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Available at: http://www.pmf.ni.ac.rs/filomat

Endomorphism rings and formal matrix rings of pseudo-projective
modules

Dao Thi Tranga, Banh Duc Dungb,∗

aFaculty of applied sciences, Ho Chi Minh City University of Industry and Trade,
140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Vietnam

bFaculty of Applied Sciences, HCMC University of Technology and Education,
1 Vo Van Ngan Street, Linh Chieu Ward, Ho Chi Minh City, Vietnam

Abstract. A module M is called pseudo-projective if every epimorphism from M to each quotient module
of M can be lifted to an endomorphism of M. In this paper, we study some properties of pseudo-projective
modules and their endomorphism rings. It shows that if M is a self-cogenerator pseudo-projective module
with finite hollow dimension, End(M) is a semilocal ring and every maximal right ideal of End(M) has of
the form {s ∈ End(M)| Im(s) + Ker(h) , M} for some endomorphism h of M with h(M) hollow. Moreover, it
shows that a pseudo-projective R-module M is an SSP-module if and only if the product of any two regular
elements of End(M) is a regular element. Finally, we investigate the pseudo-projectivity of modules over a
formal triangular matrix ring.

1. Introduction

Throughout this article all rings are associative rings with unity and all modules are right unital modules
over a ring. We denote by |X| the cardinality of a set X. For a submodule N of M, we write N ≤ M
(N < M,N ≪ M) iff N is a submodule of M (respectively, a proper submodule, a small submodule). We
denote by J(R) the Jacobson radical of the ring R. For any term not defined here the reader is referred to [3]
and [12].

A module M is called pseudo-injective if every monomorphism from each submodule of M to M is
extended to an endomorphism of M. It is well-known that M is pseudo-injective if M is invariant under
all automorphisms of its injective envelope ([17]). These modules are called automorphism-invariant ([11]).
Some properties of pseudo-injective modules and structure of rings via automorphism-invariant modules
are studied ([1, 9, 13, 17, 18]). Dualizing the notion of a pseudo-injective module, a module M is called pseudo-
projective if every epimorphism from M to each quotient module of M can be lifted to an endomorphism
of M ([19]). A right R-module M is called quasi-principally injective if for every endomorphism α of M,
any homomorphism from α(M) to M can extended to an endomorphism of M. In [16, Theorem 4], the
authors Sanh and Shum proved that if M is a quasi-principally injective module which is a self-generator
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with finite Goldie dimension, then End(M)/J(End(M)) is semisimple. This result is extended for general
quasi-principally injective modules which are studied by Quynh and Sanh (see [14]). From this result,
endomorphism rings of automorphism-invariant modules are studied in [20]. It shows that if M is an
automorphism-invariant self-generator module with finite Goldie dimension, then every maximal left
ideal of End(M) has the form of {s ∈ End(M)|Ker(s) ∩ Im(u) , 0} for some u ∈ End(M) with u(M) uniform.
Motivated by these results, in this paper, we show, in Theorem 2.7, that if M is a pseudo-projective self-
cogenerator module with finite hollow dimension and S = End(M) then

1. Every maximal right ideal of S has of the form

{s ∈ S| Im(s) + Ker(h) ,M}

for some endomorphism h of M with h(M) hollow.
2. S is semilocal (i.e., S/J(S) is semisimple artinian).

In [14], the authors proved that if M is a general quasi-principally injective self-generator module with
S = End(M), S is right perfect if and only if for any infinite sequence s1, s2, · · · ∈ S, the chain Ker(s1) ≤
Ker(s2s1) ≤ · · · is stationary. By the dual method for pseudo-projective modules, it shows that for a
pseudo-projective self-cogenerator right R-module M, End(M) is left perfect if and only if any infinite
sequence s1, s2, · · · ∈ End(M), the chain Im(s1) ≥ Im(s1s2) ≥ · · · is stationary (see Theorem 2.13). Consider
the summand intersection property and the summand sum property of modules, we show that if M is a
pseudo-projective (resp, pseudo-injective) module, M has the summand sum property (resp., the summand
intersection property) if and only if the product of any two regular elements of End(M) is a regular element
(see Theorem 3.4, 3.6). In section 4, we investigate the pseudo-projectivity of modules over a formal

triangular matrix ring K =
[

A 0
M B

]
. It is shown that if V = (X; Y) f is a right K−module such that X is a

pseudo-projective right A-module and the reduced map f̃ : Y→ HomA(M,X) is an isomorphism, then V is
a pseudo-projective right K-module (see Theorem 4.1).

2. On maximal ideals

Recall that a module M is called quasi-projective if every homomorphism from M to each quotient module
of M can be lifted to an endomorphism of M. A module M is called quasi-injective if every homomorphism
from each submodule of M to M is extended to an endomorphism of M. It is well-known that a module
M is quasi-injective if and only if M is invariant under all endomorphisms of its injective envelope. One
can check that every quasi-projective module is pseudo-projective. The following example shows that the
converse is not true in general.

Example 2.1 ([9, Example 5.1]). Let R =

 F2 F2 F2
0 F2 0
0 0 F2

 where F2 is the field of two elements and M = e11R. As

R is a finite-dimensional algebra over F2, the functors

HomF2 (−,F2) : Mod-R→ R-Mod

and
HomF2 (−,F2) : R-Mod→Mod-R

establish a contravariant equivalence between the subcategories of left and right finitely generated modules over R.
Then, HomF2 (M,F2) is a pseudo-projective left R-module and it is not quasi-projective.

