for λ matrix polynomials in the form

λ(M)
n (x, y) = ĈM(y − Ĉx)nψ0. (24)

We have the following theorem for generating functions and series definition for λ matrix polynomials:
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Theorem 2.1. The following ordinary and exponential generating functions and the series expansion hold true for
the λ matrix polynomials

∞∑
n=0

tnλ(M)
n (x, y) =

1
1 − yt

e0

( xt
(1 − yt)

; M
)
, (25)

∞∑
n=0

tn

n!
λ(M)

n (x, y) = eyt cos (
√

xt; M) (26)

and

λ(M)
n (x, y) = n!

n∑
r=0

(−1)rΓ(M + (r + 1)I)(Γ(2M + (2r + 1)I))−1xryn−r

r!(n − r)!
, n ≥ 0, (27)

respectively, where M ∈ Cm×m, M +
(
n + 1

2

)
I is invertible for every integer n ≥ 0 and the generating functions (25),

(26) are defined for complex values of x, y and t with |yt| < 1.

Proof. From equation (24), we have

∞∑
n=0

tnλ(M)
n (x, y) = ĈM 1

(1 − yt)
[
1 + Ĉxt

(1−yt)

]ψ0 (28)

and
∞∑

n=0

tn

n!
λ(M)

n (x, y) = ĈMe(y−Ĉx)tψ0. (29)

Using equation (21) and (22) in the right hand sides of equations (28) and (29) yields assertions (25) and (26),
respectively.

Expanding the right hand side of any of equations (28) or (29) and then comparing the equal powers of t, we get
assertion (27).

Now, we introduce the symbolic definitions for Appell and Appell-λ matrix polynomials. We define a
symbolic operator â which acts on vacuum ϕ0 such that An = ânϕ0. Thus from equation (3), we have

A(t) = eâtϕ0. (30)

Using above equation in equation (2) and then simplifying, we get the following symbolic definition for
the Appell polynomials as:

An(x) = (x + â)nϕ0. (31)

Now, we introduce Appell-λ matrix polynomials Aλ
(M)
n (x, y) as:

Aλ
(M)
n (x, y) := λ(M)

n (x, y + â)ϕ0. (32)

Using equation (24) in equation (32), we get symbolic definition of Appell-λmatrix polynomials Aλ
(M)
n (x, y)

as:

Aλ
(M)
n (x, y) = ĈM(y + â − Ĉx)nϕ0ψ0, (33)
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where Ĉ operates on ψ0 and â operates on ϕ0.

We establish the following theorem for the generating function and series definition for Appell-λ matrix
polynomials.

Theorem 2.2. The following generating function and series definition hold true for the Appell-λmatrix polynomials

∞∑
n=0

Aλ
(M)
n (x, y)

tn

n!
= A(t) eyt cos(

√
xt; M) (34)

and

Aλ
(M)
n (x, y) =

n∑
r=0

(
n
r

)
(−1)rAn−r(y)Γ(M + (r + 1)I)(Γ(2M + (2r + 1)I))−1xr, (35)

respectively.

Proof. From equation (33), we have

∞∑
n=0

Aλ
(M)
n (x, y)

tn

n!
= ĈMe(y+â−Ĉx)tϕ0ψ0, (36)

which on using equations (22) and (30) in the right hand side of above equation, gives assertion (34).

Expanding the right hand side of equation (33) and then using equations (19), (20) and (31), we get assertion (35).

