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Abstract. B.-Y. Chen [8] introduced the notion of CR δ-invariant on CR-submanifolds. Recently, F.R.
Al-Solamy et al. [3, 4] and I. Mihai et al. [11], respectively, established optimal inequalities for this invariant
on anti-holomorphic submanifolds in complex space forms and for generic submanifolds in Sasakian space
forms. Furthermore, A.N. Siddiqui et al. [19] derived equivalent inequalities for the contact CR δ-invariant,
but in the context of a generic submanifold within trans-Sasakian generalized Sasakian space forms. They
also managed to identify a lower limit for the squared norm of the mean curvature. This was achieved
by relating it to a CR δ-invariant and the Laplacian of the warping function. This was done in the case of
CR-warped products existing within the same ambient space forms. In the present paper, we obtain two
optimal inequalities involving the CR δ-invariant for a generic statistical submanifold in a holomorphic
statistical manifold of constant holomorphic sectional curvature. Finally, we consider a generic statistical
submersion from a holomorphic statistical manifold onto a statistical manifold.

1. Introduction

A statistical manifold of probability distributions is equipped with a Riemannian metric and a pair of
conjugate affine connections [5]. A statistical structure can be considered as a generalization of a Riemannian
metric and its Levi-Civita connection. The theory of statistical manifold and its submanifolds plays a crucial
role in several fields of mathematics.

The study of Riemannian submersions between two Riemannian manifolds has been initiated by B.
O’Neill [13, 14]. Recently, such submersions have been studied widely in differential geometry. In 2001,
N. Abe et al. [1] have introduced the notion of statistical submersion between two statistical manifolds.
In 2004, K. Takano [20] has defined Kähler-like statistical manifolds, by considering the notion of complex
structure on statistical manifolds, and a Kähler-like statistical submersion. He has also introduced Sasaki-
like statistical manifolds, that is, statistical manifolds endowed with contact structures in [21]. Recently,
G.E. Vilcu et al. [22] have studied the concept of quaternionic Kähler-like statistical manifold and obtained
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several geometric properties of quaternionic Kähler-like statistical submersions. In [9], H. Furuhata et al.
have considered another notion of complex structure on statistical manifolds and defined holomorphic
statistical manifold. By keeping this idea, in [10], the statistical counterpart of a Sasakian manifold, that
is, Sasakian statistical manifold has been investigated. Several results have been derived by distinguished
geometers in the area of statistical manifolds (see [6, 7, 12, 15–18]).

In the early 1990s, B.-Y. Chen introduced new types of Riemannian invariants, called δ-invariants (or
Chen invariants) on Riemannian manifolds. The δ-invariants are not similar in nature to the classical scalar
and Ricci curvatures because both of them are total sum of sectional curvatures on Riemannian manifolds.
In contrast, all of the non-trivial δ-invariants are derived from the scalar curvature by removing a definite
amount of sectional curvatures. He considered the concept of δ-invariants in order to find new necessary
conditions for the existence of minimal immersions into a Euclidean space of an arbitrary dimension and
to obtain applications of the celebrated Nash embedding theorem.

The CR δ-invariant δ(D) on a CR-submanifold N in a Kähler manifold N is defined by [8]

δ(D)(p) = τ(p) − τ(Dp), (1)

where τ denotes the scalar curvature of N and τ(D) denotes the scalar curvature of the holomorphic
distribution D of N. He [8] also established an inequality for anti-holomorphic warped product submanifold
N = NT

× f N⊥ in a complex space form N(4c) involving the CR δ-invariant δ(D). F.R. Al-Solamy et al. [3, 4]
proved an optimal inequality for this CR δ-invariant on an anti-holomorphic submanifold N in N(4c).
Recently, Mihai et al. [11] studied Chen’s CR δ-invarinat on an odd dimensional contact CR-submanifold,
called contact CR δ-invariant, and obtained an optimal estimate for a generic submanifold N in a Sasakian
space form N(c) of constant ϕ-sectional curvature c.

The purpose of this paper is to define the concept of CR δ-invariant on a CR-statistical submanifold in
a holomorphic statistical manifold and to prove two optimal inequalities for newly defined CR δ-invariant
on a generic statistical submanifold in a holomorphic statistical manifold of constant holomorphic sectional
curvature. Also, we define the concept of generic statistical submersion and investigate the integrability
of the distributions which arise from the definition of a generic statistical submersion from a holomorphic
statistical manifold onto a statistical manifold.

