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Some bounds on the Aα-energy of graphs
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Abstract. Let G be a graph with order n and size m. For any real number α ∈ [0, 1], Nikiforov defined the
matrix Aα(G) = αD(G) + (1 − α)A(G), where A(G) is the adjacency matrix and D(G) is the diagonal matrix
of the vertex degrees. Let ρi (i = 1, 2, . . . ,n) denote the eigenvalues of Aα(G) and EAα (G) =

∑n
i=1 |ρi −

2αm
n |

denote the Aα-energy of G. In this paper, we get some lower bounds of EAα (G) in terms of the order, the
size and the first Zagreb index of G for α ∈ [ 1

2 , 1), and characterize the extremal graphs when attaining the
bounds if G is regular. In addition, we give some lower and upper bounds of EAα (G) under the condition
that ρ1 + ρn ≥

4αm
n .

1. Introduction

All graphs considered in this paper are simple and undirected. Let G = (V,E) be a graph with order
n and size m, where V(G) = {v1, v2, . . . , vn}. Let di denote the degree of a vertex vi in G. Let ∆(G) and
δ(G) be the maximum and the minimum degree of G, respectively. The first Zagreb index is defined as
M1 =

∑
u∈V(G) d2

G(u). The adjacency matrix A(G) = (ai j)n×n of G is a symmetric (0, 1)-matrix of order n, where
ai j = 1 if vi is adjacent to v j; and ai j = 0 otherwise. The Laplacian matrix and the signless Laplacian matrix
(also known as the Q-matrix) are L(G) = D(G) − A(G) and Q(G) = D(G) + A(G), respectively, where D(G)
is the diagonal matrix of vertex degrees. For any real number α ∈ [0, 1], Nikiforov [12] defined the matrix
Aα(G) = αD(G) + (1 − α)A(G), which is a convex combination of A(G) and D(G). The Aα-spectral radius of
G, denoted by ρ, is the maximum eigenvalue of Aα(G). The study of the Aα-spectra has received a lot of
attention of researchers in recent years (see e.g., [9, 10]); and our team considered the Aα-spectral radius of
a graph G with given parameters (see e.g., [7, 8]). However, there are few studies on the Aα-energy so far.

Gutman [5] defined the energy of a graph G as the sum of absolute values of adjacency eigenvalues
of G. In the past few decades, the study of energy of graphs has attracted the interest of many scholars.
Nikiforov [13] showed that graphs that are close to regular can be made regular with a negligible change
of the energy. Also a k-regular graph can be extended to a k-regular graph of a slightly larger order with
almost the same energy. Consequently, Gutman and Zhou [6] introduced the conception of Laplacian energy
EL(G) =

∑n
i=1 |µi −

2m
n |, and Ganie and Pirzada [3] proposed signless Laplacian energy EQ(G) =

∑n
i=1 |qi −

2m
n |,

2020 Mathematics Subject Classification. Primary 05C05; Secondary 05C35.
Keywords. Aα-matrix; Bounds; Aα-energy; First Zagreb index; Regular graphs.
Received: 25 April 2022; Accepted: 16 August 2023
Communicated by Dragana Cvetković Ilić
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where µi and qi (1 ≤ i ≤ n) are the Laplacian and the signless Laplacian eigenvalues of G, respectively.
There are lots of results about EL(G) and EQ(G) in terms of the order, the size and the first Zagreb index; see
e.g., [3, 15].

Gou and Zhou [4] defined the Aα-energy of a graph G as EAα (G) =
∑n

i=1 |ρi −
2αm

n |. Our motivation comes
from Wang and Huang [17], in which the authors gave two lower and one upper bounds of Q-energy of
graph G and characterized the extremal graphs when attaining the bounds. In this paper, we shall give
some lower and upper bounds of EAα (G) in terms of the order, the size and the first Zagreb index of a graph
G.

Let γi = |ρi −
2αm

n |, thus EAα (G) =
∑n

i=1 γi. Set γi in a non-decreasing order γ1 ≥ γ2 ≥ · · · ≥ γn ≥ 0.
We know that once each of γi > 0, i = 1, 2, . . . ,n, it has contribution to the EAα (G). So we usually assume
γn > 0, and in this circumstance, we get Theorem 1.1 and characterize the extremal graphs. However, if
γn = 0, which means that the corresponding eigenvalue equals 2αm

n , such as the complete bipartite graphs,
the bound given in Theorem 1.1 is 0, and consequently, we give a lower bound for these classes of graphs
in Theorem 1.2. Throughout the paper, we use Kn to denote the complete graph of order n, Cn the cycle of
order n and Kn1,n2 the complete bipartite graph with order n = n1 + n2.

Theorem 1.1. Let G be a graph with n vertices and m edges, M1 be the first Zagreb index. If α ∈ [ 1
2 , 1) and γn > 0,

then

EAα (G) ≥ 2

√
[2(1 − α)2m + α2M1 −

4(αm)2

n
]n ·
√
γ1γn

γ1 + γn
, (1.1)

where EAα (G) =
∑n

i=1 γi and γi = |ρi −
2αm

n |.
Especially, if G is a regular graph, the equality holds if and only if G � n

2 K2 or 1K 2m
n +1
⋃

h(K 2m
n +1, 2m

n +1\F), where
1 and h are some non-negative integers, 2m

n ≥ 2 is an integer, F is a perfect matching of K 2m
n +1, 2m

n +1.

Set γn = 0, the following Theorem 1.2 can be obtained immediately.

Theorem 1.2. Let G be a connected graph with n vertices and m edges, M1 be the first Zagreb index. If α ∈ [ 1
2 , 1)

and γn = 0, then

EAα (G) ≥
2(1 − α)2m + α2M1 −

4(αm)2

n

γ1
, (1.2)

the equality holds if and only if G � K n
2 ,

n
2
.

The rest of the paper is organized as follows. In Section 2, we present the proof of Theorem 1.1 and
Theorem 1.2. In Section 3, we give some lower and upper bounds of EAα (G) under the condition that
ρ1 + ρn ≥

4αm
n .