Using equation (33), we can directly obtain the following theorem for the Appell-λ matrix polynomials:

Theorem 2.3. The differential recurrence relations satisfied by the Appell-λ matrix polynomials are given by

∂
∂x Aλ

(M)
n (x, y) = −Ĉ nAλ

(M)
n−1(x, y), (37)

∂
∂y Aλ

(M)
n (x, y) = n Aλ

(M)
n−1(x, y) (38)

and

△̂Aλ
(M)
n (x, y) = n Aλ

(M)
n−1(x, y), (39)

where,

△̂ := −4
√

x
∂
∂x
√

x
∂
∂x
. (40)

Using above theorem, we obtain the following theorem for symbolic differential equation of the Appell-λ
matrix polynomials:

Theorem 2.4. The Appell-λ matrix polynomials satisfy the following second order symbolic differential equation:(
4x(y + â)

∂2

∂x2 + (2(y + â) − x)
∂
∂x
+ (y + â − Ĉx)

∂
∂y

)
Aλ

(M)
n (x, y) = 0. (41)

Next, we obtain the following theorem for operational representation of Appell-λ matrix polynomials:
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Theorem 2.5. The operational representation satisfied by the Appell-λ matrix polynomials is given by

Aλ
(M)
n (x, y) = ĈMey△̂(â − Ĉx)nϕ0ψ0. (42)

Proof. From equations (38) and (39), we obtain the partial differential equation satisfied by the Appell-λ matrix
polynomials, given by

∂
∂y Aλ

(M)
n (x, y) = △̂Aλ

(M)
n (x, y) (43)

and from equation (33), we get the initial condition

Aλ
(M)
n (x, 0) = ĈM(â − Ĉx)nϕ0ψ0. (44)

Solving equation (43) with the initial condition (44), we get the assertion (42).

The Appell-λ matrix polynomials are frame within the context of monomiality principle formalism in the
next section. Also, we discuss some special cases of the Appell-λ matrix polynomials.

3. Monomiality property and Determinant form

This section deals with the quasi-monomiality property of the Appell-λ matrix polynomials and de-
terminantal representation for the same family of polynomials. Also, we discuss few special cases of the
established results obtained in Section 2.

We establish the following result to frame the Appell-λ matrix polynomials with respect to monomiality
principle formalism:

Theorem 3.1. The Appell-λmatrix polynomials are quasi-monomial with respect to the following multiplicative and
derivative operators:

MAλ = (y + â − Ĉx) (45)

and

PAλ = Dy, (46)

or equivalently,

PAλ = △̂, (47)

respectively.

Proof. Operating (y + â − Ĉx) on the both sides of equation (33) and then using equation (33) in right hand side of
the resultant equation, we get

(y + â − Ĉx)Aλ
(M)
n (x, y) = Aλ

(M)
n+1(x, y), (48)

which in view of equations (13) and (48) gives assertion (45).

Again, in view of equations (14), (38) and (39), we get assertions (46) and (47).

Using equations (16), (45) and (46), we prove the following theorem for differential equation of Appell-λ
matrix polynomials:
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Theorem 3.2. The differential equation satisfied by the Appell-λ matrix polynomials is given by((
y + â − Ĉx

)
∂
∂y
− n

)
Aλ

(M)
n (x, y) = 0. (49)

Further, we discuss the determinant form of Appell-λ matrix polynomials.

Theorem 3.3. The Appell-λ matrix polynomial of degree n is defined by

Aλ
(M)
0 (x, y) =

1
γ0
Γ(M + I)Γ(2M + I)−1, (50)

Aλ
(M)
n (x, y) =

(−1)n

(γ0)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Γ(M + I)Γ(2M + I)−1 λ(M)
1 (x, y) λ(M)

2 (x, y) ... λ(M)
n−1(x, y) λ(M)

n (x, y)

γ0 γ1 γ2 ... γn−1 γn

0 γ0
(2

1
)
γ1 ...

(n−1
1
)
γn−2

(n
1
)
γn−1

0 0 γ0 ...
(n−1

2
)
γn−3

(n
2
)
γn−2

...
...

...
. . .

...
...

0 0 0 ... γ0
( n

n−1
)
γ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (51)

where

γ0 =
1
β0
,

γn = −
1
β0

( n∑
k=1

(
n
k

)
βkγn−k

)
, n = 1, 2, . . .

