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Some bounds on the A,-energy of graphs

Lianlian Zhou?, Dan Li**, Yuanyuan Chen?, Jixiang Meng?

?College of Mathematics and System Science, Xinjiang University, Urumgqi 830046, China

Abstract. Let G be a graph with order n and size m. For any real number « € [0, 1], Nikiforov defined the
matrix A,(G) = aD(G) + (1 — a)A(G), where A(G) is the adjacency matrix and D(G) is the diagonal matrix
of the vertex degrees. Let p; (i = 1,2,...,n) denote the eigenvalues of A,(G) and EA(G) = Y1, lpi — %I
denote the A,-energy of G. In this paper, we get some lower bounds of E4*(G) in terms of the order, the
size and the first Zagreb index of G for a € [1,1), and characterize the extremal graphs when attaining the
bounds if G is regular. In addition, we give some lower and upper bounds of EA*(G) under the condition
that p; + p, > %2,

1. Introduction

All graphs considered in this paper are simple and undirected. Let G = (V,E) be a graph with order
n and size m, where V(G) = {v1,vy,...,0,4}. Let d; denote the degree of a vertex v; in G. Let A(G) and
0(G) be the maximum and the minimum degree of G, respectively. The first Zagreb index is defined as
M = Yevo) dé(u). The adjacency matrix A(G) = (aij)uxn of G is a symmetric (0, 1)-matrix of order n, where
a;j = 1if v; is adjacent to v; and a;; = 0 otherwise. The Laplacian matrix and the signless Laplacian matrix
(also known as the Q-matrix) are L(G) = D(G) — A(G) and Q(G) = D(G) + A(G), respectively, where D(G)
is the diagonal matrix of vertex degrees. For any real number « € [0, 1], Nikiforov [12] defined the matrix
A4(G) = aD(G) + (1 — a)A(G), which is a convex combination of A(G) and D(G). The A,-spectral radius of
G, denoted by p, is the maximum eigenvalue of A,(G). The study of the A,-spectra has received a lot of
attention of researchers in recent years (see e.g., [9, 10]); and our team considered the A,-spectral radius of
a graph G with given parameters (see e.g., [7, 8]). However, there are few studies on the A,-energy so far.

Gutman [5] defined the energy of a graph G as the sum of absolute values of adjacency eigenvalues
of G. In the past few decades, the study of energy of graphs has attracted the interest of many scholars.
Nikiforov [13] showed that graphs that are close to regular can be made regular with a negligible change
of the energy. Also a k-regular graph can be extended to a k-regular graph of a slightly larger order with
almost the same energy. Consequently, Gutman and Zhou [6] introduced the conception of Laplacian energy
EY(G) = L4 |ui — 22|, and Ganie and Pirzada [3] proposed signless Laplacian energy E2(G) = Y1, Ig; — 22|,
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where p; and g; (1 < i < n) are the Laplacian and the signless Laplacian eigenvalues of G, respectively.
There are lots of results about EL(G) and E9(G) in terms of the order, the size and the first Zagreb index; see
e.g., [3,15].

Gou and Zhou [4] defined the A,-energy of a graph G as E4(G) = Y., |p; — 222|. Our motivation comes
from Wang and Huang [17], in which the authors gave two lower and one upper bounds of Q-energy of
graph G and characterized the extremal graphs when attaining the bounds. In this paper, we shall give
some lower and upper bounds of E*«(G) in terms of the order, the size and the first Zagreb index of a graph
G.

Let yi = |pi — Zj“—1m|, thus EA4+(G) = Y1, 7i. Set y; in a non-decreasing order y; > 7, > -+ > y, > 0.
We know that once each of y; > 0,i =1,2,...,n, it has contribution to the E4+(G). So we usually assume
yn > 0, and in this circumstance, we get Theorem 1.1 and characterize the extremal graphs. However, if
yn = 0, which means that the corresponding eigenvalue equals 2, such as the complete bipartite graphs,
the bound given in Theorem 1.1 is 0, and consequently, we give a lower bound for these classes of graphs
in Theorem 1.2. Throughout the paper, we use K, to denote the complete graph of order n, C, the cycle of

order n and K, ,, the complete bipartite graph with order n = ny + ny.

Theorem 1.1. Let G be a graph with n vertices and m edges, My be the first Zagreb index. If a € [},1) and y, > 0,
then

4(am)? 1 VY1 n

no it

E%(G) > 2 \/ [2(1 - @)2m + a?M; — (1.1)

where E4«(G) = LIL, yiand y; = |p; — 22|,
Especially, if G is a regular graph, the equality holds if and only if G = 5K; or 9Kz U WKz 1 2m 1 \F), where
g and h are some non-negative integers, 2% > 2 is an integer, F is a perfect matching of Ko g2 5.

Set v, = 0, the following Theorem 1.2 can be obtained immediately.

Theorem 1.2. Let G be a connected graph with n vertices and m edges, My be the first Zagreb index. If o € [3,1)
and y, =0, then

2(1 — am + a2M, — Hem®
E*(G) 2 -9 y — 12)
1

the equality holds if and only if G = Ky ».