2. Statistical Manifolds and their Submanifolds

Definition 2.1. [5] A Riemannian manifold (N, 1) endowed with a pair of torsion-free affine connections ∇ and ∇
∗

satisfying

Z1(X,Y) = 1(∇ZX,Y) + 1(X,∇
∗

ZY),

for all X,Y,Z ∈ Γ(TN), and ∇1 is symmetric, called statistical manifold. Here 1 is a Riemannian metric, and the
connections ∇ and ∇

∗

are called dual connections on N; they satisfy (∇
∗

)∗ = ∇.

Remark that if (∇, 1) is a statistical structure on N, then (∇
∗

, 1) is also a statistical structure.

Definition 2.2. [5] Let (N,∇, 1) be a statistical manifold and N be a submanifold of N. Then (N,∇, 1) is also a
statistical manifold with the induced statistical structure (∇, 1) on N from (∇, 1) and we call (N,∇, 1) a statistical
submanifold in (N,∇, 1).

The fundamental equations in the geometry of Riemannian submanifolds (see [24]) are the Gauss and
Weingarten formulas and the Gauss equation. In our setting, the Gauss and Weingarten formulas are,
respectively, given by [23]

∇XY = ∇XY + h(X,Y), ∇
∗

XY = ∇∗XY + h∗(X,Y),

∇XU = −AU(X) + ∇⊥XU, ∇
∗

XU = −A∗U(X) + ∇⊥∗X U,
(2)
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for all X,Y ∈ Γ(TN) and U ∈ Γ(T⊥N), where ∇ and ∇
∗

(resp., ∇ and ∇∗) are the dual connections on N (resp.,
on N). The symmetric and bilinear imbedding curvature tensor of N in N for ∇ and ∇

∗

are denoted by h
and h∗, respectively. The relations between h (resp., h∗) and A (resp., A∗) are given by [23]

1(h(X,Y),U) = 1(A∗UX,Y), 1(h∗(X,Y),U) = 1(AUX,Y). (3)

Let R and R be the curvature tensor fields of ∇ and ∇, respectively. Then the corresponding Gauss
equation is given by [23]

R(X,Y,Z,W) = R(X,Y,Z,W) + 1(h(X,Z), h∗(Y,W)) − 1(h∗(X,W), h(Y,Z)), (4)

for all X,Y,Z,W ∈ Γ(TN). Similarly, if R
∗

and R∗ are the curvature tensor fields of ∇
∗

and ∇∗, respectively,
the Gauss equation for ∇

∗

is similar to (4).

R
∗

(X,Y,Z,W) = R∗(X,Y,Z,W) + 1(h∗(X,Z), h(Y,W))
−1(h(X,W), h∗(Y,Z)). (5)

The curvature tensor fields of N and N are defined as

S =
1
2

(R + R
∗

), S =
1
2

(R + R∗). (6)

Thus, the sectional curvature K∇,∇∗ on N is given by [15, 16]

K∇,∇
∗

(X ∧ Y) = 1(S(X,Y)Y,X)

=
1
2

(1(R(X,Y)Y,X) + 1(R∗(X,Y)Y,X)), (7)

for all orthonormal vectors X,Y ∈ TpN, p ∈ N.
Suppose that dim(N) = n and dim(N) = m. Let {v1, . . . , vn} and {vn+1, . . . , vm} be respectively orthonormal

bases of TpN and T⊥p N at p ∈ N. Then the scalar curvature τ∇,∇
∗

of N is given by

τ∇,∇
∗

=
∑

1≤i< j≤n

K∇,∇
∗

(vi ∧ v j). (8)

Definition 2.3. [9] Let (N, J, 1) be a Kähler manifold and ∇ be an affine connection on N. Then (N,∇, 1, J) is said to
be a holomorphic statistical manifold if

(a) (N,∇, 1) is a statistical manifold, and
(b) the 2-form ω on N, given by

ω(X,Y) = 1(X, JY),

for all X,Y ∈ Γ(TN), is ∇-parallel.

For a holomorphic statistical manifold (N,∇, 1, J), we have the following relation [9]:

∇X(JY) = J∇
∗

XY, (9)

for all X,Y ∈ Γ(TN), where ∇
∗

is the dual connection of ∇with respect to 1.

