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Abstract. In the present paper, first we characterize the multiplier algebra, (maximal) ideals, minimal
idempotents and spectrum of the generalized amalgamated Banach algebra A Rg X in terms of A and X and
the bilinear mapping © from X x X into A. Then, we show that there are a strong relationship between some
of homological properties of A Rg X, such as Connes-amenability, flatness and projectivity, ¢-biprojectivity,

and the Banach algebras A and X and the mapping ©. The results of this paper extend several results in the
literature.

1. Introductions and Preliminaries

Let A and X be Banach algebras and © : X X X — A be a bounded bilinear mapping. If also X is an

algebraic Banach A-module with respect to ©, which is a Banach A-module with compatible operations,
that is for each a,a’ € Aand x,x’,x” € X

a®(x, x') = Oax, x"), O(x, x")a = O(x, x'a), B(xa, x") = O(x,ax’), O(xx’,x"") = O(x, x'x"),
in A and
(xx)a = x(x'a),a(xx") = (ax)x’, (xa)x" = x(ax"), O(x, x")x"”" = xO(x’, x"),

in X, then a direct verification shows that the ¢!-direct product A X X as a linear space with the product
(a,x)(@,x") = (aa" + O(x, x"),ax’ + xa’ + xx’) (a,a’ € A, x,x" € X),

is a Banach algebra. We call this Banach algebra the generalized amalgamated Banach algebra with respect
to ® and we denote it by A Rg X in this paper.

If X be an algebraic Banach A-module (that is an algebraic A-module with respect to the zero bilinear
mapping). Then the generalized module extension Banach algebra A »« X is a generalized amalgamated
Banach algebra with respect to ® = 0, See [24]. The module extension Banach algebras, unitization of
Banach algebras, Lau product of Banach algebras and direct product of Banach algebras are the main
examples of generalized amalgamated Banach algebras; see for more details about this Banach algebras [4],
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[5], [17] and [32].

Many properties of these Banach algebras such as n-weak amenability, Connes amenability, topological
centers, Biflatness, and Biprojectivity and other properties have been studied by many authors, see [1],
[24], [18], [6], [7], [8], [12], [13], [14], [20], [22], [23], [26], [30], [31], [32], [9] and references therein. Another

important class of these Banach algebras is the generalized matrix Banach algebra G = [ ;3 Z\é[ ], see [16],

where A and B are Banach algebras, M is a (A, B)-module and N is a (B, A)-module can be identify with the
generalized amalgamated Banach algebra (A ® B) Rg (M ® N), see [15] for details. Also see [16] for some
homological properties of generalized matrix Banach algebras.

Consider also G = A®_, A? where A® is A with zero product and the actions of A on A° are the product
7t of the Banach algebra A and ® = —nt (Where A = R this product is the usual product on C). Then G is a
generalized amalgamated Banach algebra.

For a generalized amalgamated Banach algebra A Rg X one can directly checked that the dual (A Re X)*
as a Banach (A ®Re X)-module enjoys the following module operations:

(f, 9@, x)=(fa+gx,gx+ga+ fx),
(@, )(f, 9) = @af +xg,x9 +ag +x.f),

foralla€ A, f € A*and x € X, g € X*, where ”.” is denoted for the corresponding bilinear mapping induced
by ©. In the sequel for simply of our notations we omit ”.”.

The generalized amalgamated Banach algebra G = A Rg X was introduced by authors in [15] and many

important properties such as n-weak amenability, topological centers, bounded approximate identity, and
the ideal structure have been studied.
The present paper divides into five sections. In sections 2 and 3, we characterize the multiplier algebra,
(maximal) ideals, minimal idempotents and spectrum of A Rg X in terms of A and X and the mapping
©®. Then, in sections 4 and 5, we show that there are a strong relationship between some of homological
properties of generalized amalgamated Banach algebra A Rg X, such as Connes-amenability, flatness,
projectivity and ¢-biprojectivity, and the corresponding properties of Banach algebras A and X and the
mapping ©. These results extend some previous results in this field.

2. Some Primary results on A Rg X

In this section we obtain some primary results on the generalized amalgamated Banach algebra G =
A Rg X.

Proposition 2.1. Let G = A Rg X be a generalized amalgamated Banach algebra. Then the following statements
hold.