2. Proof of Theorem 1.1 and Theorem 1.2

Firstly, we will give some tools which are used to prove Theorem 1.1. Note that
∑n

i=1
ρi = 2αm (2.1)∑n

i=1
ρ2

i = 2(1 − α)2m + α2M1. (2.2)

Lemma 2.1. Let G be a connected r-regular graph with n vertices, m edges and α ∈ [0, 1].

(1) If G is a bipartite graph and SpecAα (G) = {r, [α(r + 1) − 1]a, [α(r − 1) + 1]b, (2α − 1)r}, then a = b = r = n
2 − 1

and G � Kr+1,r+1\F, where F is a perfect matching of the bipartite graph Kr+1,r+1.
(2) If G is a bipartite graph and SpecAα (G) = {r, [r(2α− 1)]a, [αr]b

}, then a = 1, b = n− 2, r = n− 1 and G � K n
2 ,

n
2
.
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(3) If SpecAα (G) = {r, [α(r − 1) + 1]a, [α(r + 1) − 1]b
}, then a = 0, b = r = n − 1 and G � Kr+1.

Proof. (1) By equations (2.1) and (2.2), we have{
r + a[α(r + 1) − 1] + b[α(r − 1) + 1] + r(2α − 1) = 2αm,
r2 + a[α(r + 1) − 1]2 + b[α(r − 1) + 1]2 + [r(2α − 1)]2 = 2(1 − α)2m + α2M1.

Since n = 2 + a + b and m = nr
2 , a = b = r = n

2 − 1. Then G � Kr+1,r+1\F since G is a connected r-regular
bipartite graph, where F is a perfect matching of the bipartite graph Kr+1,r+1. The proof of (2) and (3) are
similar to (1).

Lemma 2.2. [16] Let G be a connected graph with three distinct Aα-eigenvalues ρ1 > ρ2 > ρ3 and vertex
set {v1, . . . , vn}. Let di denote the degree of vertex vi. Then there exists the Perron-Frobenius eigenvector
uT = (u1, . . . ,un) such that

(1) (Aα(G) − ρ2In)(Aα(G) − ρ3In) = uuT;

(2) α2d2
i + β

2di − (ρ2 + ρ3)αdi + ρ2ρ3 = u2
i ;

(3) αβ(di + d j) + β2λi j − β(ρ2 + ρ3) = uiu j, where λi j is the number of common neighbors of two adjacent
vertices vi and v j;

(4) β2µi j = uiu j, where µi j is the number of common neighbors of two nonadjacent vertices vi and v j and
β = 1 − α.

Let mρ(G) be the multiplicity of the Aα-eigenvalues of G.

Lemma 2.3. Let G be an r-regular graph, α ∈ [ 1
2 , 1), then mr(2α−1)(G) equals the number of the components that are

bipartite.

Proof. Let u be the eigenvector of the Q(G) corresponding to eigenvalue 0, it is obvious that

Aα(G) = (2α − 1)D(G) + (1 − α)Q(G).

If α ∈ [ 1
2 , 1), then

(
Aα(G)
1 − α

−
2α − 1
1 − α

D(G))u = Q(G)u = 0.

By simple calculation, we obtain that

Aα(G)u = r(2α − 1)In×nu.

Thus, r(2α− 1) ∈ SpecAα (G). Note that the multiplicity of eigenvalue 0 of Q(G) equals the number of the components
that are bipartite, therefore, mr(2α−1)(G) equals the number of the components that are bipartite.

Lemma 2.4. [16] A connected regular graph G with three distinct Aα-eigenvalues is a strongly regular
graph.

Lemma 2.5. Let G be a non-connected r-regular graph with n vertices and m edges, α ∈ [ 1
2 , 1). If

SpecAα (G) = {[r]s′ , [r(2α − 1)]s−s′ , [α(r − 1) + 1]a, [α(r + 1) − 1]b
},

where a, b, s, s′ are nonnegative integers such that n = s + a + b and s > s′ > 1, then G � 1Kr+1
⋃

h(Kr+1,r+1\F),
and a = r(s − s′), b = rs′, r = n

s − 1 ≥ 2, 1 = 2s′ − s, h = s − s′, where F is a perfect matching of the bipartite graph
Kr+1,r+1.
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Proof. Since n = s + a + b and m = nr
2 , a = r(s − s′), b = rs′ and r = n

s − 1 by equations (2.1) and (2.2). Note
that G is a non-connected r-regular graph, then G has exactly s′ connected components since mr(G) = s′. Let Gi be
the connected components of G with order ni and size mi for 1 ≤ i ≤ s′, clearly, n =

∑s′
i=1 ni and m =

∑s′
i=1 mi. If

r(2α − 1) < SpecAα (Gi), then

SpecAα (Gi) = {r, [α(r − 1) + 1]ai , [α(r + 1) − 1]bi }, (2.3)

where 0 ≤ ai ≤ a and 0 ≤ bi ≤ b. Then Gi � Kr+1, and ai = 0, bi = r = ni − 1 by (3) of Lemma 2.1. If
r(2α − 1) ∈ SpecAα (Gi) and m(r(2α−1))(Gi) = si, then the Aα-spectra of G has the following four cases.
Case 1. SpecAα (Gi) = {r, [r(2α − 1)]n−1

}. Then r = 1 and α = 1
2 by equations (2.1) and (2.2), a contradiction.

Case 2. SpecAα (Gi) = {r, [(2α − 1)r]si , [α(r − 1) + 1]ai }. Then G is a strongly regular graph by Lemma 2.4 and ui = 0
by (2) of Lemma 2.2, it contradicts with the truth that ui is Perron-Frobenius vector.
Case 3. SpecAα (Gi) = {r, [(2α− 1)r]si , [α(r+ 1)− 1]bi }. Then r = 0 or r = 2αsi−ni−si+1

2αsi−si−1 by equations (2.1) and (2.2). It’s
obvious that r = 0 is impossible. Since Gi has three distinct Aα-eigenvalues, r = 2αsi−ni−si+1

2αsi−si−1 ≥ 2 and ni ≥ 3. However,
(2αsi − ni − si + 1) − (2αsi − si − 1) = −ni + 2 < 0, thus, r ≤ 1, a contradiction.
Case 4.