The rest of the paper is organized as follows. In Section 2, we present the proof of Theorem 1.1 and
Theorem 1.2. In Section 3, we give some lower and upper bounds of E“4«(G) under the condition that
p1+pn 2 K.

2. Proof of Theorem 1.1 and Theorem 1.2
Firstly, we will give some tools which are used to prove Theorem 1.1. Note that
2:‘;1 pi =2am 2.1)
; pi2 =2(1 - a)’m + a*M;. (2.2)

Lemma 2.1. Let G be a connected r-regular graph with n vertices, m edges and o € [0, 1].

(1) If G is a bipartite graph and Speca, (G) = {r, [a(r + 1) = 1], [a(r —= 1) + 1]°, Qe — D)1}, thena =b =71 = 5-1
and G = Kyy1,41\F, where F is a perfect matching of the bipartite graph Kyi1 r41.
(2) If G is a bipartite graph and Speca (G) = {r,[rQa—1)]*, [ar]’}, thena =1, b=n—-2,r=n—1and G = Kyz.
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(3) If Speca,(G) = {r,[a(r = 1) + 1]%, [a(r + 1) = 1]"}, thena=0,b=r=n—1and G = K.
Proof. (1) By equations (2.1) and (2.2), we have

r+ala(r+1) - 1]+ bla(r — 1) + 1] + rQa — 1) = 2am,
> +ala(r+1) =1 + bla(r — 1) + 11? + [rQa — D)]? = 2(1 — a)*>m + a’M;.

Sincen =2+a+bandm="5,a=b=r =75 -1 Then G = K,;1,41\F since G is a connected r-regular

bipartite graph, where F is a perfect matching of the bipartite graph K,,1,+1. The proof of (2) and (3) are
similar to (1). O

Lemma 2.2. [16] Let G be a connected graph with three distinct A,-eigenvalues p; > p» > p3; and vertex
set {v1,...,v,). Let d; denote the degree of vertex v;. Then there exists the Perron-Frobenius eigenvector
u' = (uy,...,u,) such that

(1) (Aa(G) = p2L)(Aa(G) — p3l,) = uui”;
(2) a?d} + B7d; — (p2 + p3)ad; + paps = u7;

(3) aB(d; +d;) + B*Aij — B(p2 + p3) = uju;, where A;; is the number of common neighbors of two adjacent
vertices v; and vj;

(4) PPuij = uju;, where j; is the number of common neighbors of two nonadjacent vertices v; and v; and
p=1-a.

Let m,(G) be the multiplicity of the A,-eigenvalues of G.

Lemma 2.3. Let G be an r-regular graph, a € [3,1), then m,a-1)(G) equals the number of the components that are
bipartite.

Proof. Let u be the eigenvector of the Q(G) corresponding to eigenvalue 0, it is obvious that
Ay(G) = 2a = 1)D(G) + (1 = a)Q(G).
Ifa€[3,1), then

Aa(G)_za—l
1-« 1-«a

(

D(G))u = Q(G)u = 0.

By simple calculation, we obtain that
Ay(Qu = rQRa — DI,y 1t.

Thus, r(2a — 1) € Speca,(G). Note that the multiplicity of eigenvalue 0 of Q(G) equals the number of the components
that are bipartite, therefore, m,(o-1)(G) equals the number of the components that are bipartite. [

Lemma 2.4. [16] A connected regular graph G with three distinct A,-eigenvalues is a strongly regular
graph.

Lemma 2.5. Let G be a non-connected r-regular graph with n vertices and m edges, a € [1,1). If
Speca,(G) = {[rT", [r@a = I, [a(r = 1) + 11, [a(r + 1) = 11},

where a, b, s, s’ are nonnegative integers such that n = s+a+bands > s’ > 1, then G = gKii1 U W(Ky11,41\F),
;z<nd a=r(s—s),b=rd,r=2-12>2,9=2s -5 h=s—¢, whereF is a perfect matching of the bipartite graph
r+1,r+1-
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Proof. Sincen =s+a+bandm =5, a =r(s —s'), b =rs" andr = 5 — 1 by equations (2.1) and (2.2). Note
that G is a non-connected r-reqular graph, then G has exactly s’ connected components since m,(G) = s’. Let G; be
the connected components of G with order n; and size m; for 1 < i < s, clearly, n = Yo nyand m = Y5, m;. If
r(2a — 1) ¢ Speca, (G;), then

Speca,(Gi) = {r, [a(r = 1) + 1], [a(r + 1) = 11"}, (23)

where 0 < a; <aand 0 < b; < b. Then G; = Kyy1, and a; = 0, b = r = n; —1 by (3) of Lemma 2.1. If
r(2a — 1) € Speca,(G;i) and mya—1))(G;) = s;, then the As-spectra of G has the following four cases.

Case 1. Speca (G;) = {r,[rQa — 1)]"'}. Thenr =1and a = % by equations (2.1) and (2.2), a contradiction.