Definition 2.4. [9] A holomorphic statistical manifold (N,∇, 1, J) is said to be of constant holomorphic curvature
c ∈ R if the following curvature equation holds

S(X,Y)Z =
c
4

(1(Y,Z)X − 1(X,Z)Y + 1(JY,Z)JX − 1(JX,Z)JY

+21(X, JY)JZ), (10)

for all X,Y,Z ∈ Γ(TN). It is denoted by (N(c),∇, 1, J).
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Let (N, 1) be a statistical submanifold in (N,∇, 1, J). Then for all X ∈ Γ(TN), we put [9, 24]

JX = PX + FX,

where PX and FX are the tangential and normal components of JX, respectively. Then P is an endomorphism
of the tangent bundle TN, and FX is a normal-bundle-valued 1-form on the tangent bundle TN. In the
similar way, for all V ∈ Γ(T⊥N), we put [9, 24]

JV = tV + f V,

where tV and f V are the tangential and normal components of JV, respectively. Then f is an endomorphism
of the normal bundle T⊥N, and t is a tangent bundle-valued 1-form on the normal bundle T⊥N.

The statistical version of the definition of a CR-submanifold is the following:

Definition 2.5. [9] A statistical submanifold N in a holomorphic statistical manifold (N,∇, 1, J) of dimension 2m ≥ 4
is called a CR-statistical submanifold if N is CR-submanifold in N, that is, there exists a differentiable distribution
D : p→ Dp ⊆ TpN on N satisfying the following conditions:

(a) D is holomorphic, that is, JDp = Dp ⊂ TpN for each p ∈ N, and
(b) the complementary orthogonal distribution D⊥ : p → D⊥p ⊆ TpN is totally real, that is, JD⊥p ⊂ T⊥p N for each

p ∈ N.

Remark 2.6. [9] CR-statistical submanifolds are characterized by the condition FP = 0.

Definition 2.7. [9] Let N be a CR-statistical submanifold of a holomorphic statistical manifold (N,∇, 1, J). Then N
is said to be a

(a) mixed totally geodesic with respect to ∇ if h(X,Y) = 0, for all X ∈ Γ(D) and Y ∈ Γ(D⊥).

(a)∗ mixed totally geodesic with respect to ∇
∗

if h∗(X,Y) = 0, for all X ∈ Γ(D) and Y ∈ Γ(D⊥).

Definition 2.8. [9] Let N be a CR-statistical submanifold of a holomorphic statistical manifold (N,∇, 1, J). If
JD⊥ = T⊥N and D , 0, then N is called a generic statistical submanifold ( f = 0).

Let µ be the the orthogonal complementary subbundle of JD⊥ within T⊥N, then

T⊥N = FD⊥ ⊕ µ.

For a generic statistical submanifold N, we have the following [9]:

PD = D, PD⊥ = 0, FD⊥ = T⊥N, t(T⊥N) = t(FD⊥) = D⊥. (11)

3. Generic Statistical Submanifolds with Canonical Structures

In this section, we give some results based on the distributions of generic statistical submanifolds in
holomorphic statistical manifolds.

Proposition 3.1. Let N be a generic submanifold of a holomorphic statistical manifold (N,∇, 1, J). Then we have

(a) the holomorphic distribution D is integrable if and only if F∇∗XY = ∇⊥XFY, for all X,Y ∈ Γ(TN), holds.

(b) P∇∗XY − ∇XPY ∈ Γ(D⊥) for all X ∈ Γ(TN) and Y ∈ Γ(D).
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Proof. Following [12], we have

A∗UPY = −A f UY, (12)

for all Y ∈ Γ(TN) and U ∈ Γ(T⊥N).
On the other hand, we derive

∇XPY + h(X,PY) = P∇∗XY + th∗(X,Y) + F∇∗XY + f h∗(X,Y), (13)

for all X ∈ Γ(TN) and Y ∈ Γ(D), which yields

1(A∗UPY,X) = −1(∇∗XY, tU) − 1(A f UY,X). (14)

On combining (12) and (14), we arrive at 1(∇∗XY, tU) = 0, which implies ∇∗XY ∈ Γ(D) as tU ∈ Γ(D⊥). Thus, D
is integrable. Conversely is trivial. Hence, the assertion (a) follows.

From (13), we get P∇∗XY − ∇XPY = th∗(X,Y), which gives the assertion (b).

Proposition 3.2. Let N be a generic submanifold of a holomorphic statistical manifold (N,∇, 1, J). If N is totally
umbilical with respect to ∇ and ∇

∗

, then the purely real distribution D⊥ is integrable.