SpecAα (Gi) = {r, [(2α − 1)r]si , [α(r − 1) + 1]ai , [α(r + 1) − 1]bi }. (2.4)

Clearly, si = 1. Then Gi � Kr+1,r+1\F and ai = bi = r by Lemma 2.3 and (1) of Lemma 2.1.
By the above discussion, G � 1Kr+1

⋃
h(Kr+1,r+1\F), where r ≥ 2, 1 = 2s′ − s and h = s − s′. In (2.3), b j = r for

1 ≤ j ≤ 1; In (2.4), si = 1 and ai = bi = r for 1 + 1 ≤ i ≤ 1 + h. Analyzing the Aα-spectra, we have 1 + h = s′,
sih = s − s′, aih = a and bih + b j1 = b. Therefore, h = a

r = s − s′ and 1 = s′ − h = 2s′ − s.

Lemma 2.6. [12] Let G be a simple graph with n vertices and m edges, ρ1 be the largest Aα-eigenvalue. Then
ρ1 ≥

2m
n , the equality holds if and only if G is a regular graph.

Lemma 2.7. [14] Let n ≥ 1 be an integer and a1 ≥ a2 ≥ · · · ≥ an be some non-negative real numbers. Then∑n
i=1 ai(a1 + an) ≥

∑n
i=1 a2

i + na1an, the equality holds if and only if a1 = a2 = · · · = as and as+1 = · · · = an for
s ∈ {1, . . . ,n} .

Note that a connected regular graph G with just two distinct Aα-eigenvalues is a complete graph.

Proof of Theorem 1.1.

Proof. According to equations (2.1) and (2.2), we have∑n

i=1
γ2

i =
∑n

i=1
|ρi −

2αm
n
|
2

=
∑n

i=1
|ρi|

2
−

4αm
n

∑n

i=1
ρi +
∑n

i=1
(
2αm

n
)2

= 2(1 − α)2m + α2M1 −
4(αm)2

n
. (2.5)

By Lemma 2.7, we have
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EAα (G) =
∑n

i=1
γi ≥

∑n
i=1 γi

2 + nγ1γn

γ1 + γn

=
2(1 − α)2m + α2M1 −

4(αm)2

n + nγ1γn

γ1 + γn

≥

2
√

[2(1 − α)2m + α2M1 −
4(αm)2

n ]nγ1γn

γ1 + γn

= 2

√
[2(1 − α)2m + α2M1 −

4(αm)2

n
]n ·
√
γ1γn

γ1 + γn
,

the equality holds if and only if γ1 = · · · = γs, γs+1 = · · · = γn for 1 ≤ s ≤ n and 2(1 − α)2m + α2M1 −
4(αm)2

n =
nγ1γn. Let γ1 = · · · = γs = τ ≥ γs+1 = · · · = γn = φ > 0, then

2(1 − α)2m + α2M1 −
4(αm)2

n
= nτφ > 0, (2.6)

and we have sτ2 + (n − s)φ2 = nτφ by (2.5) and (2.6), then

s(τ + φ)(τ − φ) = nφ(τ − φ). (2.7)

If G is regualar, then we have the following two situations for the above equations.
Case 1. τ = φ. Then |ρi −

2αm
n | = γi = τ, and SpecAα (G) = {[τ + 2αm

n ]a, [−τ + 2αm
n ]b
}, where a + b = n.

Combining with (a − b)τ = 0 by equation (2.1). Thus, τ = 0 or a = b (τ , 0). Since τ > 0, a = b. Then
SpecAα (G) = {[τ+ 2αm

n ]
n
2 , [−τ+ 2αm

n ]
n
2 }. Obviously, ρ1 = τ+ 2αm

n is the Aα-spectral radius of G. If n = 2, then ρ1
is simple and G = K2. If n > 2, then G is non-connected by Perron-Frobenius Theorem, let G1 be one of the
connected components of G which has Aα-spectral radius ρ1 = τ+ 2αm

n , then G has n
2 connected components

exactly, denoted by G1, . . . ,G n
2

and SpecAα (Gi) = {[τ + 2αm
n ]1, [−τ + 2αm

n ]1
}. Then Gi = K2 and G � n

2 K2.
Case 2. τ , φ. Then there exists 1 ≤ s < n such that |ρi −

2αm
n | = γi = τ for i = 1, . . . , s and |ρ j −

2αm
n | = γ j = φ

for j = s + 1, . . . ,n, then

SpecAα (G) = {[τ +
2αm

n
]s′ , [φ +

2αm
n

]a, [−τ +
2αm

n
]s−s′ , [−φ +

2αm
n

]b
}, (2.8)

where a + b = n − s. Clearly, τ + 2αm
n > φ +

2αm
n > −φ +

2αm
n > −τ +

2αm
n and ρ1 = τ + 2αm

n is the Aα-spectral
radius of G. Since ρ1 =

2m
n by Lemma 2.6, we can conclude that τ = 2(1−α)m

n .
Subcase 2.1. G is a connected graph. Then s′ = 1 and ρ1 is simple. If s ≥ 2, then ρi = −τ + 2αm

n for
i = 2, 3, . . . , s. Since τ = 2(1−α)m

n , ρ1 =
2m
n , and G is a 2m

n -regular graph by Lemma 2.6. Thus, φ = 1−α by (2.6),
and SpecAα (G) = { 2m

n , [
2(2α−1)m

n ]s−1, [ 2αm
n + (1 − α)]a, [ 2αm

n − (1 − α)]b
}, where n = s + a + b. Since G is connected

and combining with Lemma 2.3, G is a bipartite graph and s = 2, then G � K 2m
n +1, 2m

n +1\F by (1) of Lemma 2.1.

If s = 1, φ = 1−α as before, then SpecAα (G) = { 2αm
n +

2(1−α)m
n , [ 2αm

n +1−α]a, [ 2αm
n − (1−α)]b

}, where a+ b = n−1
and G � K 2m

n +1 by (3) of Lemma 2.1.
Hence, G � K 2m

n +1 or G � K 2m
n +1, 2m

n +1\F if G is connected.