Case 2. Speca,(G;) = {r, [2a = 1)r]¥, [a(r — 1) + 1]%)}. Then G is a strongly regular graph by Lemma 2.4 and u; = 0
by (2) of Lemma 2.2, it contradicts with the truth that u; is Perron-Frobenius vector.

Case 3. Specs, (G;) = {r,[Qa = V)r]¥, [a(r+1) = 11%}. Thenr =0orr = Zasi—m—5+1 by equations (2.1) and (2.2). It’s

2as;—s;—1

obvious that r = 0 is impossible. Since G; has three distinct A,-eigenvalues, r = % > 2and n; > 3. However,
Qas; —n;—s;+1)— Qas; —s; — 1) = —n; + 2 < 0, thus, r < 1, a contradiction.
Case 4.

Speca, (G)) = {r,[2a — 1)r¥, [a(r — 1) + 117, [a(r + 1) — 1]%}. (2.4)

Clearly, s; = 1. Then G; = Kyy1,41\F and a; = b; = r by Lemma 2.3 and (1) of Lemma 2.1.

By the above discussion, G = gK41 | W(Kyy1,41\F), wherer 22, g = 25" —sand h = s —s". In (2.3), b; = r for
1<j<gInQ24),si=1landa; =b;=rforg+1<1i<g+h Analyzing the As-spectra, we have g +h = s,
sih =s—s',a;h = aand bih + bjg = b. Therefore, h =% =s—s"andg=s"-h=2s"—s. [J
Lemma 2.6. [12] Let G be a simple graph with n vertices and m edges, p; be the largest A,-eigenvalue. Then
p1 > 22, the equality holds if and only if G is a regular graph.

Lemma 2.7. [14] Let n > 1 be an integer and a; > a, > --- > a, be some non-negative real numbers. Then
Yriaiar +ay) > Y af + naia,, the equality holds if and only if 4y =a, = --- = 4, and 4441 = --- = 4, for
sell,...,n}.

Note that a connected regular graph G with just two distinct A,-eigenvalues is a complete graph.

Proof of Theorem 1.1.

Proof. According to equations (2.1) and (2.2), we have

noo, n '_Zamz

Zi:lyi _Zi=1 lpi n |
I S S w no2am.,
_Zi=1 lpil n Zi:lpl+2i=1( n )

_ Aam)?

=2(1 - a)’m + a®M, (2.5)

By Lemma 2.7, we have
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no,2
E%(G) = Z; iz Liz1 Vio + Y1)

Y1+ Vn
2(1 a)’m + a’?M; — damp nY1Vn
Y1+ 7Vn
2 \/[2(1 —a)?m + a?M,; — 4(“;’)2 1ny1vn
>
Y1+ Vn
2 V n
=2 \/[2(1 —a)’m+ oMy — Aam) In- "y ,
n Y1+ Vn
the equality holds if and only if y; = -+ = y5, Y541 = -+ =y, for 1 <s < nand 2(1 — a)’>m + a®M; — @ =
ny1yn. Letyr ==y, =129 =--- =y, = ¢ >0, then
2
21 = am + oa®M; — 4(“:1) = n1p >0, (2.6)
and we have s72 + (n — s)@* = nte by (2.5) and (2.6), then
(T + @) (T = @) = np(t — ). 27)

IfGis regualar then we have the following two situations for the above equations.

Case 1. 7 = ¢. Then |p; — 2"””I yi = 1, and Speca,(G) = {[t + 2"‘7’”]“, [T + 2‘)‘T’”]b}, where a + b = n.
Combining with (2 — b)T = 0 by equation (2.1). Thus, T =0ora =b(t # 0). Since t > 0, a = b. Then
Speca, (G) ={[t+ 2‘%]%, [T+ %] }. Obviously, p1 = 7+ =% 2‘”" is the A,-spectral radius of G. If n = 2, then p;
is simple and G = K». If n > 2, then G is non-connected by Perron-Frobenius Theorem, let G; be one of the
connected components of G which has A,-spectral radius p; = 7+ 22, then G has 4 connected components
exactly, denoted by Gy, ..., Gu and Speca, (Gi) = {[7 + Zaml [—g 4+ 22211} Then G; = K; and G =

Case 2. T # . Then there exists 1 <s < n such that |p; - 22| =y; =t fori=1,...,sand |p; — 2’J‘ml =yi=@
forj=s+1,...,n then

2am 2am 2am ;o 2am
Speca,(G) ={lt+ — =T, lp+ — =1 [-1+ — =", [-p+ —] 7 (2.8)
wherea +b =n—s. Clearly, 7+ 24 > ¢ + 28 > _¢p 4 201 5 _g 4 200 and p; = 7 + 222 j5 the A,-spectral
radius of G. Since p; = 2 by Lemma 2.6, we can conclude thatt = @
Subcase 2.1. Gis a connected graph. Then s’ = 1 and p; is simple. If s > 2, then p; = —7 + 22 for
i=2,3,...,s. Sincet = @, p1 = 2, and Gis a Z*-regular graph by Lemma 2.6. Thus, ¢ = 1—-a by (2.6),

and SpecA (G) = {& 2(2“;1)'"]5‘1, (22 +(1-a)], [2”;‘1’" (1 —a)]’}, where n = s +a + b. Since G is connected
and combining w1th Lemma 2.3, G is a bipartite graph and s = 2, then G = Kau  u ;4 \F by (1) of Lemma 2.1.
Ifs = 1, = 1 —a as before, then Spec,, (G) = {22 4 210 [2am 4 q _ge [2am (] _ )]t} wherea+b = n—1
and G = Kz, by (3) of Lemma 2.1.
Hence, G = Ko 0r G = Ko g 20 4 \F if G is connected.