Lemma 2.2. Let M be a pseudo-projective module with S = End(M). If f and g are endomorphisms of M with
Im( f ) = Im(1), then f S = 1S.
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Proof. Assume that f and 1 are endomorphisms of M with Im( f ) = Im(1). We consider the following
diagram

M

M 1(M) 0

0

?

f

ppppppppp	h

-1 -

?

As M is pseudo-projective, there is an endomorphism h of M such that f = 1h ∈ 1S. Similarly, we also have
1 ∈ f S. Thus, f S = 1S.

Let M be a right R-module with S = End(M). A nonzero module M is said to be hollow if every proper
submodule is small in M. An element h in S is called a right hollow element of S if h is nonzero and Im(h) is
a hollow submodule of M.

Let h be a right hollow element of S. We call

Mh = {s ∈ S | Im(s) + Ker(h) ,M}

One can check thatMh is a proper right ideal of S.
Let α be an endomorphism of M with S = End(M). We denote by

rS(α) = {s ∈ S | αs = 0}

the annihilator of α in S. If α is a right hollow element of S, then rS(α) is a right ideal of S contained inMα.

Lemma 2.3. Assume that M is a pseudo-projective module. If h is a right hollow element of S, Mh is the unique
maximal right ideal of S containing rS(h).

Proof. Take s an element of S and s <Mh. From the definition ofMh, it infers that Im(s)+Ker(h) =M. Then,
hs(M) = h(M). By Lemma 2.2, we have that hsS = hS and obtain that h = hsk for some k in S. It follows
that S = rS(h) + sS ≤ Mh + sS, and so S = Mh + sS. It is shown thatMh is a maximal of S. It remains to
show thatMh is the unique right ideal of S containing rS(h). Indeed, let I be an another maximal ideal of S
containing rS(h) and I ,Mh. Then, there exists an element α ∈ I \Mh. It follows that Im(α) + Ker(h) = M.
By the similar process proof as above, we have S = αS + rS(h) ≤ I and so S = I, a contradiction.

A family {Mλ}Λ of proper submodules of M is called coindependent if, for any λ ∈ Λ and any finite subset
I ⊆ Λ \ {λ},Mλ +

⋂
i∈F

Mi =M.

Lemma 2.4 ([15, Lemma 3.5]). Assume that M has coindependent submodules M1,M2, . . . ,Mk such that
k⋂

i=1
Mi ≪

M and M/Mi is hollow for every 1 ≤ i ≤ k. If M has a submodule L such that L+Mi ,M for every 1 ≤ i ≤ k, then L
is small in M.

Lemma 2.5. Let M be a pseudo-projective right R-module with S = End(M) and {φ1, φ2, . . . , φk} be a family of
nonzero elements of S with {Ker(φ1),Ker(φ2), . . . ,Ker(φk)} a finite coindependent family in M and {Im(φ1), Im(φ2), ..
., Im(φk)} hollow modules. If I is a maximal right ideal of S which is not of the formMh for some right hollow element
h of S, then there is an endomorphism ψ ∈ I such that

[Im(1 − ψ) +
k⋂

i=1

Ker(φi)]/
k⋂

i=1

Ker(φi)≪M/
k⋂

i=1

Ker(φi)
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Proof. Take W =
k⋂

i=1
Ker(φi). Let α ∈ I \ Mφ1 and so M = Im(α) + Ker(φ1). Then φ1(M) = (φ1α)(M). From

Lemma 2.2, it immediately infers that φ1S = (φ1α)S. Thus, φ1 = (φ1α)s1 = φ1(αs1) for some s1 ∈ S. Call
ψ1 = αs1 ∈ I, and so φ1(1 − ψ1) = 0. This implies that Im(1 − ψ1) + Ker(φ1) = Ker(φ1) , M. Suppose that
Im(1 −ψ1) +Ker(φ j) ,M for all 2 ≤ j ≤ k. We have {Ker(φ1),Ker(φ2), . . . ,Ker(φk)} is a finite coindependent

family in M and obtain that there is an isomorphism ϕ : M/W →
k⊕

i=1
M/Ker(φi) defined by

ϕ(m +W) = (m + Ker(φ1),m + Ker(φ2), . . . ,m + Ker(φk))

One can check that ϕ−1[
k⊕

i=1

Im(1 − ψ1) + Ker(φi)
Ker(φi)

] =
Im(1 − ψ1) +W

W
. Since every M/Ker(φ j) � Im(φ j) is

hollow, (Im(1−ψ1)+W)/W ≪M/W. Without loss of generality, we now assume that Im(1−ψ1)+Ker(φ2) =M.
Thenφ2(1−ψ1)(M) = φ2(M). Sinceφ2(M) is hollow,φ2(1−ψ1)(M) is hollow. Thusφ2(1−ψ1) is a right hollow
element of S. Since I ,Mφ2(1−ψ1) andMφ2(1−ψ1) is a maximal right ideal of S, we take h ∈ I\Mφ2(1−ψ1). By using
the above argument, we can find s2 ∈ S such thatφ2(1−ψ1) = φ2(1−ψ1)hs2, and soφ2(1−(ψ1+(1−ψ1)hs2) = 0.
Put ψ2 = ψ1 + (1 − ψ1)hs2. Then, we have φi(1 − ψ2) = 0 for all i = 1, 2. Continuing this process, we
eventually get a ψ ∈ I such that φi(1 − ψ) = 0 for all i = 1, 2, . . . , k. Thus, Im(1 − ψ) ≤ W. We deduce that
(Im(1 − ψ) +W)/W ≪M/W.