Proof. Let Appell-λ matrix polynomial, given by generating function (34) forms a sequence of polynomials and
(βn)n∈N, (γn)n∈N be two numerical sequences given by

A(t) = β0 +
t
1!
β1 +

t2

2!
β2 + . . . +

tn

n!
βn + . . . , n = 0, 1 . . . ; β0 , 0, (52)

Â(t) = γ0 +
t
1!
γ1 +

t2

2!
γ2 + . . . +

tn

n!
γn + . . . , n = 0, 1 . . . ;γ0 , 0, (53)

satisfying

A(t)Â(t) = 1. (54)

Using the Cauchy-product rules in the above equation, we find

A(t)Â(t) =
∞∑

n=0

n∑
k=0

(
n
k

)
βkγn−k

tn

n!
, (55)

where

n∑
k=0

(
n
k

)
βkγn−k =

1 for n = 0
0 for n > 0.

(56)
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Hence,
γ0 =

1
β0
,

γn = −
1
β0

(∑n
k=1

(n
k
)
βkγn−k

)
, n = 1, 2, . . .

On multiplying both sides of equation (34) by Â(t) and then using equation (54) in the right hand side of resultant
equation, we obtain

Â(t)
∞∑

n=0
Aλ

(M)
n (x, y)

tn

n!
= eyt cos(

√
xt; M). (57)

Using equations (26), (53) in the above equation and then comparing equal powers of t from both sides of above
equation, we find the following series

n∑
k=0

(
n
k

)
Aλ

(M)
n−k(x, y)γk = λ

(M)
n (x, y), (58)

which on using equation (27), gives the system of infinite equations in the unknown Aλ
(β)
n (x, y), n = 0, 1, . . . , in the

following form:

Aλ
(M)
0 (x, y)γ0 = Γ(M + I)Γ(2M + I)−1,

Aλ
(M)
1 (x, y)γ0 + Aλ

(M)
0 (x, y)γ1 = λ

(M)
1 (x, y),

Aλ
(M)
2 (x, y)γ0 +

(2
1
)

Aλ
(M)
1 (x, y)γ1 + Aλ

(M)
0 (x, y)γ2 = λ

(M)
2 (x, y),

...

Aλ
(M)
n (x, y)γ0 +

(n
1
)

Aλ
(M)
1 (x, y)γn−1 + ... + Aλ

(M)
0 (x, y)γn = λ

(M)
n (x, y)

...

(59)

From first equation of system (59), yields assertion (50). The lower triangular form of system (59), provides a way to
find the unknown Aλ

(M)
n (x, y). Simplifying the first n + 1 equations by using Cramer’s rule and then obtaining the

determinant of the denominator and transposing the determinant in the numerator of the resultant equation, we find

Aλ
(M)
n (x, y) =

1
(γ0)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ0 γ1 γ2 . . . γn−1 γn

0 γ0
(2

1
)
γ1 . . .

(n−1
1
)
γn−2

(n
1
)
γn−1

0 0 γ0 . . .
(n−1

2
)
γ3

(n
2
)
γ2

...
...

...
. . .

...
...

0 0 0 . . . γ0
( n

n−1
)
γ1

Γ(M + I)Γ(2M + I)−1 λ(M)
1 (x, y) λ(M)

2 (x, y) . . . λ(M)
n−1(x, y) λ(M)

n (x, y)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, n = 1, 2, 3, . . . ,

(60)

which after circular row exchanging n times, i.e. gives assertion (51).