Subcase 2.2. G is a non-connected graph. Speca, (G) = {[2], [w]s‘s/, [22 4 (1 - )], [22 - (1-a)]",
it's same as the above discussion, thus G = gKa ;; U h(Kzu ;21 \F) by Lemma 2.5, where I > 2is an
integer, g = 25’ —s and h = s — s’. Then we have completed the proof. [

For two vertex disjoint graphs G and H, we denote G V H the join of G and H.
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Remark 2.8. Underlying the condition of proving the equality’s holding of Theorem 1.1, if G is irregqular, then
T > w and we have the following two cases.

Case 1. G is connected. Then s’ = 1 and Speca,(G) = {[t + 22| [¢ + 2220 [ 4 2]~ [ 4 2am]b)
with the condition that © > ¢ > 0, then T + 2% > @ 4 240 5 _ 4 240 > _g 4 20 [f 7 = @, then
Speca,(G) = ([T + 242! [ 4 240 [ 4 20m]s=s' [_q 4 20010y Dye to G is connected, then a = 0 and Specy, (G) =
{[r+ 2 [~ + 201 consequently, G = Ky, it contradicts with G is irregular. If T # ¢, then T + 242 >
@+ s gy B s g4 20 g e have (25" — s)T = (b — a)@ by equation (2.1). If s = 2, then a = b or
@ = 0. Since ¢ > 0, a = b. Then Speca,(G) = {1 + 22 [ + 20|21 _q 4 2am [ 4 2001571} 4y gddition,
T 2 2 gy gy 20m o 2N g g ity that we can't characterize the extremal graph absolutely, however,
after doing a series of calculations by MATLAB and Mathematica, we obtain some graphs satisfying the A,-spectra

2 2 2 2 ; ; .
that T+ 58 > @ + S8 > —p + 208 > —1 + 20 (p1 > py > p3 > py) which are listed as follows:

Table 1:
Graph Py ac[l,1) Ky V2K;, ae[25 1)
Ny
o1 4o 80(2+5+2a+1 da—1
P2 V8a2—12a+5+4a—1 V16a2-32a+17+4a+1
2 2
2a+1- V4a?—8a+5
03 _— 20
P4 4a—1-V8a2—12a+5 4a+1-V16a2-32a+17
2 2

If s > 2, then we obtain graphs ass = 2and a = b. If s = 1, then Specy (G) = {22 + 7, [22 4 @7, [221 _ ]t}
wherea+b=n-1,7 > @ and 0 < @ < 22 Thus t = (n — 1) by (2.7) and 2a¢p = 0 by equation (2.1). Since
@ >0,a=0. Thus, G has two different A,-eigenvalues and G = K,,. It contradicts with G is irregular.

Case 2. G is non-connected. Speca,(G) = {[t + 22V, [ + 2] [~ 4 2|5~ [_gp 4 210} We hgve ' > 1,
T > @, 0<ep< 2“7’”, T = 2@ by (2.7) and (25" — s)t = (b — a)p by equation (2.1). It is a pity that we can’t
characterize the extremal graph.

Lemma 2.9. [18] Let G be a connected graph of order n > 3. Then m,(G) = n — 2 if and only if

(1) G =Ky, 0r
(2) G=2 Ky n withn >4, or
272

() G=K,V(n—-s)Kywith2<s<n-2anda=--,or

4

withn>5and a = -5

4) G=KyV Kyt s , or
( 272

(5) G=sKy V(K1 UK, s 1)withs>3,n=3s—2and a = %, or
(6) G=Ky V2K withn>5and o = 2

n+l1

For convenience, the A,-spectra of the above graphs are shown in the following table.
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Table 2: The A,-spectra of graphs

Graphs Ag-spectra
Kl,n_l {na+ \/(na)z-;—4(n—1)(1—a), [a]n72, na— \/(na)z-;l(n—l)(l—a)}
—2 na-1
Ky 4 (5, 1512, 25
ns+s—s>+(n—s—1) \/s(4n—3s) 5 ns+s—s>—(n—s—1) \/s(4n—3s)
Ks vV (n-9)Ky, (a= ﬁ) { 2(n—3) =" 2/ 2(n-s) }
Ki VKo, (@ = ) (s, [2]"2, ;ﬁ'};l}
SK1 v (K1 UKzs_g,), (CY _ n3T1) { §%—25+2+(s— 2)\/(35 1)(s-1) 2]" 2 52 —25+2—(5-2) \/(35—1)(5—1)}
_ 2 (n=1y 203 -2
K v ZK%, (0( = m) {2(n+1)’ nz&fl) ’ [O]n }
Proof of Theorem 1.2.
Proof. By Lemma 2.7, (2.5) and y,, = 0, we have
21 — )2 + a2M, — Hem?
EAa (G) > ( ) 1 n ,
V1
the equality holds if and only if 4 =--- = y;and ys11 =--- =y, =0for1 <s <n.