From the proof of [22, 22.2], we have the following result of the Jacobson radical of a pseudo-projective
module.

Lemma 2.6. Let M be a right R-module. If M is a pseudo-projective module with S = End(M), then J(S) = { f ∈
S | Im( f )≪M}.

A right R-module is called a self-cogenerator if it cogenerates all its factor modules ([22]). If M has

coindependent submodules {M1,M2, ...,Mk} such that
k⋂

i=1
Mi ≪ M and M/Mi is hollow for every 1 ≤ i ≤ k,

M is said to have hollow dimension k, denoting this by hdim(M) = k.

Theorem 2.7. Let M be a self-cogenerator pseudo-projective module with finite hollow dimension with S = End(M).
1. If I is a maximal right ideal, then I =Mh for some right hollow element h ∈ S.
2. S is semilocal (i.e., S/J(S) is semisimple artinian).

Proof. Assume that M has finite hollow dimension, there exists a coindependent family {N1,N2, . . . ,Nn} of

submodules of M such that M/N1,M/N2, . . . ,M/Nn are hollow,
n⋂

i=1
Ni ≪M and an isomorphism M/(

n⋂
i=1

Ni) �⊕n
i=1(M/Ni). Take π j : M → M/M j the natural projections for all j = 1, 2, . . . ,n. We have that M is

self-cogenerator, there is a nonzero homomorphism f j : M/N j → M. Then, we have the homomorphisms
h j = f jπ j ∈ S for all j = 1, 2, . . . ,n. One can check that N j ≤ Ker(h j) for all j = 1, 2, . . . ,n. We deduce that
M/Ker(h j) is hollow and the family {Ker(h1),Ker(h2), . . . ,Ker(hn)} is coindependent. Take W =

⋂n
i=1 Ker(hi),

and so
n⋂

i=1
Ni ≤ W. We have that M/(

n⋂
i=1

Ker(hi)) �
n⊕

i=1
M/Ker(hi) and obtain that hdim(M/(

n⋂
i=1

Kerhi)) = n =

hdim(M). Thus, W ≪M by [6, 5.4(2)].
(1) Suppose that I is a maximal right ideal of S with I ,Mh for every right hollow element h of S. Then

by Lemma 2.5, there is an endomorphism φ in I such that (Im(1−φ)+W)/W ≪M/W. We have that W ≪M
and obtain that Im(1 − φ)≪M. From Lemma 2.6, it immediately infers that 1 − φ ∈ J(S) ≤ I, and so 1 ∈ I, a
contradiction.

(2) We have J(S) ≤
n⋂

i=1
Mhi . If f ∈

n⋂
i=1
Mhi , then Im( f ) + Ker(h j) , M for each j = 1, 2, . . . ,n. It follows

that Im( f ) ≪ M by Lemma 2.4, and so f ∈ J(S) by Lemma 2.6. Thus, J(S) =
n⋂

i=1
Mhi . We deduce that S is

semilocal.
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Corollary 2.8. Let R be a self-cogenerator ring with finite hollow dimension. If I is a maximal right ideal of R,
I =Mh for some right hollow element h ∈ R.

Remark 2.9. Theorem 2.7 holds if we replace the condition ”self-cogenerator” by the condition ”Hom(M/K,M)
nonzero for all proper submodules K of M”.

Example 2.10. (1) Let R be the ring of integers Z. Take M = Z. Then M is pseudo-projective with infinite hollow
dimension. Note that End(M) contains no hollow elements. Thus the statements (1) and (2) of Theorem 2.7 are not
satisfied. This shows that the hypothesis ”M has finite hollow dimension” in Theorem 2.7 is not superfluous.

(2) Let R be a nonlocal commutative domain with finitely many maximal ideals. Then, every nonzero element
h in R is not hollow. So End(R) contains no hollow elements. Thus the statements (1) and (2) of Theorem 2.7 are
not satisfied. Note that R is pseudo-projective with finite hollow dimension. But R is not self-cogenerator because
Hom(R/J(R),R) = 0. This example shows that Theorem 2.7 is not true if M is not self-cogenerator.

We denote by ∇(M) = { f ∈ S| Im( f )≪M} the set of all endomorphisms of M with small image.
Recall that an element a ∈ R is said to be regular (in the sense of von Neumann) if there exists x ∈ R such

that axa = a. A ring R is called regular if every element of R is regular.

Lemma 2.11 (McCoy’s Lemma). Let R be a ring and a, c ∈ R. If b = a − aca is a regular element of R, then so is a.

Proof. This is by definition.

Lemma 2.12. Let M be a pseudo-projective module which is a self-cogenerator, S = End(M). If a < ∇(M), then
Im(a − asa) < Im(a) for some s ∈ S.