Proof. Following [9], we have

∇X(tU) = −A f UX − PA∗UX + t∇⊥∗X U
= −1(U,H)X − 1(U,H∗)PX + t∇⊥∗X U, (15)

for all X ∈ Γ(TN) and U ∈ Γ(T⊥N), where we have used AUX = 1(U,H)X and A∗UX = 1(U,H∗)X. Since,
PD⊥ = 0 and t(T⊥N) = t(FD⊥) = D⊥. Thus, (15) implies that ∇ZW ∈ Γ(D⊥) for all Z,W ∈ Γ(D⊥). This shows
that D⊥ is integrable.

4. Two Optimal Estimates for Generic Statistical Submanifolds

By analogy with the Chen’s CR δ-invariant, we define a CR δ-invariant on a CR-statistical submanifold
N in a holomorphic statistical manifold N by

δ∇,∇
∗

(D)(p) = τ∇,∇
∗

(p) − τ∇,∇
∗

(Dp),

where τ∇,∇
∗

signifies the scalar curvature of N with respect to ∇ and ∇∗ and τ∇,∇
∗

(D) represents the scalar
curvature of the holomorphic distribution D of N with respect to ∇ and ∇∗.

We choose a local orthonormal frame {v1, . . . , v2m1+m2 } on N such that v1, . . . , vm1 , vm1+1, . . . , v2m1 are tan-
gents to D and v2m1+1, . . . , v2m1+m2 are tangents to D⊥, where vm1+1 = Jv1, . . . , v2m1 = Jvm1 . Then two partial
mean curvature vectors denoted by

−→
HD (resp.

−→
H∗D) and

−→
HD⊥ (resp.

−→
H∗D⊥ ) of N are

−→
HD =

1
2m1

2m1∑
i=1

h(vi, vi), (resp.
−→
H∗D =

1
2m1

2m1∑
i=1

h∗(vi, vi)),

and

−→
HD⊥ =

1
m2

m2∑
r=1

h(v2m1+r, v2m1+r), (resp.
−→
H∗D⊥ =

1
m2

m2∑
r=1

h∗(v2m1+r, v2m1+r)).

Also, the two partial mean curvature vectors
−→
H0

D and
−→
H0

D⊥ with respect to the Levi-Civita connection ∇
0

of
N are expressed as

−→
H0

D =
1

2m1

2m1∑
i=1

h0(vi, vi),
−→
H0

D⊥ =
1

m2

m2∑
r=1

h0(v2m1+r, v2m1+r),
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where h0 is the second fundamental form of N in N with respect to the Levi-Civita connection N
0
.

We use some more notations for later use.

h(vr, vs) = hD⊥ (vr, vs), h∗(vr, vs) = h∗D⊥ (vr, vs), h0(vr, vs) = h0
D⊥ (vr, vs), (16)

for r, s ∈ {2m1 + 1, . . . , 2m1 +m2}.

Since 2h0 = h + h∗, then one has

4h02 = h2 + h∗2 + 21(h, h∗). (17)

For our convenience, we denote the squared norm of A by A2 and denote the square of A by (A)2.

In this section, we prove an optimal estimate of the CR δ-invariant of a generic statistical submanifold
in a holomorphic statistical manifold of constant holomorphic sectional curvature c.

Theorem 4.1. Let N be a generic statistical submanifold in a holomorphic statistical manifold (N,∇, 1, J) of constant
holomorphic sectional curvature c. Then, we have

δ∇,∇
∗

(D) ≥ 2δ0(D) +
3
4

m2
2

m2 + 2
[
−→
H2

D⊥ +
−→
H∗2D⊥ ] −

(2m1 +m2)2

4
(
−→
H2 +

−→
H∗2)

−
cm2

8
(4m1 +m2 − 1), (18)

where δ0(D) denotes the CR δ-invariant of N with respect to ∇0.

Proof. Let us choose a local orthonormal frame {v1, . . . , v2m1+m2 } on N as above. Then the scalar curvature
τ∇,∇

∗

(p) of N and τ(Dp)∇,∇
∗

of D, p ∈ N, are given by

2τ∇,∇
∗

(p) =
∑

1≤A,B≤2m1+m2

1(S(vA, vB)vB, vA)

=
∑

1≤i, j≤2m1

1(S(vi, v j)v j, vi) + 2
2m1∑
i=1

m2∑
r=2m1+1

1(S(vi, vr)vr, vi)

+
∑

2m1+1≤r,s≤2m1+m2

1(S(vr, vs)vs, vr), (19)

and

2τ∇,∇
∗

(Dp) =
∑

1≤i, j≤2m1

1(S(vi, v j)v j, vi). (20)