If the equality in (1.2) holds, then there exists 1 < s < n such that y; = |p; — Z"Tml =tfori=1,2,...,s
and y; = |p; - 2"””I =0forj=s+1,...,n. Wehave Specy (G) = {[t + me]s’,[me - ’C]S‘s/,[Z“Tm]"‘s} and

T 2am o 2w 2“’” —tforT>0, then p1 =T+ 2% js the A,-spectral radius of G . Due to G is a connected

graph, then
2am 204m 2am
Speca,(G) = {t + — [ — ! [ 1L (2.9)
Since p; > 2! by Lemma 2.6, T > W

If G is a connected r-regular graph, then 7 = M = (1 — a)r, and Speca (G) = {r, [ar]"™, [(Qa — D)r]71}
by (2.9). Wehaves = 2, r = § by equations (2.1) and (2 2). Then Speca,(G) = {5, (20‘ n %2 and G = Ky «
by Lemma 2.3 and (2) of Lemma 2.1.

If G is an irregular graph, then 7 > 2(170‘)"1 by Lemma 2.6. And (2 — s)t = 0 by equation (2.1) since
T > @ # 0, s = 2. Then Speca,(G) = {T + 2‘;’", 2‘;‘1’” - T,[Z“Tm]”’z}. We are supposed to consider the
following situations by Lemma 2.9.

(1) If G = Ky 4-1, we have 2’”—“ = @ = a, then n = 2, it contradicts with n > 3.
(2) If G = Ky 1, then it contradicts with G is an irregular graph.
() If G =K,V (n—s)K; and a = .=, then s > s, a contradiction.

(4) If G =Ky VK,
graph.

gl el d and a = n+1’

then n = 3, which means that G = Cj, it contradicts with G is an irregular
(5) If G =sKy vV (K{ UKy3) and a = 71371, then s = 2, which means that G = Cy, it contradicts with G is an
irregular graph.
6) fG=K;V 2KWT_1 and o = +1, then n = 1, it contradicts with n > 3.
To summarize, both of the graphs listed above don't satisfy the condition. Thus, there is no extremal graph.

If s = 1, then Specy, (G) = {r + 22, [241]"1} by (2.9), which means G has two distinct eigenvalues exactly
and G = K,;, a contradiction. D
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3. The conclusion remark

Remark 3.1. Denote p1 and p, the largest A,-eigenvalue and the minimum A,-eigenvalue, separately. Sorting
vi = lpj — 22| and p; (i,j = 1,...,n) in the decreasing order, if p1 + p, > 22 then y; = |p; — 22| and p;
(i,j=1,...,n)in the decreasing order. And y; = |p; — 2‘%I(i =1,n) occurs if p1 + py = 4"‘7’", there are many graphs

satisfying the condition such as K, ,\F, Kn, u,(11 + 12 > 4), Ky, Kyi,-1 (n = 4), Cy(n is even), where F is a perfect
matching of K, ;.

In this section, we give some lower and upper bounds of EA*(G) under the condition that py + p,, > 2.

Lemma 3.2. [1] Let {d1,d>, ...,d,} be the degree sequence of G, then
2, 2 2 2m
dy+ds+---+d;, Sm(m +n-2),

the equality holds if and only if G = K, or G = Kj 1.

Lemma 3.3. Let G be a simple graph with n vertices, m edges and « € [0, 1], p1 is the A,-spectral radius of G. Then

2am + \Jm[n3a? + n2(2 — da — a2) + n(da — 2 — 2a2m) + 4a>m]

PlS n s

the equality holds if and only if G = K.
Proof. By Cauchy-Schwarz inequality, we have
(p2+ 0 4 pu)* < (1 =1)(p2 + -+ pu?).

By the above inequalities and equations (2.1) and (2.2) and Lemma 3.2, we have

Xiipi—p1)? <(n-1)(EL p7 - )
(am — p1)?> < (n—1)[2(1 — a)’m + a?m( +n—-2)—

Thus,
npt —dampy +2a*m* —2(1 — ay’m(n — 1) — a’>m(n — 1)(n — 2) < 0.