Subcase 2.2. G is a non-connected graph. SpecAα (G) = {[ 2m
n ]s′ , [ 2(2α−1)m

n ]s−s′ , [ 2αm
n + (1 − α)]a, [ 2αm

n − (1 − α)]b
},

it’s same as the above discussion, thus G � 1K 2m
n +1 ∪ h(K 2m

n +1, 2m
n +1\F) by Lemma 2.5, where 2m

n ≥ 2 is an
integer, 1 = 2s′ − s and h = s − s′. Then we have completed the proof.

For two vertex disjoint graphs G and H, we denote G ∨H the join of G and H.
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Remark 2.8. Underlying the condition of proving the equality’s holding of Theorem 1.1, if G is irregular, then
τ > 2(1−α)m

n and we have the following two cases.
Case 1. G is connected. Then s′ = 1 and SpecAα (G) = {[τ + 2αm

n ]s′ , [φ + 2αm
n ]a, [−τ + 2αm

n ]s−s′ , [−φ + 2αm
n ]b
}

with the condition that τ ≥ φ > 0, then τ + 2αm
n ≥ φ + 2αm

n > −φ + 2αm
n ≥ −τ + 2αm

n . If τ = φ, then
SpecAα (G) = {[τ+ 2αm

n ]1, [τ+ 2αm
n ]a, [−τ+ 2αm

n ]s−s′ , [−τ+ 2αm
n ]b
}. Due to G is connected, then a = 0 and SpecAα (G) =

{[τ + 2αm
n ]1, [−τ + 2αm

n ]n−1
}, consequently, G � Kn, it contradicts with G is irregular. If τ , φ, then τ + 2αm

n >
φ + 2αm

n > −φ + 2αm
n > −τ + 2αm

n , and we have (2s′ − s)τ = (b − a)φ by equation (2.1). If s = 2, then a = b or
φ = 0. Since φ > 0, a = b. Then SpecAα (G) = {τ + 2αm

n , [φ +
2αm

n ]
n
2−1,−τ + 2αm

n , [−φ +
2αm

n ]
n
2−1
}, in addition,

τ+ 2αm
n >

2m
n and −τ+ 2αm

n <
2(2α−1)m

n . It is a pity that we can’t characterize the extremal graph absolutely, however,
after doing a series of calculations by MATLAB and Mathematica, we obtain some graphs satisfying the Aα-spectra
that τ + 2αm

n > φ +
2αm

n > −φ +
2αm

n > −τ +
2αm

n (ρ1 > ρ2 > ρ3 > ρ4) which are listed as follows:

Table 1:

Graph P4, α ∈ [ 1
2 , 1) K2 ∨ 2K1, α ∈ [ 10−

√
5

10 , 1)

ρ1

√

4α2−8α+5+2α+1
2 4α − 1

ρ2

√

8α2−12α+5+4α−1
2

√

16α2−32α+17+4α+1
2

ρ3
2α+1−

√

4α2−8α+5
2 2α

ρ4
4α−1−

√

8α2−12α+5
2

4α+1−
√

16α2−32α+17
2

If s > 2, then we obtain graphs as s = 2 and a = b. If s = 1, then SpecAα (G) = { 2αm
n + τ, [

2αm
n + φ]a, [ 2αm

n − φ]b
},

where a+ b = n− 1, τ > 2(1−α)m
n and 0 < φ < 2αm

n . Thus τ = (n− 1)φ by (2.7) and 2aφ = 0 by equation (2.1). Since
φ > 0, a = 0. Thus, G has two different Aα-eigenvalues and G � Kn. It contradicts with G is irregular.
Case 2. G is non-connected. SpecAα (G) = {[τ + 2αm

n ]s′ , [φ + 2αm
n ]a, [−τ + 2αm

n ]s−s′ , [−φ + 2αm
n ]b
}. We have s′ ≥ 1,

τ > 2(1−α)m
n , 0 < φ ≤ 2αm

n , τ = n−s
s φ by (2.7) and (2s′ − s)τ = (b − a)φ by equation (2.1). It is a pity that we can’t

characterize the extremal graph.

Lemma 2.9. [18] Let G be a connected graph of order n ≥ 3. Then mρ(G) = n − 2 if and only if

(1) G � K1,n−1, or

(2) G � K n
2 ,

n
2

with n ≥ 4, or

(3) G � Ks ∨ (n − s)K1 with 2 ≤ s ≤ n − 2 and α = 1
n−s , or

(4) G � K1 ∨ K n−1
2 ,

n−1
2

with n ≥ 5 and α = 4
n+1 , or

(5) G � sK1 ∨ (K1 ∪ Kn−s−1) with s ≥ 3, n = 3s − 2 and α = 3
n−1 , or

(6) G � K1 ∨ 2K n−1
2

with n ≥ 5 and α = 2
n+1 .

For convenience, the Aα-spectra of the above graphs are shown in the following table.
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Table 2: The Aα-spectra of graphs
Graphs Aα-spectra

K1,n−1 {
nα+
√

(nα)2+4(n−1)(1−α)
2 , [α]n−2,

nα−
√

(nα)2+4(n−1)(1−α)
2 }

K n
2 ,

n
2

{
n
2 , [

nα
2 ]n−2, n(2α−1)

2 }

Ks ∨ (n − s)K1, (α = 1
n−s ) {

ns+s−s2+(n−s−1)
√

s(4n−3s)
2(n−s) , [ s

n−s ]n−2,
ns+s−s2

−(n−s−1)
√

s(4n−3s)
2(n−s) }

K1 ∨ K n−1
2 ,

n−1
2
, (α = 4

n+1) ) {
n2+4n−5
2(n+1) , [2]n−2, −n2+8n+1

2(n+1) }

sK1 ∨ (K1 ∪ K2s−3), (α = 3
n−1 ) {

s2
−2s+2+(s−2)

√
(3s−1)(s−1)

s−1 , [2]n−2,
s2
−2s+2−(s−2)

√
(3s−1)(s−1)

s−1 }

K1 ∨ 2K n−1
2
, (α = 2

n+1 ) {
(n−1)2

2(n+1) ,
n2+2n−3
2(n+1) , [0]n−2

}

Proof of Theorem 1.2.