By the definition of the CR δ-invariant and the relations (19) and (20), we have

δ∇,∇
∗

(D)(p) = τ∇,∇
∗

(p) − τ∇,∇
∗

(Dp)

=

2m1∑
i=1

m2∑
r=2m1+1

1(S(vi, vr)vr, vi) +
1
2

∑
2m1+1≤r,s≤2m1+m2

1(S(vr, vs)vs, vr). (21)

By straightforward calculations, the first term of (21) becomes

2m1∑
i=1

m2∑
r=2m1+1

1(S(vi, vr)vr, vi) =

2m1∑
1=i

m2∑
r=2m1+1

1(S(vi, vr)vr, vi)

= 2m1m2
c
4
+

1
2

2m1∑
i=1

m2∑
r=2m1+1

[1(h∗(vi, vi), h(vr, vr))

+1(h(vi, vi), h∗(vr, vr)) − 21(h(vi, vr), h∗(vi, vr))], (22)
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and the second term of (21)

1
2

∑
2m1+1≤r,s≤2m1+m2

1(S(vr, vs)vs, vr)

=
m2(m2 − 1)

2
c
4

−
1
2

∑
2m1+1≤r,s≤2m1+m2

1(h∗(vs, vr), h(vs, vr))

+
1
4

∑
2m1+1≤r,s≤2m1+m2

[1(h(vr, vr), h∗(vs, vs)) + 1(h(vs, vs), h∗(vr, vr))]. (23)

On the other hand, we derive

1
2

2m1∑
i=1

m2∑
r=2m1+1

{1(h∗(vi, vi), h(vr, vr)) + 1(h(vi, vi), h∗(vr, vr))}

+
1
4

∑
2m1+1≤r,s≤2m1+m2

{1(h(vr, vr), h∗(vs, vs)) + 1(h(vs, vs), h∗(vr, vr))}

=
1
2
{(2m1 +m2)21(

−→
H,
−→
H∗) − (2m1)21(

−→
HD,
−→
H∗D)}.

(24)

By combining the above equations (21-24), we arrive at

δ∇,∇
∗

(D)(p) =
m2

8
(4m1 +m2 − 1)c

+
1
2

[(2m1 +m2)21(
−→
H,
−→
H∗) − (2m1)21(

−→
HD,
−→
H∗D)]

−
1
2

∑
2m1+1≤r,s≤2m1+m2

1(h∗(vs, vr), h(vs, vr))

−

2m1∑
i=1

m2∑
r=2m1+1

1(h(vi, vr), h∗(vi, vr)). (25)

From relations (16) and (17), we have

−
1
2

∑
2m1+1≤r,s≤2m1+m2

1(h∗(vs, vr), h(vs, vr)) =
1
4

(h∗2D⊥ + h2
D⊥ ) − h02

D⊥ .

Thus, (25) gives

δ∇,∇
∗

(D)(p) =
m2

8
(4m1 +m2 − 1)c −

2m1∑
i=1

m2∑
r=2m1+1

1(h(vi, vr), h∗(vi, vr))

+
1
2

[(2m1 +m2)21(
−→
H,
−→
H∗) − (2m1)21(

−→
HD,
−→
H∗D)]

+
1
4

(h∗2D⊥ + h2
D⊥ ) − h02

D⊥ . (26)

By analogy with [3, 11], we have the following relations:

h2
D⊥ ≥

3m2
2

m2 + 2
−→
H2

D, h∗2D⊥ ≥
3m2

2

m2 + 2
−→
H∗2D . (27)
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Substituting (27) into (26), we get

δ∇,∇
∗

(D)(p) ≥
m2

8
(4m1 +m2 − 1)c −

2m1∑
i=1

m2∑
r=2m1+1

1(h(vi, vr), h∗(vi, vr))

+
1
2

[(2m1 +m2)21(
−→
H,
−→
H∗) − (2m1)21(

−→
HD,
−→
H∗D)]

+
1
4

3m2
2

m2 + 2
(
−→
H∗2D +

−→
H2

D) − h02
D⊥ . (28)

Also, from 2
−→
H0

D =
−→
HD +

−→
H∗D, we derive the following

1(
−→
HD,
−→
H∗D) ≤

−→
H02

D .