That is

2ma + \fm[n3a? + n2(2 — 4a — a?) + n(da — 2 — 2a%m) + 4a?m]

n

p1 <

na+ na n— (X
Note that Speca (K,) = {n—1,[an—1]""1} and Speca (K1 1) = V¢ +4( it ]” ~2). If G = K,,, it is obvious
that the equality holds. On the other hand, the equality holds if and only zf P2 = p3 = -+ = py by the Cauchy-Schwarz
inequality. Thus, G = K,. O

Lemma 3.4. [14] Let A, x, y and B be some positive real numbers such that 0 < A < x < y < B. Then

NAB N

48 S 33y the equality holds ifand only if x = A and y = B.

Lemma 3.5. [11] Let G be an undirected connected graph with n > 2 vertices and m edges. Then M; >

4"’ + (A - 6)%, the equality holds if and only if G is isomorphic with k-regular graph, 1 <k <n - 1.
When generalizing y,, > 2‘[ , we simplify of the lower bound in Theorem 1.1 by evaluating ;/):7 and get

the extremal graph.
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Corollary 3.6. Let G be a connected graph with n > 2 vertices and m > 1 edges, a € [3,1), if y, > ;—f and a € [1,1),
where ¢ = m[n3a® + n?(2 — 4a — @) + n(4a — 2 — 2a’m) + 4a’m), then

E%(G) > ¥ \/[2(1 —a)’m+ %a2(A - 06)%n,

if G is regqular, the equality holds if and only if G = Kj.

2am+ \fm[a?n3+n2(2—4a—a?)+n(da—2-2a2m)+4a?m)]
V ~ — am — \—fc by Lemma 3.3. Thus,

Proof. We have y1 = |p1 — 22| <

ﬂ

Ve Ve VIV o \f
3 SYn<y1 < ¢ and yﬁly > ;l2+$ by Lemma 3.4. By Theorem 1.1 and Lemma 3.5, we have

EA(G) > 2 \/ 201 — a2 + a2M, — e, NV

n Y1+ Vn

> ZT\/E \/[2(1 —a)?m + a2M; — 4(0:1)2]71

> ZT\/E \/[2(1 —a)?m+ %az(A —6)?]n,

if G is regular, then the equality holds if and only if gKon . U h(Kan 1y 2u 1 \F) or G = 5K, # =1, ;—f =y,and G
is a connected regular graph, where 22 > 2 is an intege;. L

Since G is connected, G = Koy 2u \F or G = Kan y, where F is a perfect matching of G, and 2(22 + 1) = n,
m = 5(5 = 1). Thus, Koy 20,y = Ky u. Similarly, we have Kan y = Ky. If G = Ky s \F, then (1 - a)(5 = 1) =
v \/ 2 5 4(L —a)nt—1 Qa2 -6a+3)nP+(1-a)2n?
n

= , where ¢ = m[n3a? + n*(2 — 4a — a?) + n(4a — 2 —
2(2a 1)

2amy _ ., _
lp1 — =% = y1 =
2a°m) + 4a’m]. We have n = 2 or n =
¥

. Ifn =2 thenm = 0. Since a € [1,1),n = % <24

(n 1)(1 — a), where ¢ = [n(n — 1)(1 — a)]?>. On the other hand, since

l(an —1) — ar| = |p, — 22| =y, = 2 . = (1 —a)"5=, n = 3. Therefore, the equality holds if and only if G = K.
Conwversely, note that Speca,(Ks) = {2, [3a — 1]2} the equality holds if n = m = 3and py + p, > 4.

n

contradiction. If G = K,,, then y; =

Lemma 3.7. [12] Let G be a graph with A(G) = A, A(G) = A, and A,(G) = A,. Then p(A,) < aA+(1—a)p(A),
the equality holds if and only if G has an r-regular component.

Corollary 3.8. Let G be a connected graph with n vertices and m edges, a € [1,1), if y, = 0. Then
(1) if G is regular, then
EA(G) > (1 - a)n,
the equality holds if and only if G = K
(2) if G is irregular, then

non,
272

2(1 — a)?m + CE°

A
SRS yyy Ty

Proof. We have y1 = py — 222 < aA + (1 — a)p(A) — 222 by Lemma 3.7. By Theorem 1.2 and Lemma 3.5, then

21 — a)Pm + a?My — 2 () gy 4 SO
>

V1 al+(1-a)p(A) — 2

E*(G) >

2(A—5)2
2(1-a)2m+ G

The equality holds if and only if G = Kz » by Lemma 3.7 and G is a regular graph. Note that W =
(1 —a)n if G is regular, and G = Ky ». If G is irregular, then (2) is obvious. [ '
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Note that a regular graph that is neither complete nor empty of order 7 is called strongly regular with
parameters (n,7,4,c) if it is r-regular, every pair of adjacent vertices has 4 common neighbors and every

pair of nonadjacent vertices has ¢ common neighbors. We define S(n,r) is a strongly regular graph whose
r(n r) r(n— r))

— /7 n— 1

indices is (1,1,

Theorem 3.9. Let G be a graph with n vertices and m edges, My be the first Zagreb index, and a € [1,1). Then

[(1-a)?+a?
D lf]’l > 2m(1 aa)z-:tle\m/l , then

4(am)?
(G < \/2(1 - a)?m + a?My — =5
n

4(0(;71)2 2(1 - 0()2111 + a2My — @

n n

+ \/(n - D21 — a)®m + a2M; — 1,

the equality holds if and only if G = K, G = 5K or G = nKj.