Proof. By Lemma 2.7, (2.5) and γn = 0, we have

EAα (G) ≥
2(1 − α)2m + α2M1 −

4(αm)2

n

γ1
,

the equality holds if and only if γ1 = · · · = γs and γs+1 = · · · = γn = 0 for 1 ≤ s ≤ n.
If the equality in (1.2) holds, then there exists 1 ≤ s ≤ n such that γi = |ρi −

2αm
n | = τ for i = 1, 2, . . . , s

and γ j = |ρi −
2αm

n | = 0 for j = s + 1, . . . ,n. We have SpecAα (G) = {[τ + 2αm
n ]s′ , [ 2αm

n − τ]
s−s′ , [ 2αm

n ]n−s
} and

τ + 2αm
n >

2αm
n >

2αm
n − τ for τ > 0, then ρ1 = τ + 2αm

n is the Aα-spectral radius of G . Due to G is a connected
graph, then

SpecAα (G) = {τ +
2αm

n
, [

2αm
n
− τ]s−1, [

2αm
n

]n−s
}. (2.9)

Since ρ1 ≥
2m
n by Lemma 2.6, τ ≥ 2(1−α)m

n .

If G is a connected r-regular graph, then τ = 2(1−α)m
n = (1 − α)r, and SpecAα (G) = {r, [αr]n−s, [(2α − 1)r]s−1

}

by (2.9). We have s = 2, r = n
2 by equations (2.1) and (2.2). Then SpecAα (G) = { n2 ,

(2α−1)n
2 , [αn

2 ]n−2
} and G � K n

2 ,
n
2

by Lemma 2.3 and (2) of Lemma 2.1.
If G is an irregular graph, then τ > 2(1−α)m

n by Lemma 2.6. And (2 − s)τ = 0 by equation (2.1) since
τ > 2(1−α)m

n , 0, s = 2. Then SpecAα (G) = {τ + 2αm
n ,

2αm
n − τ, [

2αm
n ]n−2

}. We are supposed to consider the
following situations by Lemma 2.9.

(1) If G = K1,n−1, we have 2mα
n =

2(n−1)α
n = α, then n = 2, it contradicts with n ≥ 3.

(2) If G = K n
2 ,

n
2
, then it contradicts with G is an irregular graph.

(3) If G = Ks ∨ (n − s)K1 and α = 1
n−s , then s > s, a contradiction.

(4) If G = K1 ∨K n−1
2 ,

n−1
2

and α = 4
n+1 , then n = 3, which means that G � C3, it contradicts with G is an irregular

graph.

(5) If G = sK1 ∨ (K1 ∪ K2s−3) and α = 3
n−1 , then s = 2, which means that G � C4, it contradicts with G is an

irregular graph.

(6) If G = K1 ∨ 2K n−1
2

and α = 2
n+1 , then n = 1, it contradicts with n ≥ 3.

To summarize, both of the graphs listed above don’t satisfy the condition. Thus, there is no extremal graph.
If s = 1, then SpecAα (G) = {τ + 2αm

n , [
2αm

n ]n−1
} by (2.9), which means G has two distinct eigenvalues exactly

and G � Kn, a contradiction.
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3. The conclusion remark

Remark 3.1. Denote ρ1 and ρn the largest Aα-eigenvalue and the minimum Aα-eigenvalue, separately. Sorting
γi = |ρ j −

2αm
n | and ρi (i, j = 1, . . . ,n) in the decreasing order, if ρ1 + ρn ≥

4αm
n , then γi = |ρi −

2αm
n | and ρi

(i, j = 1, . . . ,n) in the decreasing order. And γi = |ρi −
2αm

n |(i = 1,n) occurs if ρ1 + ρn ≥
4αm

n , there are many graphs
satisfying the condition such as Kn,n\F, Kn1,n2 (n1 + n2 ≥ 4), Kn, K1,n−1 (n ≥ 4), Cn(n is even), where F is a perfect
matching of Kn,n.

In this section, we give some lower and upper bounds of EAα (G) under the condition that ρ1 + ρn ≥
4αm

n .

Lemma 3.2. [1] Let {d1, d2, . . . , dn} be the degree sequence of G, then

d2
1 + d2

2 + · · · + d2
n ≤ m(

2m
n − 1

+ n − 2),

the equality holds if and only if G � Kn or G � K1,n−1.

Lemma 3.3. Let G be a simple graph with n vertices, m edges and α ∈ [0, 1], ρ1 is the Aα-spectral radius of G. Then

ρ1 ≤
2αm +

√
m[n3α2 + n2(2 − 4α − α2) + n(4α − 2 − 2α2m) + 4α2m]

n
,

the equality holds if and only if G � Kn.

Proof. By Cauchy-Schwarz inequality, we have

(ρ2 + · · · + ρn)2
≤ (n − 1)(ρ2

2 + · · · + ρn
2).

By the above inequalities and equations (2.1) and (2.2) and Lemma 3.2, we have{
(
∑n

i=1 ρi − ρ1)2
≤ (n − 1)(

∑n
i=1 ρ

2
i − ρ

2
1),

(2αm − ρ1)2
≤ (n − 1)[2(1 − α)2m + α2m( 2m

n−1 + n − 2) − ρ2
1].

Thus,

nρ2
1 − 4αmρ1 + 2α2m2

− 2(1 − α)2m(n − 1) − α2m(n − 1)(n − 2) ≤ 0.

That is

ρ1 ≤
2mα +

√
m[n3α2 + n2(2 − 4α − α2) + n(4α − 2 − 2α2m) + 4α2m]

n
.

Note that SpecAα (Kn) = {n−1, [αn−1]n−1
} and SpecAα (K1,n) = {

nα±
√

(nα)2+4(n−1)(1−α)
2 , [α]n−2

}. If G = Kn, it is obvious
that the equality holds. On the other hand, the equality holds if and only if ρ2 = ρ3 = · · · = ρn by the Cauchy-Schwarz
inequality. Thus, G � Kn.

Lemma 3.4. [14] Let A, x, y and B be some positive real numbers such that 0 < A ≤ x ≤ y ≤ B. Then
√

AB
A+B ≤

√
xy

x+y , the equality holds if and only if x = A and y = B.