(i) G is commutative if and only if both A and X are commutative, X is a symmetric A-bimodule and © = @'

(ii) Suppose that A, A’, X and X' are Banach algebras such that X and X' are algebric Banach A and A’-modles
with respect to © and ©’, respectively and there exist isomomorphisms ¢ : A — A’ and ¢ : X — X’ such that
W(ax) = e(a)(x) and Y(xa) = P(x)p(a) and O (Y(x), P(y)) = @ o O(x, y). Then the generalized amalgamated
Banach algebras A Rg X and A’ Rer X’ are isomorphic.

(iii) If A Re X has an identity (ap, Xo), then A has the identity ay, xoA = Axy = 0, apx + Xox = xap + xxo = x and
O(xp,x) = O(x, x9) = 0, for each x € X.

(iv) If A is unital and X is a unital Banach A-module, then A Re X is unital.

Similar results of the parts (iii) and (iv), can be given for the (left or right) approximate identities.



S. Barootkoob, H. Lakzian / Filomat 38:4 (2024), 1401-1412 1403

Proof. (i) It is obvious.

(ii) It is sufficient to verify that the map F from A Rg X into A’ Re X’ defined by F(a, x) = (p(a), P(x)) is
an isomorphism.

(iii) For each a4 € A and x € X, we have (4,0) = (ap, x0)(a,0) = (apa,xoa) and (0,x) = (a0, %0)(0,x) =
(O(x0, x), apx + x0x). Again repeat this process for (a, 0)(ag, x0) and (0, x)(ao, xo).

(iv) If A has an identity e then (e, 0) is the identity of A R X. O

In the following proposition we will characterize the minimal idempotent of generalized amalgamated
Banach algebras.

Proposition 2.2. Suppose that G = A Re X is a generalized amalgamated Banach algebra and xo € X is arbitrary
and fixed. Let ©(X, xp) = O(xg, X) = 0 and xpA = Axy € {xo). Then G has a minimal idempotent (ay, xo) if and only
if one of the following items hold.

(i) ap = 0 and xq is a minimal idempotent of X.
(ii) ap is a minimal idempotent of A and for each x € X,

(aox + xox)ag = —(agx + xox)xg and xg + agXxg + Xoldog = Xg.

Proof. (ag, xp) is a minimal idempotent if and only if for each (a,x) € G, we have (a9, x0)* = (a9, %) and
(a0, x0)(a, x)(a0, x0) = Agx(ao, o), for some A, .. This is equivalent to

ag + O(xo, Xo) = ao, (2.1)

xé + agXg + Xodo = X (2.2)
and

apaay + O(xo, x)ag + O(apx + Xxoa + XoX, X0) = Agxao, (2.3)

apxag + Xoaag + Xoxdg + apaxo + O(xo, X)xo + ApXXy + XXy + XoXX0 = AgxXo (2.4)

foreacha € Aand x € X.

Obviously if one of (i) is true, then (a9, xo) is a minimal idempotent. Also if (i) is true, then since x9A, Axy €
(x0), (a0, x0) is a minimal idempotent.

For the converse, if (a9, X) is a minimal idempotent, then 2.1 and 2.3 imply that 11(2) = ap and apaay = A0,
for each x € X; and for x = 0, we have apaag = A4 0a9. Therefore we have two cases:

e 19 =0, and from 2.2 and 2.4 with a = 0 we obtain x; is a minimal idempotent, which is (i).

ee g is a minimal idempotent. Putting x = 0 in 2.3, we conclude that A, , = A,, for eacha € A and x € X.
Thus by taking 2 = 0 in 2.4, we have

apxag + Xoxag + apxxo + Xoxxo = Ag,0Xo, (2.5)

and by putting x = 0in (2.5), we have Aoy = 0. Therefore (i) is valid by 2.2 and (2.5). O

3. Characters and Spectrum of A Rg X

In this section, we will obtain a characterization of the left multipliers of A g X and then we conclude
its spectrum. At the end of this section, we will compute its spectrum by computing of both spectrums A
and X.
The following result characterized the left multipliers of A Rg X which is noted by LM(A Rg X).