Proof. If a < ∇(M), then Im(a) is not a small submodule of M. Hence there exists a proper submodule A of
M such that A + Im(a) =M. We have the natural isomorphism

M/(A ∩ Im(a)) �M/ Im(a) ⊕M/A

Since M is a self-cogenerator, there exists a nonzero homomorphism M/A → M. It follows that there is a
nonzero endomorphism λ of M such that A is contained in Ker(λ). Then, we have Im(a) + Ker(λ) = M,
and so (λa)(M) = λ(M). Since M is pseudo-projective, (λa)S = λS and so λ = λas for some s ∈ S. On
the other hand, as λ is nonzero, there is m ∈ M such that λ(m) is nonzero. Call y = as(m) ∈ Im(a). One
can check that y and λ(y) are nonzero. Next, we show that y is not in Im(a − asa). Indeed, suppose that
y = (a − asa)(x) ∈ Im(a − asa) for some x ∈M. Then, we have

λ(y) = λ(a − asa)(x) = (λa − λasa)(x) = (λa − λa)(x) = 0

This is a contradiction, and so y ∈ Im(a) \ Im(a − asa).

Theorem 2.13. Let M be a pseudo-projective right R-module which is a self-cogenerator and S = End(M). Then the
following conditions are equivalent:

(1) S is left perfect.
(2) For any infinite sequence s1, s2, · · · ∈ S, the chain

Im(s1) ≥ Im(s1s2) ≥ · · ·

is stationary.

Proof. (1)⇒ (2). Let si ∈ S, i = 1, 2.... Since S is left perfect, S satisfies DCC on finitely generated right ideals.
So the chain s1S ≥ s1s2S ≥ · · · terminates. Thus, there exists n > 0 such that s1s2....snS = s1s2...skS for all k > n.
It follows that s1s2....sn = s1s2...sk f and s1s2...sk = s1s2....sn1 for some f , 1 ∈ S. Thus, s1s2....sn(M) = s1s2...sk(M)
for all k > n.
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(2)⇒ (1). We first prove that S/∇(M) is a von Neumann regular ring. Let a1 < ∇(M). Then by Lemma 2.12,
there is c1 ∈ S such that Im(a1 − a1c1a1) < Im(a1). Put a2 = a1 − a1c1a1, and so Im(a2) < Im(a1). If a2 ∈ ∇(M),
then we have ā1 = ā1c̄1ā1, i.e., ā1 is a regular element of S/∇(M) (where s̄ = s+∇(M) for all s ∈ S). If a2 < ∇(M),
there exists a3 ∈ S such that Im(a3) < Im(a2) with a3 = a2 − a2c2a2 for some c2 ∈ S by the preceding proof.
Repeating the above-mentioned process, we get a strictly ascending chain

Im(a1) > Im(a2) > · · · ,

where ai+1 = ai − aiciai for some ci ∈ S, i = 1, 2.... Let

b1 = a1, b2 = 1 − c1a1, ..., bi+1 = 1 − ciai, ...,

then
a1 = b1, a2 = b1b2, ..., ai+1 = b1b2...bi+1, ....

and we have the following strictly ascending chain

Im(b1) > Im(b1b2) > · · · ,

which contradicts the hypothesis. Hence there exists a positive integer m such that am+1 ∈ ∇(M), i.e.,
am − amcmam ∈ J(S). This shows that ām is a regular element of S/∇(M), and hence ām−1, ām−2, ..., ā1 are regular
elements of S/∇(M) by Lemma 2.11, i.e., S/∇(M) is von Neumann regular. We have J(S) = ∇(M) by Lemma
2.6, proving that S/J(S) is von Neumann regular.

We show that J(S) is left T-nilpotent. In fact, if for any sequence a1, a2, . . . from J(S), the chain

Im(a1) ≥ Im(a1a2) ≥ · · ·

is stationary. Thus, there exists n such that a1a2...an(M) = a1a2...ak(M) for all k > n. We have that M is
pseudo-projective and obtain that a1a2...anS = a1a2...akS for all k > n. Then, a1a2...an(1 − an+1s) = 0 for some
s ∈ S, and so a1a2...an = 0 (since 1 − an+1s is a unit of S). It means that J(S) is left T-nilpotent.

Next, we prove that S/J(S) contains no infinite sets of non-zero orthogonal idempotents. Indeed, let
ε1, ε2, ..., εk... be a countably infinite set of non-zero orthogonal idempotents in S/J(S). Then, there exist non-
zero orthogonal idempotents e1, e2, ..., ek... in S such that εi = ei + J(S), i = 1, 2, ... by [3, Proposition 27.1]. Put
ai = 1−(e1+e2+ · · ·+ei), i = 1, 2, .... Then ai+1 = ai−aiei+1ai.One can check that ei+1ai+1 = 0 and ei+1ai = ei+1 , 0.
Take m ∈ M with ei+1(m) , 0. Call y = ai(m), and so y is nonzero in Im(ai). Suppose that y ∈ Im(ai+1),
y = ai+1(t) for some t ∈M. Then, we have

ei+1ai(m) = ei+1(y) = ei+1ai+1(t) = 0

Thus, ei+1(m) = ei+1ai(m) = 0, a contradiction. It means that we have the strict sequence Im(ai) >
Im(ai+1), i = 1, 2, .... Let bi = 1− ei, i = 1, 2, .... Then ai = b1b2...bi and Im(b1b2...bi) > Im(b1b2...bi+1), i = 1, 2, .....
We obtain the following strictly ascending chain Im(b1) > Im(b1b2) > ..., a contradiction. Hence S/J(S)
contains no infinite sets of non-zero orthogonal idempotents. We deduce that S/J(S) is semisimple. Thus S
is left perfect.