4[(1-a)?+a?]m
(2) if n < JEGh then

2(1 - m+\/(n—l){?.(l—a)2m+a2M1—4(am)2_[2(1_a)m

n n

E%(G) < 1},

the equality holds if and only if G = K,,, G = 5K, or G = S(n, 7).

Proof. By (2.5) and Cauchy-Schwatz inequality, we have

Acy=Y
EMG) =) Iy
=bal+ ) Wi

"o
Syt =1 Vi

=y1+ \/ (-1 72-7?)

=y + \/(n - D21 — a)®m + a2M; —

YamP 2, (3.1)

Set f(x) = x + /(1 - DI2(L - aPm + a2M; — 4% _ 2], where x € [0, y/2(1 - aPm +a2M; — 4] and

uzm)z

ffx) =1+ Vn-1- — . Suppose f'(x) = 0, we have x = \/ (a5 -y oy

\/2(1 —a)2m+a2M,; - 4<m")2 —x2 "

4(am —
u, = [0’ \/2(1 a)2m+a2M1 o ] and U, = [\/2(1 a)2m+a2M1 \/2(1 0()2171 +(X2M 4(am) ] Clearly, f( )

2am 5 2(1-a)m
n n

increases on U and decreases on U,. We have y; = p1 — by Lemma 2.6, consequently,

2
2(1-a)2m+a2M; — 4(‘”")

fOon) < f(\/ : ), if 2 e,
fon) < FESE, if 2 g,

Next, we will discuss in the following two situations.
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2402 Lﬂz
Case 1. 2(1 O ¢ 1],. Then 24 n“)m \/ QmaMi= 0 and so n > AUl g 1 — q)? + @?]m? —

n 2m(l—a)2+a2M,
(2m(1—a)2+a2M1) = (1-aP[(di+da+- - -+dy)* = (dr+do+- - +dy) | +a?[(d1+do+- - -+dy)? = (dF+d5+- - -+d3)] > 0).
Thus, we have

E%(G) < f(1)

2(1 — a)>m + a2M; — 2t
Sf(\/< a)m + a2My - 4

)

n

4(am)?
_ \/2(1 - a)zm + a2M; — I
n

. \/(2(1 — a)?m + a2My)(n? — 1) — 4lam)(n — 1)

/ 3.2
- (32)
—a)? 20, — Ham?
the equality holds if and only if y, = y3 =--- =y, and y; = \/ 20-2) mﬂf’ Mo
. . 2(1-a)? 2 M. _dam? 2(1-ap2m+a2M _dam? >
If (3.2) is an equality, then y; = \/ d-a) m+(z ——— and y; = |p; — 22| = \/ == an_ll N -

n n n

vn1)2 5
2(1-a)2m+a?M,; — 4 . 2(1-a2m+a2M,; — 2
\/( ) "% fori=2,3,...,n. We have p; = (-0 + 20m 504

lpi2<i<n)c } (3.3)

{Zam \/2(1 —a)’m + a>M; — @
+
n

n

_a)? 20 Mam)? 2 2 4(am)
If G is connected, then Specs (G) = | \/2(1 @)2m+a?M;— == 2am - \/ (1-a)ym+a M1 4+ 2am 2am i 1} by (3.3), we

n

2(1-a)?m+a2M; — 4(“"')2

n

—aPm+a2 M, — Ham?
have (2 —n) \/2(1 PmretMi- w0 by equation (2.1), then n = 2 or \/

n

=0. If n =2, then

2
2(1-a2m+a?M; — 2%

G=KyIf \/ - =0, then Speca, (G) = {[2"‘7’”]”}, and G = nKj, it contradicts with G connected.
Thus, G = K5. If G is non-connected, then there exists 2 < b < n such that

_ _ Ham? e _ d(am)?
SPECALY(G) _ [\/2(1 a)2m+ZZM1 T zaTm]hH/[_ \/2(1 r)2m+fM1 TR ZaTm]n—b—l} by (3.3)_ Then (Zb +2—

4(ﬂ"*)2 a2 mra? M, — dem?
)\/2(1 a)zmsz = 0 by equation (2.1). If n = 2b + 2, then Specs (G) = {[\/2(1 ® mﬂ; Mo
_ _ 4am)? Y oag.  Alam)?
ZaTm]bH, [- 2(1 a)2m+111:M1 oy MTm]hH}_ Sirnilarly, G x~ ng' If \/2(1 a) m+0yzl My—== =0, then SPECAG(G) —

([2]") and G = nK;. Thus, G = nK; or G = &

_ 4(am)2

2(1—a)m 2(1-a)m 2(1-a)?m+a’M; - = 4[(1-a)*+a2m?
Case 2. =——— € U,. Then =——— > \/ — ,and son < S0y reralM; - Thus, we have