Proposition 3.1. The operator T is in LM(A Re X) if and only if there exists some Uy € Homa(A,A), Ux €
Homx(X, A), Vx € LM(X) and V4 € Homx(A, X) such that for each a,b € A and x € X, we have



S. Barootkoob, H. Lakzian / Filomat 38:4 (2024), 1401-1412 1404
(i) T((a,x)) = (Ua(@) + Ux(x), Va(@) + Vx(v)).
(ii) Ua(aa') = alla(@’), and Va(aa') = aVa(@) .
(iii) Ux(xx’) + Ua(®(x, X)) = Ox, Vx(x')) and Vx(xx’) + Va(@O(x, x)) = xUx(x') + xVx(x').
(iv) Up(xa’) = xUx (@) + O, Va@)) and Va(xa') = xUa@) + xVa(@).
(v) Ux(ax') = alx(x’) and Vx(ax') = aVx(x').

Proof. Assume that T € LM(A Re X). Then, there exists bounded linear maps U : A Rg X — A and
V:ARe X — A such that T = (U, V). Taking Ua(a) = U((a,0)), Vala) = V((a,0)) for each a € A, and
Ux(x) = U((0,x)), Vx(x) = V((0,x)), for each x € A. Then clearly these mappings are linear and satisfy in (i).
For another parts, we have

T((a,x)@,x")) =T((aa’ + O(x,x),ax’ + xa’ + xx"))
= (UA(aa’ + O(x, x)) + Ux(ax’ + xa’ + xx’) (3.1)

,Valaa" + O(x, x')) + Vx(ax’ + xa’ + xx’))
and

(@, )T(@,x)) = (@,2)(Us(@) + Ux(x'), Va@) + V(")
= (allA(a’) +alx(x’) + O(x, Va(a') + Vx(x)) (3.2)

,aVaa') +aVx(x') + xUa (@) + xUx(x") + xVa(a’) + xVX(x’)),
foreacha,a’ € A and x,x” € X. From (3.1) and (3.2), we get
Uu(aa’ + O(x,x")) + Ux(ax’ + xa’ + xx’) = alls(a’) + alx(x") + O(x, Va(a') + Vx(x')) (3.3)
and

Valaa’ + O(x, x")) + Vx(ax’ + xa’ + xx’) = aV@)+aVx(x') +xUs(@)

+xUx(x") + xVa(a@’) + xVx(x'), (3.4)

foreacha,a’ € Aand x,x’ € X. Putting x = x’ = 0in (3.3) and (3.4), we have the statement (ii), again taking
a=a =0in (3.4) and (3.4), we get (iii). For the parts of (iv) and (v), puta =0, =0anda’ =0, x =0, in
(3.3) and (3.4) respectively.

The converse can be prove easily. [

A similar argument as the proof of the last proposition implies the following proposition, which we omit
its proof.

Proposition 3.2. (a, ) € 0(A Be X) if and only if for each a,b € A and x,y € X, the following conditions hold.
(i) a0 ®,y) +plxy) = BRPW).
(ii) a(ab) = a(@)a(b).
(iii) a(a)p(x) = lax).
(iv) B(x)a(a) = P(xa).

In the next theorem, we characterize the character space of A Bg M, where M is a closed ideal of X. Note
that A ®g M is a Banach algebra, if AM UMA C M.
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Theorem 3.3. Suppose that 0(A) # 0 and span(AM U MA) = M, where M is a closed ideal of X. If for each a € o(A),
a0 Olyxm =0, then 6(A Rg M) = U U V, where

U={mp, p): peoM), meM, p(m) =1, m. o Blpxm = 0},
V={0): acall), ao® =0}

Proof. Obviously V C ¢(A Rg M) and sincce for each m € M and f € o(M) with f(m) = 1 we have
B(mm’) = p(m’m), therefore U C 0(A e M) and thus U U V C 0(A Rg M).
Now let (o, f) € 0(A ®g M) and (a,m), (a’,m") € A Bg M. Then

{a,B), (@,m).(a’,m")y = {(a,p), (aa’ + O(m, m’"),am’ + ma’ + mm’))

= a(ad’) + a(©O(m, m")) + Blam’) + B(ma’) + p(mm’). 3.5

On the other hand,

(), (@,m).(a",m")) = (a, B)(a, m) X (a, B)(a’, m")
(a(a) + p(m))(a(a’) + p(m")) (3.6)

a(@a(@’) + a@)p(m’) + p(m)a(a’) + pm)p(m’).