Lemma 3.5. [11] Let G be an undirected connected graph with n ≥ 2 vertices and m edges. Then M1 ≥
4m2

n +
1
2 (∆ − δ)2, the equality holds if and only if G is isomorphic with k-regular graph, 1 ≤ k ≤ n − 1.

When generalizing γn ≥
√

c
2n , we simplify of the lower bound in Theorem 1.1 by evaluating

√
γ1γn

γ1+γn
and get

the extremal graph.
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Corollary 3.6. Let G be a connected graph with n ≥ 2 vertices and m ≥ 1 edges, α ∈ [ 1
2 , 1), if γn ≥

√
c

2n and α ∈ [ 1
2 , 1),

where c = m[n3α2 + n2(2 − 4α − α2) + n(4α − 2 − 2α2m) + 4α2m], then

EAα (G) ≥
2
√

2
3

√
[2(1 − α)2m +

1
2
α2(∆ − δ)2]n,

if G is regular, the equality holds if and only if G � K3.

Proof. We have γ1 = |ρ1 −
2αm

n | ≤
2αm+
√

m[α2n3+n2(2−4α−α2)+n(4α−2−2α2m)+4α2m]
n −

2αm
n =

√
c

n by Lemma 3.3. Thus,
√

c
2n ≤ γn ≤ γ1 ≤

√
c

n and
√
γ1γn

γ1+γn
≥

√
√

c
2n

√
c

n
√

c
2n +

√
c

n

=
√

2
3 by Lemma 3.4. By Theorem 1.1 and Lemma 3.5, we have

EAα (G) ≥ 2

√
[2(1 − α)2m + α2M1 −

4(αm)2

n
]n ·
√
γ1γn

γ1 + γn

≥
2
√

2
3

√
[2(1 − α)2m + α2M1 −

4(αm)2

n
]n

≥
2
√

2
3

√
[2(1 − α)2m +

1
2
α2(∆ − δ)2]n,

if G is regular, then the equality holds if and only if 1K 2m
n +1
⋃

h(K 2m
n +1, 2m

n +1\F) or G � n
2 K2,

√
c

n = γ1,
√

c
2n = γn and G

is a connected regular graph, where 2m
n ≥ 2 is an integer.

Since G is connected, G � K 2m
n +1, 2m

n +1\F or G � K 2m
n +1, where F is a perfect matching of G, and 2( 2m

n + 1) = n,
m = n

2 ( n
2 − 1). Thus, K 2m

n +1, 2m
n +1 = K n

2 ,
n
2
. Similarly, we have K 2m

n +1 = Kn. If G � K n
2 ,

n
2
\F, then (1 − α)( n

2 − 1) =

|ρ1 −
2αm

n | = γ1 =
√

c
n =

√
α2
8 n5+( 1

2−α)n4− 1
2 (2α2−6α+3)n3+(1−α)2n2

n , where c = m[n3α2 + n2(2 − 4α − α2) + n(4α − 2 −
2α2m) + 4α2m]. We have n = 2 or n = 2(2α−1)

α2 . If n = 2, then m = 0. Since α ∈ [ 1
2 , 1), n = 2(2α−1)

α2 < 2, a

contradiction. If G � Kn, then γ1 =
√

c
n = (n − 1)(1 − α), where c = [n(n − 1)(1 − α)]2. On the other hand, since

|(αn − 1) − αr| = |ρn −
2αm

n | = γn =
√

c
2n = (1 − α) n−1

2 , n = 3. Therefore, the equality holds if and only if G � K3.
Conversely, note that SpecAα (K3) = {2, [3α − 1]2

}, the equality holds if n = m = 3 and ρ1 + ρn > 4αm
n .

Lemma 3.7. [12] Let G be a graph with ∆(G) = ∆, A(G) = A, and Aα(G) = Aα. Then ρ(Aα) ≤ α∆+ (1−α)ρ(A),
the equality holds if and only if G has an r-regular component.

Corollary 3.8. Let G be a connected graph with n vertices and m edges, α ∈ [ 1
2 , 1), if γn = 0. Then

(1) if G is regular, then

EAα (G) ≥ (1 − α)n,

the equality holds if and only if G � K n
2 ,

n
2
.

(2) if G is irregular, then

EAα (G) >
2(1 − α)2m + α

2(∆−δ)2

2

α∆ + (1 − α)ρ(A) − 2αm
n

.

Proof. We have γ1 = ρ1 −
2αm

n ≤ α∆ + (1 − α)ρ(A) − 2αm
n by Lemma 3.7. By Theorem 1.2 and Lemma 3.5, then

EAα (G) ≥
2(1 − α)2m + α2M1 −

4(αm)2

n

γ1
≥

2(1 − α)2m + α
2(∆−δ)2

2

α∆ + (1 − α)ρ(A) − 2αm
n

.

The equality holds if and only if G � K n
2 ,

n
2

by Lemma 3.7 and G is a regular graph. Note that 2(1−α)2m+ α
2(∆−δ)2

2

α∆+(1−α)ρ(A)− 2αm
n
=

(1 − α)n if G is regular, and G � K n
2 ,

n
2
. If G is irregular, then (2) is obvious.
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Note that a regular graph that is neither complete nor empty of order n is called strongly regular with
parameters (n, r, a, c) if it is r-regular, every pair of adjacent vertices has a common neighbors and every
pair of nonadjacent vertices has c common neighbors. We define S(n, r) is a strongly regular graph whose
indices is (n, r, r(n−r)

n−1 ,
r(n−r)
n−1 ).

Theorem 3.9. Let G be a graph with n vertices and m edges, M1 be the first Zagreb index, and α ∈ [ 1
2 , 1). Then

(1) if n > 4[(1−α)2+α2]m2

2m(1−α)2+α2M1
, then

EAα (G) ≤

√
2(1 − α)2m + α2M1 −

4(αm)2

n

n

+

√
(n − 1)[2(1 − α)2m + α2M1 −

4(αm)2

n
−

2(1 − α)2m + α2M1 −
4(αm)2

n

n
],

the equality holds if and only if G � K2, G � n
2 K2 or G � nK1.

(2) if n ≤ 4[(1−α)2+α2]m2

2(1−α)2m+α2M1
, then

EAα (G) ≤
2(1 − α)m

n
+

√
(n − 1){2(1 − α)2m + α2M1 −

4(αm)2

n
− [

2(1 − α)m
n

]2},

the equality holds if and only if G � Kn, G � n
2 K2 or G � S(n, r).