Corollary 2.14. Let R be a self-cogenerator. If for any infinite sequence r1, r2, · · · in R, the chain r1R ≥ r1r2R ≥ · · ·
is stationary then R is left perfect.

Note that if M has DCC on the submodules of the form IM, where I is a right ideal of End(M), ∇(M) is
nilpotent. Thus, we have the following corollary

Corollary 2.15. Let M be a self-cogenerator pseudo-projective module with S = End(M). If M has DCC on the
submodules of the form IM, where I is a right ideal of S then S is semiprimary.
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Lemma 2.16. Let N be a submodule of a pseudo-projective module M. Then N is a direct summand of M if and only
if M/N is isomorphic to a direct summand of M.

Proof. The necessary condition is obvious. Now, assume that M/N is isomorphic to a direct summand of M.
Take ϕ : K→M/N an isomorphism with M = K ⊕ K′. Let π : M→ K be the canonical projection, ι : K→M
be the inclusion map and p : M → M/N the natural projection. Since M is pseudo-projective, p1 = ϕπ for
some an endomorphism 1 of M. Then, we have p1ιϕ−1 = 1M/N. It means that p splits, and so N is a direct
summand of M.

A module M is called a D2-module if A is an arbitrary submodule of M such that M/A is isomorphic to a
summand of M, A is a direct summand of M.

Corollary 2.17. Every pseudo-projective module is a D2-module.

Corollary 2.18. Let M = A ⊕ B be a pseudo-projective module. Then, every epimorphism A→ B splits.

Proof. Let f : A → B be an epimorphism. Then, A/Ker( f ) � B is a direct summand of M. From Lemma
2.16, Ker( f ) is a direct summand of M, and so it is a direct summand of A. We deduce that f splits.

Let N and L be submodules of a right R-module M. N is called a supplement of L, if N + L = M and
N∩L≪ N. Recall that a submodule U of the R-module M has ample supplement in M if, for every V ≤M with
U + V = M, there is a supplement V0 of U with V0 ≤ V. M is called supplemented (resp., ample supplemented)
if each of its submodules has a supplement (resp., ample supplement) in M ( see [22]).

From Corollary 2.18, we have the following results:

Proposition 2.19. For a ring R, the following statements are equivalent:

1. R is right perfect.
2. Every pseudo-projective right R-module is amply supplemented.
3. Every pseudo-projective right R-module is supplemented.

Proposition 2.20. For a ring R, the following statements are equivalent:

1. Every pseudo-projective right R-module is projective.
2. The direct sum of any family of pseudo-projective right R-modules is projective.
3. The direct sum of any two pseudo-projective right R-modules is projective.
4. Every right R-module is pseudo-projective;
5. Every finitely generated R-module is pseudo-projective.
6. R is semisimple artinian.

3. On SSP-modules anf SIP-modules

In this section, we study direct sums and intersections of two direct summands of a pseudo-projective
module. A right module M is said to have summand intersection property (in short, an SIP-module) if the
intersection of every pair of direct summands of M is again a direct summand of M. A right R-module M is
said to have summand sum property (in short, an SSP-module) if the sum of every pair of direct summands
of M is again a direct summand of M ([7, 21]).

Lemma 3.1. Let M be a right R-module and let e and f be idempotents of End(M). Then

1. e(M) + f (M) is a direct summand of M if and only if (1 − e) f (M) is a direct summand of M.
2. e(M) ∩ f (M) is a direct summand of M if and only if Ker[(1 − f )e] is a direct summand of M.
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Proof. (1) On can check that e(M) + f (M) = e(M) ⊕ (1 − e) f (M). Assume that e(M) + f (M) is a direct
summand of M. It follows that (1 − e) f (M) is a direct summand of M. Conversely, let M = (1 − e) f (M) ⊕ K
with K a submodule of M. Then, we have (1 − e)(M) = (1 − e) f (M) ⊕ [K ∩ (1 − e)(M)]. It follows that
M = e(M) ⊕ (1 − e) f (M) ⊕ [K ∩ (1 − e)(M)] = [e(M) + f (M)] ⊕ [K ∩ (1 − e)(M). Thus, e(M) + f (M) is a direct
summand of M.

(2) We can check that Ker[(1− f )e] = [e(M)∩ f (M)]⊕ (1− e)(M). Thus, if Ker[(1− f )e] is a direct summand
of M, then e(M)∩ f (M) is a direct summand of M. Conversely, let M = [e(M)∩ f (M)]⊕H with H a submodule
of M. It follows that e(M) = [e(M) ∩ f (M)] ⊕ [H ∩ e(M)], and so

M = [e(M) ∩ f (M)] ⊕ [H ∩ e(M)] ⊕ (1 − e)(M) = Ker[(1 − f )e] ⊕ [H ∩ e(M)]

We deduce that Ker[(1 − f )e] is a direct summand of M.

It is well known that an endomorphism f ∈ End(M) is regular if and only if Ker( f ) and Im( f ) are direct
summands of M.

From Lemma 3.1, we have the following results in [2].

Corollary 3.2 ([2, Theorem 2.3]). For a right R-module M, the following conditions are equivalent.