E*(G) < f()
< f(2(1 a)m

2(1 a)m

4(am)?  2(1 —a)m

n

\/(n D21 — a)?m + a?M; — - 1%}, (3.4)
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2(1— a)m

the equality holds if and only if y = y3 =--- =y, and y; = which means that p1 = Z%. Note that
Gisanr = 27’” regular graph by Lemma 2.6. If (3.4) is an equahty, then Gisanr = <¢ 2 yegular graph and

2(1-a)?m+a2M;— 4(‘"”)2— 2 _ .
yi = lpi— 22| = \/ o — = (1-a) % fori=2,3,...,n. Thus we have

{p2,p3,-+ ,pu} C {(1_(1)‘,1’:1_—1;’) +ar, (a—1)

If G is connected, then A,-spectra of G has the following three cases:

Subcase 2.1. Specy, (G) = {r,[(1-a) w/r(" D 4+ ar]"-1}. Then r: {) =L < Oby equation (2.1), a contradiction.

r(n_— N +aryand p1 =r. (3.5)

Subcase 2.2. Specy, (G) = {r,[(@—1) r(" r)+0cr]" 1}, Then '(: lr) L= = n—rand Speca, (G) = {r, [an—1]""1},
and G = K,,.

Subcase 2.3. Speca, (G) = {r,[(1 — @) r(n V) +arlt, [(@-1) 7(” D 4 ar]*P-1}. It’s obvious that G is strongly
regular by Lemma 2.4. Note that for a strongly r-regular graph G, Speca,(G) = {r,[h]", [s]"} if and only if

Speca,(G) = {r,[ar + (1 — )", [ar + (1 — a)s]’). Thus, Speca,(G) = {r, [ | =21, [(— o/ L=21071). 1 G is
a strongly regular graph whose indices is (17,4, ¢), ,/ 1) and — (/22 as A-eigenvalues of G satisfying

the function x2 — (@ —)x —(r—c) = Oand r + b/ =2 + (n — b — 1)(- 7(” r)) 0, after simple calculus,
thena = c = rf: 11 and b = ";)—P Consequently, G is a strongly regular graph whose indices is

(n,r, r(n” {), r(n" {)) Obviously, G = S(n,r). If G is non-connected, then there exists 2 < b < n such that

Speca,(G) = {[r]"*, [(a = 1) r(" r) + ar]" "1} and r(n” {) =r =1by (3.5). We have n = 2b + 2 by equation

(2.1), then Specy, (G) = {[1]?, [205 1]2}. Thus, G = £K,. We have accomplished the proof. [J

Lemma 3.10. [2] Let G be a connected graph with n vertices and m edges, M; is the first Zagreb index of G.
Then M; < % + 4(A - 6)?, the equality holds if and only if G is isomorphic with k-regular graph.

Nextly, we will simplify the bound given in Theorem 3.9.
Corollary 3.11. Let G be a connected irregular graph with n vertices and m edges, o # 0. Then

. _ A= +a2(A—5)2—(1—
(1) lf?’l> 4(1-a)ym \(1-a)*+a?(A-56)2—(1-a) then

a2(A=5) ’
2(1 - 8m(1 — a)? + a?(A — 6)*n
EA"(G)<\/( L (A 8)2 + (n —1)\/ ml ~a) + oA~ On
n 4n
. 4(1-a)ym \(1—a)>+a2(A-5)2—(1- a)
(2) ifn< g

(1—“ \/(n D21 = a)m +—(A 52+

Proof. By (3.1) and Lemma 3.10, we have

2(1 —a)ym
n

E*(G) < I}

EA“ 2 0(27’1 2
(©) 21+ JOr - D201~ + T 6 - 52 3]

The inequality should be strictly if G is a connected irreqular graph, then set

glx) =x+ \/(n - D21 - a)*m + %(A —6)2 -2,
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where x € [0, \/2(1 —a)’m + %(A —0)2]. It is similar to the proof of Theorem 3.9, g(x) increases on I; =

[0, \/M "‘—Z(A —6)2] and decreases on I, = [\/w + "‘IZ(A - 0)?, \/2(1 —a)’m+ %(A —06)2]. Then

Y1 =p1— 2 s 20 b oy 2.6, we have

E%+(G) < g(y1) < g( \/M +LnA—p)), if M=y
EA(G) < g(n) < 9352, if A= o g

2(1-aym a)m

4(1-a)m[ \(1-a)?+a?(A-6)2~(1-a)] and 2(1 aym el lfandonlyzfn < 4(1—a)m[V(1—01)2+a2(A—b)2—(1—a)]'

€ Ly ifand only ifn >

aZ(A-6)? a2(A-6)2

If G is a regular graph, then M; = nr? and 2m = nr, we have the upper bound of E*=(G) of regular graph
directly.

Corollary 3.12. Let G be a connected r-regular graph with order n, o € [0, 1]. Then
(1) ifn > O

(I—ay+a?r ’
EA(G) < nr(1-a)
the equality holds if and only if G = K, G = 5Ky or G = nKj.
(2) ifn < mlA=af+] ypen

(1-a)?+a?r ’

EA(G) < (1 —a)(r+ \r(n —n(n-1)),

the equality holds if and only if G = K,,, G = 5K, or G = S(n, r).
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