Proof. By (2.5) and Cauchy-Schwatz inequality, we have

EAα (G) =
∑n

i=1
|γi|

= |γ1| +
∑n

i=2
|γi|

≤ γ1 +

√
(n − 1)

∑n

i=2
γ2

i

= γ1 +

√
(n − 1)(

∑n

i=1
γ2

i − γ
2
1)

= γ1 +

√
(n − 1)[2(1 − α)2m + α2M1 −

4(αm)2

n
− γ2

1]. (3.1)

Set f (x) = x +
√

(n − 1)[2(1 − α)2m + α2M1 −
4(αm)2

n − x2], where x ∈ [0,
√

2(1 − α)2m + α2M1 −
4(αm)2

n ], and

f ′(x) = 1 +
√

n − 1 · −x√
2(1−α)2m+α2M1−

4(αm)2
n −x2

. Suppose f ′(x) = 0, we have x =

√
2(1−α)2m+α2M1−

4(αm)2
n

n . Let

U1 = [0,

√
2(1−α)2m+α2M1−

4(αm)2
n

n ] and U2 = [

√
2(1−α)2m+α2M1−

4(αm)2
n

n ,
√

2(1 − α)2m + α2M1 −
4(αm)2

n ]. Clearly, f (x)

increases on U1 and decreases on U2. We have γ1 = ρ1 −
2αm

n ≥
2(1−α)m

n by Lemma 2.6, consequently, f (γ1) ≤ f (

√
2(1−α)2m+α2M1−

4(αm)2
n

n ), i f 2(1−α)m
n ∈ U1.

f (γ1) ≤ f ( 2(1−α)m
n ), i f 2(1−α)m

n ∈ U2.

Next, we will discuss in the following two situations.
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Case 1. 2(1−α)m
n ∈ U1. Then 2(1−α)m

n <

√
2(1−α)2m+α2M1−

4(αm)2
n

n , and so n > 4[(1−α)2+α2]m2

2m(1−α)2+α2M1
> 1, (4[(1 − α)2 + α2]m2

−

(2m(1−α)2+α2M1) = (1−α)2[(d1+d2+· · ·+dn)2
−(d1+d2+· · ·+dn)]+α2[(d1+d2+· · ·+dn)2

−(d2
1+d2

2+· · ·+d2
n)] > 0).

Thus, we have

EAα (G) ≤ f (γ1)

≤ f (

√
2(1 − α)2m + α2M1 −

4(αm)2

n

n
)

=

√
2(1 − α)2m + α2M1 −

4(αm)2

n

n

+

√
(2(1 − α)2m + α2M1)(n2 − 1) − 4(αm)2(n − 1

n )
n

, (3.2)

the equality holds if and only if γ2 = γ3 = · · · = γn and γ1 =

√
2(1−α)2m+α2M1−

4(αm)2
n

n .

If (3.2) is an equality, then γ1 =

√
2(1−α)2m+α2M1−

4(αm)2
n

n and γi = |ρi −
2αm

n | =

√
2(1−α)2m+α2M1−

4(αm)2
n −γ2

1
n−1 =√

2(1−α)2m+α2M1−
4(αm)2

n
n for i = 2, 3, . . . ,n. We have ρ1 =

√
2(1−α)2m+α2M1−

4(αm)2
n

n + 2αm
n and

{ρi(2 ≤ i ≤ n)} ⊆ {
2αm

n
±

√
2(1 − α)2m + α2M1 −

4(αm)2

n

n
} (3.3)

If G is connected, then SpecAα (G) = {

√
2(1−α)2m+α2M1−

4(αm)2
n

n + 2αm
n , [−

√
2(1−α)2m+α2M1−

4(αm)2
n

n + 2αm
n ]n−1

} by (3.3), we

have (2 − n)

√
2(1−α)2m+α2M1−

4(αm)2
n

n = 0 by equation (2.1), then n = 2 or

√
2(1−α)2m+α2M1−

4(αm)2
n

n = 0. If n = 2, then

G � K2; If

√
2(1−α)2m+α2M1−

4(αm)2
n

n = 0, then SpecAα (G) = {[ 2αm
n ]n
}, and G � nK1, it contradicts with G connected.

Thus, G � K2. If G is non-connected, then there exists 2 ≤ b < n such that

SpecAα (G) = {[

√
2(1−α)2m+α2M1−

4(αm)2
n

n + 2αm
n ]b+1, [−

√
2(1−α)2m+α2M1−

4(αm)2
n

n + 2αm
n ]n−b−1

} by (3.3). Then (2b + 2 −

n)

√
2(1−α)2m+α2M1−

4(αm)2
n

n = 0 by equation (2.1). If n = 2b + 2, then SpecAα (G) = {[

√
2(1−α)2m+α2M1−

4(αm)2
n

n +

2αm
n ]b+1, [−

√
2(1−α)2m+α2M1−

4(αm)2
n

n + 2αm
n ]b+1

}. Similarly, G � n
2 K2. If

√
2(1−α)2m+α2M1−

4(αm)2
n

n = 0, then SpecAα (G) =

{[ 2αm
n ]n
} and G � nK1. Thus, G � nK1 or G � n

2 K2.

Case 2. 2(1−α)m
n ∈ U2. Then 2(1−α)m

n ≥

√
2(1−α)2m+α2M1−

4(αm)2
n

n , and so n ≤ 4[(1−α)2+α2]m2

2(1−α)2m+α2M1
. Thus, we have

EAα (G) ≤ f (γ1)

≤ f (
2(1 − α)m

n
)

=
2(1 − α)m

n
+

√
(n − 1){2(1 − α)2m + α2M1 −

4(αm)2

n
− [

2(1 − α)m
n

]2}, (3.4)
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the equality holds if and only if γ2 = γ3 = · · · = γn and γ1 =
2(1−α)m

n which means that ρ1 =
2m
n . Note that

G is an r = 2m
n regular graph by Lemma 2.6. If (3.4) is an equality, then G is an r = 2m

n regular graph and

γi = |ρi −
2αm

n | =

√
2(1−α)2m+α2M1−

4(αm)2
n −γ2

1
n−1 = (1 − α)

√
r(n−r)
n−1 for i = 2, 3, . . . ,n. Thus we have

{ρ2, ρ3, · · · , ρn} ⊆ {(1 − α)

√
r(n − r)
n − 1

+ αr, (α − 1)

√
r(n − r)
n − 1

+ αr} and ρ1 = r. (3.5)

If G is connected, then Aα-spectra of G has the following three cases:

Subcase 2.1. SpecAα (G) = {r, [(1−α)
√

r(n−r)
n−1 +αr]n−1

}. Then
√

r(n−r)
n−1 =

−r
n−1 < 0 by equation (2.1), a contradiction.