U. Zainab, N. Raza / Filomat 38:4 (2024), 1291–1304 1300

Next, we give the following special cases of the Appell-λ matrix polynomials:

I. For the appropriate choices of function A(t) the Appell-λmatrix polynomials reduce to the corresponding
member of the family of Appell-λ matrix polynomials.
II. Since, in view of equations (4) and (24), for M = β ∈ C1×1, the λ matrix polynomials λ(M)

n (x, y) transform
to the associated-λ polynomials λ(β)

n (x, y). Therefore, for the same choice of M, the Appell-λ matrix poly-
nomials Aλ

(M)
n (x, y) transform to the Appell-associated-λ polynomials Aλ

(β)
n (x, y). Thus, for M = β ∈ C1×1,

equations (33), (34), (35), (43), (41), (42), (45), (46), (49), (50) and (51) reduce to respective symbolic definition,
generating function, series definition, partial differential equation, symbolic differential equation, opera-
tional representation, multiplicative operator, derivative operator, differential equation and determinantal
representation for Aλ

(β)
n (x, y).

III. Since, in view of equation (24), for M = 0 ∈ C1×1, the λ matrix polynomials λ(M)
n (x, y) transform to the

λ polynomials λn(x, y). Therefore, for the same choice of M, the Appell-λ matrix polynomials Aλ
(M)
n (x, y)

transform to the Appell-λ polynomials Aλn(x, y). Thus, for M = 0 ∈ C1×1, equations (33), (34), (35), (43),
(41), (42), (45), (46), (49), (50) and (51) reduce to the corresponding symbolic definition, generating function,
series definition, partial differential equation, symbolic differential equation, operational representation,
multiplicative operator, derivative operator, differential equation and determinantal representation for
Aλn(x, y).
IV. From equation (31) for x = y, we have Aλn(0, y) = An(y) and from equation (4), we have λn(0, y) = yn.
Therefore, for x = 0, we get the determinant form for the Appell polynomials An(y) [4, p.1533].

In continuation, the next section deals with graphical representations of certain members of the family of
Appell-λ polynomials.

4. Graphical representation

First, we draw the surface plots of the Bernoulli-associated-λ polynomials Bλ
(β)
n (x, y) and Bernoulli-λ

polynomials Bλn(x, y).

To draw the surface plots of the Bernoulli-associated-λ polynomials and Bernoulli-λ polynomials, we con-
sider first six Bernoulli polynomials Bn(x), given in the following Table:

Table 4.1. List of first six Bernoulli polynomials

n 0 1 2 3 4 5

Bn(x). 1 x − 1
2 x2

− x + 1
6 x3

−
3
2 x2 + x

2 x4
− 2x3 + x2

−
1
30 x5

−
5
2 x4 + 5

3 x3
−

x
6

Using the appropriate expressions of Bn(y) from Table 4.1, we get the following expression for the Bernoulli-
associated-λ polynomials Bλ

(β)
n (x, y) for n = 3, β = 1

2 :

Bλ
( 1

2 )
3 (x, y) =

1.772
2

y3
−

5.316
4

y2+
1.772

4
y−

5.316
8

xy2+
5.316

8
xy−

1.772
16

x+
5.316

64
x2y−

5.316
128

x2
−

1.772
768

x3 (61)

and Bernoulli-λ polynomials Bλn(x, y) for n = 3

Bλ3(x, y) = y3
−

3
2

y2 +
1
2

y −
3
2

xy2 +
3
2

xy −
3

12
x +

1
4

x2y −
1
8

x2
−

1
120

x3, (62)

which are used to obtain the surface plots of Bernoulli-associated-λ polynomials Bλ
(β)
n (x, y) and Bernoulli-λ

polynomials Bλn(x, y), respectively.
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Similarly, we obtain the following surface plots of the Euler-associated-λ polynomials Eλ
(β)
n (x, y) and Euler-λ

polynomials Eλn(x, y) by using the appropriate expressions of Euler polynomials En(x).
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In the similar way, we get the following surface plots of the truncated exponential-associated-λ polynomials

eλ
(β)
n (x, y) and truncated exponential-λ polynomials eλn(x, y).
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5. Concluding remarks