From equality of (3.5) and (3.6), for a = a’ = 0, we have a(®(m, m")) + p(mm’) = p(m)B(m’). Since for each
a € 0(A), a o Olyxm = 0, we get f(mm’) = f(m)p(m’). So p € a(A) U {0}.

Again, by equality of (3.5) and (3.6), for m = m’ = 0, we have a(a,a’) = a(a)a(a’). So a € (M) U {0}. Using
(3.5) and (3.6), a = 0 implies that f(am’) + p(ma’) = 0 for each a,a’ € A, m,m" € M, and so f(am’ + ma’) = 0.
Which implies g = 0 on span(AM U MA) = M. This is a contradiction by («, ) € 0(A e M). Thus we have
two cases:

o If B = 0 then form equality of (3.5) and (3.6), we have a0c® = 0on M XM and so («, B) € V, thus a € 6(A).
ee If  # 0 then by equality of (3.5) and (3.6), we have

a(@(m, m")) + Blam’) + p(ma’) + B(mm") = a(a)B(m’) + B(m)a(a’) + B(m)B(m’),

and by a’ =0, m = 0, we have

Blam’) = a(a)p(m’),

for eacha € A, m’ € M. Choose m’ € M such that (") = 1, then for each a € A, we have a(a) = f(am’) =
(m’.B)(a). Therefore (o, B) € U.
O

Taking ® = 0 in Theorem 3.3, we obtain the following result.

Corollary 3.4. Suppose that 6(A) # 0 and span(AM U MA) = M, where M is a closed ideal of X. Then o(A »a M) =
UuV, where

U={mp, B): peoM), meM, p(m)=1}, V={a,0): aecd(A).
For each 0-Lau product of Banach algebra A X¢ B, we have the following characterization.
Corollary 3.5. [31, Proposition 2.4] Suppose that 6(A) # 0 and 6 € o(A). Then 6(A Xg X) = U UV, where
U={6,p: peoM),  V={a0): aca(A).
Also we have the following characterization.

Corollary 3.6. [22, Theorem 5.1] Let 6 : A — X be a homomorphism, a(A) # 0 and 6(A)M U MO(A) = M, where
M is a closed ideal of X. Then o(A X¢ B) = U UV, where

U={((mp)o06,p): peaM),meM,p(m)=1}, V={a0): aco)).
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4. Connes-amenability of A Rg X

The concept of amenability for W*-algebras was defined by Johnson et al. in [19]. Then Connes in [2] and
[3], introduced another notion of amenability which is called Connes-amenability by Helemskii [10]. Next
Runde in [27] extended this notion of Connes-amenability from W*-algebras to dual Banach algebras. Any
Connes-amenable dual Banach algebra A, is unital. In Theorem 4.4.8 of [27] it is proved that for any Arens
regular Banach algebra A which is an ideal in A™, A is amenable if and only if A™ is Connes-amenable.

In this section we will characterize Connes-amenability of A Rg X in terms of Connes-amenability of A and
X and the mapping ©.

Definition 4.1. Let f : X XY — X (orY) be a bilinear map and V C X (or W C Y) as a subspace. We say that f is
stable on V (or W) if f(V,Y) C V (or f(X, W) C W).

Definition 4.2. [27]

(i) A Banach algebra A is called a dual Banach algebra if there exists a closed submodule A. of A* such that
A= (A).

(ii) suppose that A is a dual Banach algebra and E is a dual Banach A-bimodule. An element x € E is normal if the
following maps from A into E are w*-w*-continuous:

armax and aw xa.
E is normal, if any element of E is normal.

(iii) A dual Banach algebra A is Connes-amenable if, for every normal, dual Banach A-bimodule E, every w*-w"-
continuous derivation D € Z'(A, E) is inner.

Lemma 4.3. Let A and X be dual Banach algebrs and G = A Rg X. If ), 7', ©" and ©" are stable on X, and 1}
and tt; are stable on A., then G is a dual Banach algebra.

Proof. 1t is easy to see that (A. X X.) is a closed submodule of A* X X* = (A Rg X)* = G* such that (A X X.)* =
G. O

Lemma 4.4. Let G be a dual Banach algebra. Then A is a dual Banach algebra. If i, and m, are zero, then X is a dual
Banach algebra.