Subcase 2.2. SpecAα (G) = {r, [(α−1)
√

r(n−r)
n−1 +αr]n−1

}. Then
√

r(n−r)
n−1 =

r
n−1 = n−r and SpecAα (G) = {r, [αn−1]n−1

},
and G � Kn.

Subcase 2.3. SpecAα (G) = {r, [(1 − α)
√

r(n−r)
n−1 + αr]b, [(α − 1)

√
r(n−r)
n−1 + αr]n−b−1

}. It’s obvious that G is strongly

regular by Lemma 2.4. Note that for a strongly r-regular graph G, SpecA0 (G) = {r, [h]a, [s]b
} if and only if

SpecAα (G) = {r, [αr + (1 − α)h]a, [αr + (1 − α)s]b
}. Thus, SpecA0 (G) = {r, [

√
r(n−r)
n−1 ]b, [(−

√
r(n−r)
n−1 ]n−b−1

}. If G is

a strongly regular graph whose indices is (n, r, a, c),
√

r(n−r)
n−1 and −

√
r(n−r)
n−1 as A-eigenvalues of G satisfying

the function x2
− (a − c)x − (r − c) = 0 and r + b

√
r(n−r)
n−1 + (n − b − 1)(−

√
r(n−r)
n−1 ) = 0, after simple calculus,

then a = c = r(r−1)
n−1 and b = (n−1)

√
r−c−r

2
√

r−c
. Consequently, G is a strongly regular graph whose indices is

(n, r, r(n−r)
n−1 ,

r(n−r)
n−1 ). Obviously, G � S(n, r). If G is non-connected, then there exists 2 ≤ b < n such that

SpecAα (G) = {[r]b+1, [(α − 1)
√

r(n−r)
n−1 + αr]n−b−1

} and
√

r(n−r)
n−1 = r = 1 by (3.5). We have n = 2b + 2 by equation

(2.1), then SpecAα (G) = {[1]
n
2 , [2α − 1]

n
2 }. Thus, G � n

2 K2. We have accomplished the proof.

Lemma 3.10. [2] Let G be a connected graph with n vertices and m edges, M1 is the first Zagreb index of G.
Then M1 ≤

4m2

n +
n
4 (∆ − δ)2, the equality holds if and only if G is isomorphic with k-regular graph.

Nextly, we will simplify the bound given in Theorem 3.9.

Corollary 3.11. Let G be a connected irregular graph with n vertices and m edges, α , 0. Then

(1) if n >
4(1−α)m

√
(1−α)2+α2(∆−δ)2−(1−α)
α2(∆−δ)2 , then

EAα (G) <

√
2(1 − α)m

n

2

+
α2

4
(∆ − δ)2 + (n − 1)

√
8m(1 − α)2 + α2(∆ − δ)2n

4n
.

(2) if n ≤
4(1−α)m

√
(1−α)2+α2(∆−δ)2−(1−α)
α2(∆−δ)2 , then

EAα (G) <
2(1 − α)m

n
+

√
(n − 1){2(1 − α)2m +

α2n
4

(∆ − δ)2 + [
2(1 − α)m

n
]2}.

Proof. By (3.1) and Lemma 3.10, we have

EAα (G) ≤ γ1 +

√
(n − 1)[2(1 − α)2m +

α2n
4

(∆ − δ)2 − γ2
1].

The inequality should be strictly if G is a connected irregular graph, then set

1(x) = x +

√
(n − 1)[2(1 − α)2m +

α2n
4

(∆ − δ)2 − x2],
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where x ∈ [0,
√

2(1 − α)2m + α2n
4 (∆ − δ)2]. It is similar to the proof of Theorem 3.9, 1(x) increases on I1 =

[0,
√

2(1−α)2m
n + α

2

4 (∆ − δ)2] and decreases on I2 = [
√

2(1−α)2m
n + α

2

4 (∆ − δ)2,
√

2(1 − α)2m + α2n
4 (∆ − δ)2]. Then

γ1 = ρ1 −
2αm

n >
2(1−α)m

n by Lemma 2.6, we have EAα (G) < 1(γ1) ≤ 1(
√

2(1−α)2m
n + α

2n
4 (∆ − δ)2), i f 2(1−α)m

n ∈ I1.

EAα (G) < 1(γ1) ≤ 1( 2(1−α)m
n ), i f 2(1−α)m

n ∈ I2.

2(1−α)m
n ∈ I1 if and only if n >

4(1−α)m[
√

(1−α)2+α2(∆−δ)2−(1−α)]
α2(∆−δ)2 and 2(1−α)m

n ∈ I2 if and only if n ≤
4(1−α)m[

√
(1−α)2+α2(∆−δ)2−(1−α)]
α2(∆−δ)2 .

If G is a regular graph, then M1 = nr2 and 2m = nr, we have the upper bound of EAα (G) of regular graph
directly.

Corollary 3.12. Let G be a connected r-regular graph with order n, α ∈ [0, 1]. Then

(1) if n > nr[(1−α)2+α2]
(1−α)2+α2r , then

EAα (G) ≤ n
√

r(1 − α)

the equality holds if and only if G � K2, G � n
2 K2 or G � nK1.

(2) if n ≤ nr[(1−α)2+α2]
(1−α)2+α2r , then

EAα (G) ≤ (1 − α)(r +
√

r(n − r)(n − 1)),

the equality holds if and only if G � Kn, G � n
2 K2 or G � S(n, r).
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