1. M is an SSP-module.
2. For any two regular homomorphisms f , 1 ∈ End(M), the module Im( f1) is a direct summand of the module M.

Corollary 3.3 ([2, Theorem 2.4]). The following conditions are equivalent for a right R-module M.

1. M is an SIP-module.
2. For any two regular homomorphisms f , 1 ∈ End(M), the module Ker( f1) is a direct summand of the module

M.

Next, we give characterizations the product of any two regular elements of endomorphism rings of pseudo-
projective modules.

Theorem 3.4. The following conditions are equivalent for a pseudo-projective right R-module M.

1. M is an SSP-module.
2. The product of any two regular elements of End(M) is a regular element.

Proof. (1) ⇒ (2). Assume that M is an SSP-module. Let f , 1 ∈ End(M) be regular endomorphisms. By
Lemma 3.1 or Corollary 3.2, f1(M) is a direct summand of the module M. Moreover, we have M/Ker( f1) �
f1(M). It follows that Ker( f1) is a direct summand of the module M by Lemma 2.16. We deduce that f1 is
regular.

(2)⇒ (1) by Corollary 3.2.

Corollary 3.5. Every pseudo-projective SSP-module is an SIP-module

The dual of Theorem 3.4, we have the following result for pseudo-injective modules.

Theorem 3.6. The following conditions are equivalent for a pseudo-injective right R-module M.

1. M is an SIP-module.
2. The product of any two regular elements of End(M) is a regular element.

Proof. We only prove (1) ⇒ (2). Assume that M is an SIP-module. Let f , 1 ∈ End(M) be regular endomor-
phisms. Then, Ker( f1) is a direct summand of M. It follows that Im( f1) is isomorphic to a direct summand
of M, and so Im( f1) is a direct summand of M. We deduce that f1 is regular.

(2)⇒ (1) by Corollary 3.2.
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Corollary 3.7. Every pseudo-injective SIP-module is an SSP-module

From above results, we have the following proposition:

Proposition 3.8. The following statements are equivalent for a ring R:
1. R is semisimple artinian.
2. Every pseudo-projective right R-module is an SSP-module.
3. Every pseudo-projective right R-module is semisimple.

4. Some study of modules over formal triangular matrix rings

Let A and B be rings and BMA be a bimodule. Take K =
[

A 0
M B

]
a formal triangular matrix ring. It is

well known that ([8]) the category of right K-modules and the categoryW of triples (X; Y) f are equivalent,
where X is a right A-module and Y is a right B-module and f : Y ⊗B M → X is a right A-homomorphism.
If (X; Y) f and (U; V)1 are two objects inW, then a morphism from (X; Y) f to (U; V)1 in W are pairs (φ1;φ2)
where φ1 : X → U is a right A−homomorphism, φ2 : Y → V is a right B−homomorphism satisfying the
condition φ1 ◦ f = 1 ◦ (φ2 ⊗ 1M). The right K−module corresponding to the triple (X; Y) f is the additive
group X ⊕ Y with the right action given by

(x, y)
[

a 0
m b

]
= (xa + f (y ⊗m), yb).

We write (X ⊕ Y)K is the right K−module. On the other hand, if (φ1;φ2) : (X; Y) f → (U; V)1 is a map inW,
the associated right K−homomorphism φ : (X ⊕ Y)T → (U ⊕ V)K is given by φ(x; y) = (φ1(x);φ2(y)) for any
x ∈ X and y ∈ Y. One can check that φ is injective (resp., surjective) if and only if φ1 : X→ U, φ2 : Y→ V are
injective (resp., surjective). It is convenient to view such triples as K−modules and the morphisms between
them as K−homomorphisms. Here we should note that the K−module KK corresponds to (A⊕M; B) f , where
f is the right A−homomorphism B ⊗B M→ A ⊕M given by f (b ⊗m) = (0; bm).

Let (X; Y) f ∈ Ob(W) and (X⊕Y)K be the associated right K−module. Under the right K−action on X⊕Y
we have

(0 ⊕ Y)
[

0 0
M 0

]
= ( f (Y ⊗M), 0).

In general the submodule f (Y ⊗M) of XA is denoted by YM. Now consider Y′ ≤ YB and let j2 : Y′ → Y
denote the inclusion map. Then

(0 ⊕ Y′)
[

0 0
M 0

]
= ( f ( j2 ⊗ 1M)(Y′ ⊗M), 0).

In general, the submodule f ( j2 ⊗ 1M)(Y′ ⊗ M) of XA is denoted by Y′M. Let X′ ≤ XA satisfy Y′M ⊆ X′

. Writing f ′ for f ( j2 ⊗ 1M) and denoting the inclusion X′ → X by j1 we see that (X′; Y′) f ′ ∈ Ob(W) and
( j1; j2) : (X′; Y′) f ′ → (X; Y) f is a map in W realizing (X′ ⊕ Y′)K as a K−submodule of (X ⊕ Y)K. Therefore
when we take a submodule (X′⊕Y′)K of (X⊕Y)K we have X′ ≤ XA,Y′ ≤ YB, f ( j2⊗1M)(Y′⊗M) ≤ X′. The map
f ′ : Y′⊗M→ X′ is completely determined; it has to be f ( j2⊗1M). Let X′′ (resp. Y′′ ) be a quotient of XA (resp.
YB ) with η1 : X → X′′ (resp. η2 : Y → Y′′ ) the canonical maps. Let ker η1 = X′ and ker η2 = Y′. Assume
that Y′M ⊆ X′ . Let j1 : X′ → X, j2 : Y′ → Y be the inclusion maps. Clearly, we have the A−homomorphism
f ′′ : Y′′ ⊗M→ X′′ rendering the following diagram commutative