Proof. Let V be a closed submodule of G* such that V* = G. Put V4 = {a* € A*:  (a*,0) € V}. Suppose that
{a;} is a net in V4, such that a, — a*. Then (a},0) — (a*,0) and since V is closed, (a*,0) € V,i.e. a* € V4 and
so V4 is closed. Also

(@'a,0) = (a*,0).(a,0) C VG C V,

for each a* € V4. Thus a*a € V4, for each a € A, and similarly aa* € V4, for each a € A.
On the other hand A™ =V, ® V; and G™ = V* @ V*, where

Vj‘_ — {a** c AM- . a**(a*) — O, va* e VA}
={a" €A% (@",0)@,b)=0, V@, b)eV)
- {a*l(- E A!(w(- : (a*l(-’ 0) e VJ_}.

Therefore, V3, = {a™ € A™: (a™,0) € V" =G} = A.

Similarly V3, = X and Vi is closed. Also if 7, and 7, are zero, then V is a submodule of X*. [J
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Remark 4.5. Note that in the proof of Lemma 2.2 in [26], V.4 is not submodule unless A = 0 or 0 = 0; indeed if
V., =0, then A = 0 and it is A-submodule. If V., # 0 and it is A-submodule, then for eacha € A and b € B and
nonzero v € V,, we have

0= <«(0,b),av)
= <(0/ b), (ﬂ, O)Z))
= ((0,b)(a,0),v)
= ((6(b)a,0),v)
= (6, f)
= 9(5)(% f>

Where similar to the proof of Lemma 2.2 in [26], we consider v = (f,0) € A* X 0. This implies that 0 = 0 or A = 0.

The following results generalize Theorem 2.4 in [26].

Theorem 4.6. Let G = A Rg X be a dual Banach algebra and Connes-amenable. Then we have the following
statements.

(i) A is Connes-amenable if for each w*-w*-continuous derivation d from A to a normal dual Banach A-module,
do®=0.

(ii) Let 1t; and m, be the left and right module actions of A on X, respectively. Then X is Connes-amenable if for
each normal dual Banach X-module E, we can consider E as an A-module with the left and right module actions
nf} and 7t such that for each w*-w*-continuous derivation d from X to E, we have d o 1, = 7'(? o (ia X d)and
dom, =7 o(dxiy).

Proof. From Lemma 4.4, A is a dual Banach algebra. Let E be a normal dual Banach A-module and
let d : A — E be a w*-w"-continuous derivation. Consider E as a G-bimodule by the actions e(a,x) =
ea, (a,x)e = ae. Define D : G — E by D(a,x) = d(a). Then D is a w*-w*-continuous derivation, and so
d(a) = D((a, x)) = e(a, x)—(a, x)e = ea—ae, for somee € E. Hence A is Connes-amenable. Similarly,letd : X — E
be a w*-w*-continuous derivation. By defining the actions e(a, x) = 7/ (e,a) + ex and (4, x)e = n’g‘ (a,e) + xe, E
is a G-bimodule. Now define D : G — E by D(a, x) = d(x), which is a w*-w*-continuous derivation. Then
similar above we can conclude that X is Connes-amenable. [

Corollary 4.7. If, in Theorem 4.6, we put © = 0, then A Re X = A v« X and Connes-amenability of A = X implies
Connes-amenability of A. Moreover if T, and 1, are zero or me(a,x) = 6(a)x = 1,(x,a), for some 6 € o(A), then
Connes-amenability of A Re X implies Connes-amenability of X.