Thus, equation (28) takes the following form:

δ∇,∇
∗

(D)(p) ≥
m2

8
c(4m1 +m2 − 1) −

2m1∑
i=1

m2∑
r=2m1+1

1(h(vi, vr), h∗(vi, vr))

+
1
2
{(2m1 +m2)21(

−→
H,
−→
H∗) − (2m1)2−→H02

D

+
1
4

3m2
2

m2 + 2
(
−→
H∗2D +

−→
H2

D) − h02
D⊥ . (29)

On the other hand, the CR δ−invariant δ0(D) of N with respect to ∇0 can be obtained as

δ0(D)(p) =
m2

8
c(4m1 +m2 − 1) −

2m1∑
i=1

m2∑
r=2m1+1

h02(vi, vr) +
(2m1 +m2)2

2
−→
H02
− 2m2

1
−→
H02

D

+
1
4

3m2
2

m2 + 2
(
−→
H∗2D +

−→
H2

D) − h02
D⊥ . (30)

Substituting (30) into (29), we find

δ∇,∇
∗

(D) ≥ 2δ0(D) +
3
4

m2
2

m2 + 2
(
−→
H2

D⊥ +
−→
H∗2D⊥ ) −

(2m1 +m2)2

4
(
−→
H2 +

−→
H∗2)

−
m2

8
c(4m1 +m2 − 1) +

1
2

2m1∑
i=1

m2∑
r=2m1+1

h2(vi, vr) + h∗2(vi, vr)

 ,
where we have used two relations

1
2
1(
−→
H,
−→
H∗) −

−→
H02 = −

1
4

(
−→
H2 +

−→
H∗2),

2m1∑
i=1

m2∑
r=2m1+1

1(h(vi, vr), h∗(vi, vr)) =

2m1∑
i=1

m2∑
r=2m1+1

[−21(h0(vi, vr), h0(vi, vr))

+
1
2

h(h(vi, vr), h(vi, vr)) + 1(h∗(vi, vr), h∗(vi, vr))].

Hence our assertion follows.

Theorem 4.2. Let N be a generic statistical submanifold in a holomorphic statistical manifold (N,∇, 1, J) of constant
holomorphic sectional curvature c. Then the equality case of the inequality (18) holds if and only if

(a) N is D-minimal with respect to ∇ and ∇∗,
(b) N is mixed totally geodesic with respect to ∇ and ∇

∗

,
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(c) there exists an orthonormal basis {v2m1+1, . . . , v2m1+m2 } of D⊥ such that
(i) hr

rr = 3hr
ss, h∗rrr = 3h∗rss, ∀2m1 + 1 ≤ r , s ≤ 2m1 +m2,

(ii) hr
st = 0, h∗rst = 0, ∀r, s, t ∈ {2m1 + 1, . . . , 2m1 +m2}, r , s , t.

Note that generic submanifold with dim(D⊥) = 1 is nothing but a real hypersurface. Thus, in the
following, we give another optimal estimate of the CR δ-invariant (δ∇,∇

∗

(D) = Ric∇,∇∗ (JN, JN)) of a real
statistical hypersurface in N(c).

Theorem 4.3. Let N be a real statistical hypersurface in a holomorphic statistical manifold (N,∇, 1, J) of constant
holomorphic sectional curvature c such that dim(D) = 2m1 and dim(D⊥) = 1. Then, we have

Ric∇,∇
∗

(JN, JN) ≥ 2Ric0(JN, JN) −
cm1

2
−

(2m1 + 1)2

4
(
−→
H2 +

−→
H∗2),

where Ric0 denotes the Ricci tensor of N with respect to ∇0.

Proof. For a real statistical hypersurface of (N(c),∇, 1, J), the definition of δ∇,∇
∗

(D) and δ0(D) gives

δ∇,∇
∗

(D)(p) = Ric∇,∇
∗

(JN, JN), (31)

and

δ0(D)(p) = Ric0(JN, JN), (32)

respectively.
Now, let {v1, . . . , vm1 , vm1+1, . . . , v2m1 } be an orthonormal frame on the holomorphic distribution D, where

vm1+1 = Jv1, . . . , v2m1 = Jvm1 . We assume that v2m1+1 = e be a unit vector field in the complementary
orthogonal distribution D⊥. Then

δ∇,∇
∗

(D)(p) =

2m1∑
i=1

1(S(vi, e)e, vi)

=
cm1

2
+

1
2

2m1∑
i=1

[1(h(e, e), h∗(vi, vi))

+1(h∗(e, e), h(vi, vi)) − 21(h(vi, e), h∗(vi, e))]. (33)

On the other hand, we derive

1
2

2m1∑
i=1

[1(h(e, e), h∗(vi, vi)) + 1(h∗(e, e), h(vi, vi))]

=
(2m1 + 1)2

2
1(
−→
H,
−→
H∗) −

(2m1)2

2
1(
−→
HD,
−→
H∗D) −

1
2
1(h(e, e), h∗(e, e)). (34)

From (33) and (34), we get

δ∇,∇
∗

(D)(p) =
cm1

2
+

(2m1 + 1)2

2
1(
−→
H,
−→
H∗) −

(2m1)2

2
1(
−→
HD,
−→
H∗D)

−
1
2
1(h(e, e), h∗(e, e)) − 2

2m1∑
i=1

1(h(vi, e), h∗(vi, e)).