Y′ ⊗M Y ⊗M Y′′ ⊗M 0

X′ X X′′ 0
?

f ′

-j2⊗1M

?
f

-η2⊗1M -

?
f ′′

-j1 -η1 -
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In this diagram f ′ = f ( j2 ⊗ 1M) and the rows are exact. Also it is clear that (η1; η2) : (X; Y) f → (X′′; Y′′) f ′′

is a map inW realizing (X′′⊕Y′′)K as a quotient of (X⊕Y)K. The kernel of the associated K−homomorphism
η : (X⊕Y)K → (X′′ ⊕Y′′)K is precisely (X′ ⊕Y′)K.Now when we deal with a quotient (X′′ ⊕Y′′)K of (X⊕Y)K
the A−homomorphism f ′′ : Y′′ ⊗M→ X′′ is completely determined.

Let V = (X; Y) f be a right K−module. Take f̃ : Y → HomA(M,X) defined by f̃ (y)(m) = f (y ⊗ m) for all
y ∈ Y and m ∈M. Then, f̃ is the B-homomorphism.

Theorem 4.1. Let V = (X; Y) f be a right K−module. If X is a pseudo-projective right A-module and f̃|Y′ is an
isomorphism for every submodule (X′,Y′) f ′ of VK, then V is a pseudo-projective right K-module.

Proof. Let V′′ = (X′′; Y′′) f ′′ be a quotient of VK. Then X′′ = X/X′; Y′′ = Y/Y′, η1 : X → X′′ and η2 : Y → Y′′

are the natural epimorphisms, (X′; Y′) f ′ is a submodule of V with the homomorphism f ′ = f ( j2 ⊗ 1M) (with
j2 : Y′ → Y the inclusion map) and f ′′ : Y′′ ⊗M→ X′′ is the A−homomorphism which makes the following
diagram commutative:

Y′ ⊗M Y ⊗M Y′′ ⊗M 0

X′ X X′′ 0
?

f ′

-j2⊗1M

?
f

-η2⊗1M -

?
f ′′

-j1 -η1 -

where j1 : X′ → X is the inclusion map. Then, η = (η1; η2) : V → V′′ is the corresponding natural
K−homomorphism. Let σ : V → V′′ be an arbitrary K−epimorphism. Then σ corresponds to the pair
(σ1; σ2) such that σ1 : X → X′′ is an A−epimorphism, σ2 : Y → Y′′ is a B−epimorphism and σ1 f =
f ′′(σ2 ⊗ 1M) and σ(x; y) = (σ1(x); σ2(y)). We have that X is pseudo-projective and obtain that there exists a
right A−homomorphism σ̄1 : X→ X such that η1σ̄1 = σ1.Now we want to define a right B−homomorphism
σ̄2 : Y → Y such that the pair (σ̄1; σ̄2) lifts σ with the corresponding K−homomorphism σ̄. For any element
y ∈ Y, we can define a right B-homomorphism θ : M → X with θ(m) = σ̄1 f (y ⊗ m) for all m ∈ M. By
the hypothesis, f̃ is an isomorphism, and so there exists a unique y1 ∈ Y such that f̃ (y1) = θ. Now let
σ̄2 : y → y1. One can check that σ̄2 is an B−endomorphism of Y. For every y ∈ Y and m ∈ M, we have
f (σ̄2 ⊗ 1M)(y ⊗ m) = f (σ̄2(y) ⊗ m) = f (y1 ⊗ m) = f̃ (y1)(m) = θ(m) = σ̄1 f (y ⊗ m), where σ̄2(y) = y1 and
f̃ (y1) = θ. Therefore f (σ̄2 ⊗ 1M) = σ̄1 f . Thus σ̄ = (σ̄1; σ̄2) : (X; Y) f → (X; Y) f is a right K-homomorphism.
Now we should see that ησ̄ = σ. It is enough to show that η2σ̄2 = σ2. Take y ∈ Y an arbitrary element.
We have that σ1 f = f ′′(σ2 ⊗ 1M) for all m ∈ M, (σ1 f )(y ⊗ m) = σ1( f (y ⊗ m)) = f ′′(σ2(y) ⊗ m) and obtain
η1σ̄1( f (y ⊗ m)) = f ′′(σ2(y) ⊗ m). Let σ2(y) = z + Y′ for some z ∈ Y. On the other hand, f ′′(η2 ⊗ 1M) = η1 f
and so f ′′((η2 ⊗ 1M)(z ⊗ m)) = η1 f (z ⊗ m) = η1 f̃ (z)(m) = η1σ̄1 f (y ⊗ m) for all m ∈ M. Since f (σ̄2 ⊗ 1M) = σ̄1 f ,
η1σ̄1 f (y ⊗ m) = η1 f (σ̄2 ⊗ 1M)(y ⊗ m) = η1 f (σ̄2(y) ⊗ m) = η1 f̃ (σ̄2(y))(m) for all m ∈ M. Now η1 f̃ (z)(m) =
η1 f̃ (σ̄2(y))(m) for all m ∈ M. This means that f̃ (z − σ̄2(y)) is a right A−homomorphism from M to X′. Since
f̃|Y′ is an isomorphism, there exists an element y′ ∈ Y′ such that f̃|Y′ (y′) = f̃ (z − σ̄2(y)) and so y′ = z − σ̄2(y).
Thus, σ2(y) = η2σ̄2(y) or σ2 = η2σ̄2.