5. 1-biprojectivity and (o, f)-biprojectivity of A Rg X

The concepts of biflatness and biprojectivity of Banach algebras were defined by A. Ya. Helemskii in
[10]; see also [27] and [5] for more details. Using this concept, he showed that every Banach algebra A is
amenable if and only if it is biflat and has a bounded approximate identity. The sufficient and necessary
conditions for Biflatness and biprojectivity of many classes of Banach algebras such as C*-algebras, the
group algebra L!(G) of a locally compact group G and the second dual of Banach algebras have been
obtained in [27], [28], and [21]. For the other approaches, see [25], [8], and references therein. Medghalchi

and Sattari in [20] proved that any triangular Banach algebra T = [ 13 ]\1;1 ], is biflat (resp. biprojective)

if and only if the corner Banach algebras A and B are biflat (resp. biprojective) and M = 0, where M is an
essential (A, B)-module, that is, AM = M = MB. Afterward, Khodami and Vishki in [11] showed that each
O-Lau product of Banach algebra A Xg B is biflat (resp. biprojective) if and only if the Banach algebras A
and B are biflat (resp. biprojective), where A is unital Banach algebra and 6 € (B). See also [1] and [9] for
a generalization of this work.

In the following, we consider A, X and © as before and we characterize ¢-biprojectivity of A Rg X.
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Remark 5.1. Note that the product of a Banach algebra A dose not effect on injectivity, projectivity and flatness of A
as a C-module, so Theorems 3.4-3.7 in [26] are true for G = A Rg X. Indeed G = A ®¢ X for 0 € 0(A) as a Banach
space. That is G is injective (respectively, projective, and flat) if and only if A and X have the corresponding properties
with the module actions defined before the same Theorems in [26]. For the definition of these concepts see [10], [29]
and [26].

The generalized amalgamated Banach algebra G = A Bg X is a Banach A-bimodule under the following
module actions.

c.(a,x) =: (c,0).(a, x) and (a,x).c =: (a,x).(c,0), where a,c € A and x € X. we can be made G into a Banach
X-bimodule in a similar way.

We define the usual projections P4 : G — A by Pa(a,x) = aand Px : G — X by Px(a,x) = x, a €
A, x € X. Also, the usual injections J4 : A — G by Ja(a) = (1,0) and Jx : X — G by Jx(x) = (0,x),
a € A, x € X. The mappings P4 and Ja are A-bimodule. [x is a X-bimodule if and only if ©® = 0, and Py
is not X-bimodule in general. The unique induced mapping Px ® Px from G&G into X&X is defined by
(Px® PX)((a, X)® (@, x’)) = x®x’, and the unique induced mapping Jx ® Jx from X&®X into GG is defined
by (Jx ® Jx)(x ®x") = (0,x) ® (0, x').

Definition 5.2. (i) [27] A Banach algebra A is said to be biprojective if for Ay : AQA — A there exists a bounded
A-bimodule map Ap : A — AQA which is a right inverse of Ay i.e. Ay o Ay = ida, where Ay(a ® b) = ab.

(i1) [30] Let ¢ € 6(A). Then the Banach algebra A is called 1-biprojective if there is a bounded A-bimodule map
Aa A — A®Asuch that Y o Ay o Aa(a) = Y(a), for any a € A.

Note that it is easy to see that every biprojective Banach algebra is biflat; see 2.8.41(i)-[5], and also in
Theorem 2.9.65 in [5] one can see that A is amenable Banach algebra if and only if it is biflat and has a
bounded approximate identity.

Theorem 5.3. Let G = A Rg X be (o, f)-biprojective and there are A-bimodule maps S : X — A,L: A - X, K:
A—Aand T : A — Asuch that T is also a homomorphism and for each a,b € A and x,y € X we have

(i) S(x)S(y) = S(xy) + T(O(x, y)).
(ii) S(x)T(a) = S(xa) and T(a)S(x) = S(ax).
(iif) aoT=a=aoK+BoLlandaoS =4
Then A is a-biprojective.

Proof. Consider the G-bimodule map Ag : G = G ® G such that (o, f)AcAc = (a,B). Define P : G — A,
J:A— Gand Ay : A - A®ADby P((a,x)) = T(a)+ S(x), J(a) = (K(a), L(a)) and A4 = (P®P)A;]. Thenitis easy
to verify that (i) and (ii) imply that A4 (P ® P) = PA; and then we conclude that aAsA4 = a, by (iii). Note
that since K, L, T and S are A-module maps, | and P are also A-bimodule maps and so A4 is an A-bimodule
map. [

Theorem 5.4. Let (o, B) € o(G). If A is a-biprojective and there are bounded linear maps S : X - A,L: A - X, K:
A—>Aand T : A — A such that for each a,b € A and x, y € X we have