By a similar argument as in Theorem 4.1, we derive the CR δ−invariant δ0(D) of N with respect to ∇0 as

2δ0(D)(p) = cm2 + (2m1 + 1)2−→H02
− (2m1)2−→H02

D − h02
D⊥ − 2

2m1∑
i=1

1(h0(vi, e), h0(vi, e)).
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By combining the last two relations, we find that

δ∇,∇
∗

(D)(p) = 2δ0(D)(p) −
(2m1 + 1)2

4
(
−→
H2 +

−→
H∗2) −

cm1

2

+
1
4

[1(h(e, e), h(e, e)) + 1(h∗(e, e), h∗(e, e))]

+
1
2

2m1∑
i=1

[1(h(vi, e), h(vi, e)) + 1(h∗(vi, e), h∗(vi, e))],

or

δ∇,∇
∗

(D)(p) ≥ 2δ0(D)(p) −
(2m1 + 1)2

4
(
−→
H2 +

−→
H∗2) −

cm1

2
. (35)

Our assertion follows from (31), (32) and (35).

Theorem 4.4. Let N be a real statistical hypersurface in a holomorphic statistical manifold (N,∇, 1, J) of constant
holomorphic sectional curvature c such that dim(D) = 2m1 and dim(D⊥) = 1. Then the equality case of the inequality
(31) holds if and only if

(a) N is D-minimal with respect to ∇ and ∇∗,
(b) there exists an orthonormal frame {v1, . . . , v2m1 } of D such that

(i) h(vi, e) = 0, h∗(vi, e) = 0, ∀i = 1, . . . , 2m1,
(ii) h(e, e) = 0, h∗(e, e) = 0.

5. Generic Statistical Submersion

For the theory of statistical submersion, we follow [1, 2, 13, 14, 20–22]:

Definition 5.1. [20] Let (N, 1,∇) and (N′

, 1
′

,∇
′

) be two statistical manifolds. Then a Riemannian submersion
ϕ : N→ N′ is said to be a statistical submersion if

ϕ∗(∇XY)p = (∇
′

X′Y
′

)ϕ(p),

for all basic vector fields X,Y on N ϕ−related to X′ and Y′ on N′ , and p ∈ N.

The vector fields in kerϕ∗ are tangent to the fibres ϕ−1(p), p ∈ N′

and are called vertical vector fields. The
vectors which are orthogonal to the vertical distribution (or orthogonal to fibers), denoted by (kerϕ∗)⊥, are
said to be horizontal. We set the projection mappings on the distributions kerϕ∗ and (kerϕ∗)⊥ by V andH,
respectively. The tensor fields of type (1,2) are denoted by T (resp. T∗), and A (resp. A∗) and defined by
[20]

TXY = H∇VXVY +V∇VXHY,

T∗XY = H∇
∗

VXVY +V∇
∗

VXHY,

AXY = H∇HXVY +V∇HXHY,
A∗XY = H∇

∗

HXVY +V∇
∗

HXHY,

for all vector fields X and Y on N. For the geometric properties of T (resp. T∗), andA (resp. A∗), see [20].

Lemma 5.2. [20] For all X,Y ∈ Γ(kerϕ∗) and U,V ∈ Γ((kerϕ∗)⊥), we have

∇UV = TUV +V∇UV, ∇
∗

UV = T∗UV +V∇
∗

UV,

∇UX =H∇UX + TUX, ∇
∗

UX =H∇
∗

UX + T∗UX,

∇XU = AXU +V∇XU, ∇
∗

XU = A∗XU +V∇
∗

XU,

∇XY =H∇XY +AXY, ∇
∗

XY =H∇
∗

XY +A∗XY.

Moreover, if X is basic, thenH∇UX = AXU andH∇
∗

UX = A∗XU.
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Definition 5.3. Let N be a holomorphic statistical manifold with Riemannian metric 1 and an almost complex
structure J and N′ be a holomorphic statistical manifold with Riemannian metric 1′ and an almost complex structure
J′ . A statistical submersion ϕ : N→ N′ is said to be a holomorphic statistical submersion if ϕ is a holomorphic map,
that is, ϕ∗ ◦ J = J′ ◦ ϕ∗.