To conclude this paper, we introduce the 1-variable λmatrix polynomials λ(M)
n (x). To obtain the symbolic

image of 1-variableλmatrix polynomialsλ(M)
n (x), we interchange x and y in equation (24) and then substitute

y = 1 in the resultant equation to get

λ(M)
n (x) = ĈM(x − Ĉ)nψ0. (63)

Also, the generating function and series definition for 1-variable λ matrix polynomials can be obtained by
using equation (63) as:

∞∑
n=0

λ(M)
n (x)

tn

n!
= ext cos(

√
t; M) (64)

and

λ(M)
n (x) = n!

n∑
r=0

(−1)rΓ(M + (r + 1)I)(Γ(2M + (2r + 1)I))−1xn−r

r!(n − r)!
. (65)
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Now, we are at a position to introduce the 1-variable Appell-λ matrix polynomials Aλ
(M)
n (x) by replacing x

with the symbolic operator of Appell polynomials An(x), given by equation (31) in equation (63) as:

Aλ
(M)
n (x) = ĈM(x + â − Ĉ)nϕ0ψ0. (66)

The generating function and series definition for Aλ
(M)
n (x) can be obtained from equation (66) as:

∞∑
n=0

Aλ
(M)
n (x)

tn

n!
= A(t) ext cos(

√
t; M) (67)

and

Aλ
(M)
n (x) = n!

n∑
r=0

(−1)rΓ(M + (r + 1)I)(Γ(2M + (2r + 1)I))−1An−r(x)
r!(n − r)!

. (68)

For M = 0 equations (64) and (65), give the generating function and series definition of 1-variable λ
polynomials λn(x). Consequently, for the same choice of M equations (66), (67) and (68), give the symbolic
image, generating function and series definition for 1-variable Appell-λ polynomials Aλn(x).
We know that Taylor series expansions of the tangent and hyperbolic tangent functions give birth to the
Bernoulli numbers Bn [14] whereas Taylor series expansions of the secant and hyperbolic secant functions
is the origin of the Euler numbers En [14]. The Bernoulli and Euler numbers have occurrence in the area
of combinatorics and have relations with number theory. These numbers can be viewed as special values
of the Bernoulli and Euler polynomials. We have following relations for the Bernoulli numbers Bn and the
Euler numbers En of order n:

Bn := Bn(0), En := 2nEn

(1
2

)
, (n ∈N0). (69)

Here, we introduce the numbers related to Bernoulli-λ and Euler-λ polynomials by using the Bernoulli and
Euler numbers. We define the Bernoulli-λ number Bλn and Euler-λ number Eλn as:

Bλn = Bλn(0) (70)

and

Eλn := Eλn

(1
2

)
. (71)

Since, for A(t) = t
et−1 , An(x) := Bn(x) and for A(t) = 2

et+1 , An(x) := En(x), therefore in view of equations (70)
and (71), for M = 0 appropriate choices of A(t) and x equation (67) gives the respective generating functions
of Bernoulli-λ numbers and Euler-λ numbers.

∞∑
n=0

Bλn
tn

n!
=

t
et − 1

cos(
√

t) (72)

and
∞∑

n=0
Eλn

tn

n!
=

2
et + 1

e
t
2 cos(

√
t). (73)

Here, we list first six members of Bernoulli-λ numbers and Euler-λ numbers.

Table 5.1. First six numbers Bλn and Eλn
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n 0 1 2 3 4 5

Bλn 1 −1 3
4 −

23
60

113
1680

1027
15120

Eλn 1 −
1
2 −

1
6

11
30

79
420 −

5749
7560

During the last two three decades, much research work has been done for orthogonal polynomials. By
orthogonality property, we can explore other characteristics of these polynomials. The theory of orthogonal
polynomials is wide and certainly provides an inexhaustible field of research. A large number of polyno-
mials are recognized as belonging to orthogonal polynomials family (see [16, 21, 23]) may be worthy of
consideration by the targeted readers.
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