(i) 6(L(a), L(b)) + K(a)K(b) = K(ab).
(ii) L(ab) = K(a)L(b) + L(a)K(b) + L(a)L(b).
(ii) aoT=a=aoK+poLandaoS=_p.
(iv) T is a homomorphism and S(x)S(y) = S(xy) + T(O(x, y)).
(v) S(x)T(a) = S(xa) and T(a)S(x) = S(ax).
(vi) K(T(a)b) = aK(b), K(bT(a)) = K(b)a, K(S(x)b) = O(x, L(b)), K(bS(x)) = O(L(D), x).
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(vii) L(T(a)b) = aL(b), L(bT(a)) = L(b)a, L(S(x)b) = xK(b) + xL(b), L(bS(x)) = K(b)x + L(b)x.
Then G is (a, B)-biprojective.

Proof. Consider P and | as the latter theorem and consider A-bimodule map A4 : A — A ® A such that
alary = a. Define A\¢ : G - G® G by Ag = (] ® [)A4P. Then it is easy to verify that by (i) and (ii)
Ac(J®]) = JA4 and by (iii) (o, f)] = a and aP = (a, f). Therefore we conclude that (a, f)AcAc = (a, f). Also
(iv)—(v) imply that P is a homomorphism and so A¢ is a G-bimodule, by (vi)—(vii). [

Corollary 5.5. Suppose that G = A v« X is («, 0)-biprojective, where a € 0(A). Then A is a-biprojective. Moreover,
if both of Tp and m, are zero and A is a-biprojective, then G is (o, 0)-biprojective.

Proof. In Theorem 53 Put® =0,L =0,5S=0,T=K=ids. O

Remark 5.6. Corollary 5.5 is the modified and generalized form of Theorem 4.4 in [26]. Note that in the proof of that
theorem, the mapping [i is not A X B-module morphism; indeed, we have

fi(a, b)(c, d)) = (g5 ® q5)(p(bd))
= (78 ® q5)(bp(d))

= (0,6b) @ (0,d).
and
(@, b)a((c,d)) = (a,b)(q8 ® 48)((d))
= Z(u, b)(0,b;) ® (0, d;)
- Z(ae(bi), bb) ® (0,d;),
where u(d) = Y, b; ® d;. Therefore if 6 # 0 and A # 0, then it may be T is not A Xg B-bimodule morphism.

Theorem 5.7. Let X be unital and B-biprojective and there are bounded linear maps R : X — Aand T : X — X and
a € o(A) such that for each x, y € X,

(i) ao® =0,B(ax) = a(a)p(x) = p(xa).
(ii) R(xy) = RWR() + OTXT()), Ty) = RWT() + T@R) + T@T(W).
(i) o T+aoR = .
Then there is a left G-module Ac : G — G ® G such that (a, B)AcAc = (a, p).

Proof. Consider X-bimodule Ax : X = X®X such that fAxAx = . Define U : X — G with U(x) = (R(x), T(x))
and Ag : G = G® G by A¢((a,x)) = (a4, x)(U ® U)Ax(1x). Then (i) implies that (o, f) € 0(G) and (ii) implies
that A¢(U ® U) = UAx. Combining with (iii) we conclude that

(a, B)AcAc(a, x) = (a, B)Ac((a, x)(U ® U)Ax(1x))
= (&, B)((a, x)(UAxAx(1x))
= (o, B)((a, x))(a, B)(UAxAx(1x))
= (a, B)((a, x))B(AxAx(1x))
= (o, B)((a, x))B(1x)
= (@, B)((a, x)).

Obviously A¢ is a left G-module. O
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Theorem 5.8. Let G be (a, f)-biprojective and a® = 0. Then X is p-biprojective if there are bounded linear maps
M:A->XN:X—>XR:X—>Aand T : X — X such that for each x,y € Xand a € A,

(i) M is a homomorphism, N(ax) = M(a)N(x), N(xa) = N(x)M(a) and N(x)N(y) = N(xy) + M(O(x, ).
(i) oM =a,fon=B=aoR+poT.
(iii) O(T(x), y) = R(xy) = O, T()), xR(y) + xT(y) = T(xry) = R&)y + TX)y.
(iv) N(x)y = M(xy) + N(xy) = xN(y), N(xa) = xM(a), N(ax) = M(a)x.