We give the statistical version of the definition of a generic Riemannian submersion.

Definition 5.4. Let N be a holomorphic statistical manifold with Riemannian metric 1 and an almost complex
structure J and N′ be a statistical manifold with Riemannian metric 1′ . A statistical submersion ϕ : N→ N′ is called
a generic statistical submersion if there exists a differentiable distribution D1 ⊂ kerϕ∗ such that

kerϕ∗ = D1 ⊕D2, JD1 = D1,

where D2 is the orthogonal complement of D1, and is purely real distribution on the fibres of the submersion ϕ.

Note that a statistical submersion ϕ : N→ N′

is said to be a generic statistical submersion from a holomor-
phic statistical manifold onto a statistical manifold if ϕ is a generic Riemannian submersion.

For all X ∈ Γ(ker ϕ∗), we put
JX = PX + FX,

where PX ∈ Γ(D1) and FX ∈ Γ((Ker ϕ∗)⊥). So, the decomposition of (ker ϕ∗)⊥ is as follows:

(kerϕ∗)⊥ = FD2 ⊕ ν,

where ν is invariant under J. For all V ∈ Γ((ker ϕ∗)⊥), we have

JV = BV + CV,

where BV ∈ Γ(D2) and CV ∈ Γ(ν).
Here, we investigate the integrability of the distributions D1 and D2, which arise from the definition of

a generic statistical submersion from a holomorphic statistical manifold onto a statistical manifold.

Theorem 5.5. If ϕ : N → N′ is a generic statistical submersion from a holomorphic statistical manifold (N, 1, J,∇)
onto a statistical manifold (N′

, 1
′

,∇
′

), then the following conditions are equivalent:

(a) D1 is integrable,

(b) 1(TXJY,FZ) = 1(TYJX,FZ),

(b)∗ 1(T∗XJY,FZ) = 1(T∗YJX,FZ),

for all X,Y ∈ Γ(D1) and Z ∈ Γ(D2).

Proof. For all X,Y ∈ Γ(D1), we have

J[X,Y] = J(∇
∗

XY − ∇
∗

YX) = ∇XJY − ∇YJX

= TXJY +V∇XJY − TYJX −V∇YJX, (36)

where we have used Lemma 5.2. By the hypothesis of the theorem, we get

1(J[X,Y],FZ) = 1(V∇XJY −V∇YJX,FZ),

for all Z ∈ Γ(D2). Since,V∇XJY−V∇YJX ∈ Γ(kerϕ∗) and FZ ∈ Γ((kerϕ∗)⊥), which imply that 1([X,Y],Z) = 0.
From this, we conclude that [X,Y] ∈ Γ(D1). Thus, D1 is integrable.
On the other hand, we assume D1 is integrable. By comparing the vertical and horizontal components of
relation (36), we get our assertion (b). This shows that (a) and (b) are equivalent. Similarly, we can show
that (a) and (b)∗ are equivalent.
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Theorem 5.6. If ϕ : N → N′ is a generic statistical submersion from a holomorphic statistical manifold N onto a
statistical manifold N′ , then the following conditions are equivalent:

(a) D2 is integrable,

(b) V∇VPU −V∇UPV + TVFU − TUFV ∈ Γ(D2),

(b)∗ V∇
∗

VPU −V∇
∗

UPV + T∗VFU − T∗UFV ∈ Γ(D2),

for all U,V ∈ Γ(D2).

Proof. Since, ker ϕ∗ is integrable, then [U,V] ∈ Γ(ker ϕ∗), for all U,V ∈ Γ(D2). Thus, for all Z ∈ Γ(D1), we
have

1([U,V], JZ) = −1(J2[U,V], JZ)

= −1(J(J∇UV − J∇VU), JZ)

= −1(J(∇
∗

UJV − ∇
∗

VJU), JZ)

= 1(J(∇
∗

VJU), JZ) − 1(J(∇
∗

UJV), JZ)
= 1(B(T∗VPU − T∗UPV +A∗FUV −A∗FVU), JZ)

+1(P(V∇
∗

VPU − V∇
∗

UPV + T∗VFU − T∗UFV), JZ).

Hence, D2 is integrable if and only if (b) holds. Similarly, we can show that (a) and (b)∗ are equivalent.

Remark 5.7. Theorems 4.1 and 4.3 can be studied for the generic statistical submersions.
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