Corollary 4.2. Let V = (X; Y) f be a right K−module. If X is a pseudo-projective right A-module and f̃ is an
isomorphism, then V is a pseudo-projective right K-module.

Example 4.3. Let A be a ring and M be a right A−module such that ZM is torsion-free which is not pseudo-projective.

Let K =
[

A 0
M Z

]
and consider the right K−module VK = (M; Z) f where f : Z ⊗M→M defined by n ⊗m 7→ nm

for all n ∈ Z and m ∈ M. Clearly, f is an R−isomorphism. Therefore, VK is pseudo-projective by [5, 4.1.1]. On the
other hand, M is not pseudo-projective.

Theorem 4.4. Let V = (X; Y) f be a right K−module. If V is a pseudo-projective right K-module, then Y is a
pseudo-projective right B-module and X/ f (Y ⊗M) is a pseudo-projective right A-module.
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Proof. Let η : Y→ Y/K be the natural epimorphism and α : Y→ Y/K be any B−epimorphism, where K ≤ Y.
Then we can construct the quotient (0,Y/K)0 of (X,Y) f with the following commutative diagram:

K ⊗M Y ⊗M Y/K ⊗M 0

X X 0 0

-

?

f ′

-j⊗1M

?

f

-η⊗1M -

?
0

-1X -0 -

with j : K→ Y the inclusion map and f ′ = f ( j ⊗ 1M).
Now we have the natural K-epimorphism

η̄ = (0; η) : (X; Y) f → (0; Y/K)0

and a right K-epimorphism

ᾱ = (0;α) : (X; Y) f → (0; Y/K)0

Since V is pseudo-projective, there is a right K−homomorphism β : V → V such that η̄β = ᾱ. Take
β = (β1, β2) with β2 : Y → Y a right B−homomorphism and β1 : X2 → X1 a right A−homomorphism such
that β1 f = f (β2 ⊗ 1M) and β(x; y) = (β1(x); β2(y)) for all x ∈ X and y ∈ Y. Thus ηβ2 = α. We deduce that Y is
pseudo-projective.

Let X′/ f (Y⊗M) be a submodule of X/ f (Y⊗M). Now consider the natural epimorphism ν : X/ f (Y⊗M)→
X/ f (Y⊗M)
X′/ f (Y⊗M) and a right A−epimorphismµ : X/ f (Y⊗M)→ X/ f (Y⊗M)

X′/ f (Y⊗M) . Letγ : [X/ f (Y⊗M)]/[X′/ f (Y⊗M)]→ X/X′

be the isomorphism and π : X→ X/ f (Y ⊗M) be the natural epimorphism. One can check that (X′; Y) f ′ is a
submodule of V with f ′ = f and (X/X′, 0)0 is a factor module of V.

Now (γµπ, 0) : (X; Y) f → (X/X′; 0)0 is a right K−epimorphism and (γνπ; 0) : (X; Y) f → (X/X′; 0)0 is the
natural epimorphism. We have that V is pseudo-projective and obtain that a right K−homomorphism with
the pair (µ1;µ2) : (X; Y) f → (X; Y) f such that (γµπ, 0) = (γνπ, 0)(µ1, µ2)

Note that we have the compositionsµ1 f = f (µ2⊗1M) and νπµ1 = µπ. Let us define the A−homomorphism
µ̄ : X/ f (Y⊗M)→ X/ f (Y⊗M) by x+ f (Y⊗M) 7→ µ1(x)+ f (Y⊗M). Since µ1 f = f (µ2 ⊗ 1M), µ̄ is well-defined
and since νπµ1 = µπ, νµ̄ = µ. Therefore we have νµ̄ = µ.

We deduce that X/ f (Y ⊗M) is pseudo-projective.

We say that a module P is a pseudo-projective cover of any module U if, there exists an epimorphism
φ : P→ U such that P is pseudo-projective and Ker(φ) is small in P.

Corollary 4.5. If (X,Y) f has a pseudo-projective cover as a right K-module, then (X/ f (Y ⊗ M)A and YB have
pseudo-projective covers.

Proof. Let φ : (U,V)1 → (X,Y) f be a pseudo-projective cover of (X,Y) f . Then there exist homomorphisms
φ1 : UA → XA, φ2 : VB → YB such that φ = (φ1, φ2) : (U; V)1 → (X; Y) f is a right K-epimorphism with
φ11 = f (φ2 ⊗ 1M) and (φ1(u);φ2(v)) = φ(u; v). By [4, Theorem 2.4], the epimorphism φ2 : VB → YB has small
kernel and we have the epimorphism φ̄1 : U/1(V⊗M)→ X/ f (Y⊗M) with small kernel. Thus (X/ f (Y⊗M)A
and YB have pseudo-projective covers with the epimorphisms φ̄1 and φ2 respectively by Theorem 4.4.
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