Proof. Since ao® = 0, we have € 6(X) by Theorem 3.2. Now consider the G-bimodule map A : G — G®G
such that (a, B)AcAc = (a, f). Define @ : G — X by ®((a,x)) = M(a) + N(x), U : X — G as before theorem
and Ax : X - X® X by Ax = (P ® P)AgU. Then (i) implies that Ax(® ® ®) = PA; and (ii) implies that
BP = (a, B) and (a, B)U = B. Therefore fAxAx = . Now (iii) implies that U(x)(0, y) = U(xy) = (0, x)U(y) and
(iv) implies that ®((0, x)g) = xP(g) and D(g(0, x)) = P(g)x, for each g € G and x € X. This implies that Ax is
an X-bimodule. [

Corollary 5.9. Let G = A v« X, X is unital and 1xa = alx. Suppose that (o, f) € o(G). Then X is B-biprojective if
and only if G is (a, B)-biprojective.

Proof. In Theorems 5.7 and 5.8 define® =0,R =0,T = N = idx and M(a) = alx, foreachae€ A. O

Theorem 5.10. Suppose (o, f) € 0(G) and a o ® = 0. Let A be a-biprojective and X be B-biprojective and unital.
Then there isamap Ag : G = G® G with AgA¢ = idg, if there exist bounded linear maps S : X — XandT: X — A
and a homomorphism K : A — A such that for each a,b € A and x, y € X, we have

(i) © o (1xK(a), 1xK(b)) = 0.
(ii) T(xy) = TMT(y) + O(S(x), S(y)) and S(xy) + S(x)S(y) + SX)T(y) + T(x)S(y)-
(iii) aoT+BoS=p.

Proof. Theorem 3.2 says that since a 0 ® = 0 we have g € 0(X). Consider the A-bimodule Ay : A - A® A
and the X-bimodule Ax : X — X ® X such that AyAs = ids and AxAx = idx. Define £ : A — G by
&(a) = (K(a), —1xK(a)), for eacha € A, and U : X — G by U(x) = (T(x), S(x)) Put Ag(a,x) = (E® &) o Aa(a) +
(a,x)(U® U)o Ax(1x). Then Ago (E®&) = E oAy, Ago (U®U) = U o Ax and (a, f)U = B, by (i), (ii) and (iii),
respectively. Also we have for eacha € A,

(@, f)é(a) = a(K(a)) + B(=1xK(@a)) = a(K(a))(1 = B(1x)) = 0.

Therefore we have

(@, B)AG 0 Ac((@,%)) = (a, HIAG((E ® &) © Aa(a) + (a,%) o (U @ L) 0 Ax(1x))
= (a,B)(E o0 Ag o0 Aaa)+ (a,x)U o Ax o Ax(1x))
= (a, B)((a, )U o Ax 0 Ax(1x))
= (a, B)((a, 0))(a, B)(U o Ax o Ax(1x))
= (a, B)((a,x))B(1x)

= (a,x).
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Remark 5.11. In the latter theorem, let we have also for each a € A, O(x, 1xK(a)) = 0 and Ay 0o ® = 0. Then we
have for eacha,b € Aand x,y € X

0,0)(E®E)A =0,

and
(E®&) 0 Aalab +O(x, y)) = (a,0)((€ ® &) 0 Aa(b)
= (a,0)((€ ® &) 0 Aa(b) + (0, X)(£ ® E)Aa(D)
= (4, )((E® &) 0 Aa(b).
Therefore

Ac((@,x)(b, y)) = (£ ® &) 0 Aa(ab + O(x, y)) + (a,x)(b, y)(U ® U) o Ax(1x)
= (a,0)((E® &) 0 A4 (D) + (b, y) o (U U) 0 Ax(1x))
= (@,0)Ac((b, y)).

So we get Ag is a left G-module map. Also, If in addition ®(1K(a),x) = 0 and (U ® U) o Ax(1x) commutes with
elements of G, we can show similarly it is a right G-module map.

Corollary 5.12. Let (a, B) € 0(A »< X), A be a-biprojective and X be B-biprojective and unital. Then G = A = X is
(o, B)-biprojective.

Proof. In Theorem 5.10 and Remark 5.11 put K =id4, T =0,S =idx and ® = 0. [
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