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Linear relations generated by integral equations with Nevanlinna
operator measures

Vladislav M. Bruk?

?Saratov State Technical University, Saratov, Russia

Abstract. We consider a family of minimal relations £y(1) generated by an integral equation with a
Nevanlinna operator measure and give a description the families £y(4), £;(A) , where A € C. We prove
that the families Ly(A), LE(X) are holomorphic and give a description of families relations T(A) such that

Lo(A) c T(A) c LB(X) and T~'(A) are bounded everywhere defined operators. The results obtained are
applied to the proof of the existence of a characteristic operator for the integral equation.

1. Introduction

In this paper, we consider the integral equation

y(t) = 30— 1] f dr)y(s) - i] f dm()f(s), M

where y is an unknown function, a < t < b; ] is an operator in a separable Hilbert space H, | = J*, J* = E (E is
the identical operator); xo €H, f €L,(H,dm;a,b), A € C; 1, is a family of operator-valued measures defined on
Borel sets AC[a, b] and taking values in the set of linear bounded operators acting in H; m = (ImA;)~1Im ),
for some fixed A1. We assume that the measures r, are Nevanlinna measures, i.e., the function A - r;(A) is

holomorphic; r} (A) = r(A); (ImA)"'Imr,(A) > 0 for all Borel sets A and all A such that ImA # 0 (see a more
detailed description of the properties of ry and m in section 2).

We define a family of minimal relations Ly(A) generated by equation (1) and prove that the families
Lo(A), L;(A) are holomorphic. Ifry = p+Am (p, m are self-adjoint operator measures and m is non-negative),
then Ly(A) = Lo — AE, L ) = Ly — AE, where L is a minimal relation generated by the equation

t f
y(t) = 20— 1] f dp(s)y(s) — i] f dm(s)f(s). @

Linear relations generated by equation (2) were studied in [14], [15], [16], [17].
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In equation (1), suppose that the measures r, are absolutely continuous (i.e., ry(A) = fA ra(t)dt for all
Borel sets A C [a, b], where the functions ||7,(f)|| belong to L1 (a, b) ). Then integral equation (1) is transformed
to a differential equation with the Nevanlinna operator function 7, and the non-negative weight operator
function m = (ImA;)"'Imr,,. Linear relations generated by such a differential equation were studied in
[27], [21], [22], [23], [8] (also see the bibliography in these articles).

In equation (2), suppose that the measures p, m are absolutely continuous. Then integral equation (2)
is transformed to a differential equation with a non-negative weight operator function. Linear relations
generated by such differential equations were considered in many works (see [26], [6], [7], further detailed
bibliography can be found, for example, in [3], [4], [23].

The study of integral equations (1), (2) differs essentially from the study of differential equations by the
presence of the following features: i) a representation of solutions of equations (1), (2) using an evolutional
family of operators is possible if the measures r;, p, m have not common single-point atoms (see [11]); ii)
the Lagrange formula contains summands relating to single-point atoms of the measures p, m (see [12]).
Note that this work corrects the errors made in the articles [9], [10].

This paper generalizes the results of the work [15], [16], [17] to the case in which the integral equation
contains the Nevanlinna measure. We study the properties of families of linear relations Ly(A), LB(X) and
apply the obtained results to a describing relations T(A) such that Ly(A) C T(A) C LB(X) and T71(A) are
bounded everywhere defined operators and give an explicit form of the operators T~1(A).

In [29], A.V. Straus introduced the definition of the characteristic function for a generalized resolvent
of a symmetric operator generated by a formally self-adjont differential expression of even order in the
scalar case. The notion of a characteristic operator generalizes the notion of the characteristic function. In
the present paper, we define a characteristic operator for equation (1) and give a description of the linear
relations that generate the characteristic operator. For differential equations with a Nevanlinna function,
the definition of the characteristic operator is given in [21], [22].

2. Main assumptions, designations and preliminary assertions

Let By, B, be Banach spaces. A linear relation T is understood as any linear manifold T C B; X B,. The
terminology on the linear relations can be found, for example, in [19], [18], [2], [3], [4]. In what follows we
make use of the following notations: {-, -} is an ordered pair; D(T) is the domain of T; R(T) is the range of T;
ker T is a set of elements x € B such that {x,0} € T; T~ is the relation inverse for T, i.e., the relation formed
by the pairs {x’, x}, where {x,x’} € T. A relation T is called surjective if R(T) = B,. A relation T is called
invertible or injective if ker T = {0} (i.e., the relation T~! is an operator); it is called continuously invertible
if it is closed, invertible, and surjective (i.e., T~! is a bounded everywhere defined operator).

Suppose B1=B, =B is a Hilbert space. A relation T" is called adjoint for T if T* consists of all pairs {y1, y»}
such that the equality (x2, y1) = (x1, y2) holds for all pairs {x1, xp}€ T. A linear relation T is called dissipative
(accumulative, symmetric) if for any {x, x'} € T we have Im(x’, x) > 0 (respectively, Im(x’, x) <0, or Im(x’, x) =0).
A dissipative (accumulative, symmetric) relation T is called maximal dissipative (accumulative, symmetric)
if it has no dissipative (accumulative, symmetric) extensions T7 O T such that T; # T. A symmetric relation
is called self-adjoint if it is maximal dissipative and maximal accumulative at the same time. As know, a
relation T is symmetric if and only if TCT* and T is self-adjoint if and only if T=T".

It is known (see, for example, [20, ch.3], [19, ch.1]) that the graph of an operator T:D(T) — By is the set
of pairs {x, Tx} € B; X By, where x € D(T) C B;. Consequently, the linear operators can be treated as linear
relations; this is why the notation {x;,x,} € T is used also for an operator T. Since all considered relations
are linear, we shall often omit word “linear”.

A family of linear relations is understood as a function A = T(A) (A € D c C), where T(A) is a linear
relation, T(A) € By X B, (B1, B, are Banach spaces). A family of closed relations T(A) is called holomorphic at
a point Ag € C if there exist a Banach space By and a family of bounded linear operators K(1):By— B; X B,
such that the operator K(A) bijectively maps By onto T(A) for any fixed A from some neighborhood of
Ao and the family A — %(A) is holomorphic in this neighborhood of Ay. A family of relations is called
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holomorphic on the domain D if it is holomorphic at all points belonging to . These definitions generalize
the corresponding definitions of holomorphic families of closed operators [20, ch. 7].

In what follows, we use the following notions from measure theory.

Let H be a separable Hilbert space with a scalar product (-, -) and a norm ||-||. By 8 denote a set of Borel
subsets A C [a,b]. We consider a function A — P(A) defined on 8 and taking values in the set of linear
bounded operators acting in H. The function P is called an operator measure on [4, b] (see, for example, [5,
ch. 5]) if it is zero on the empty set and the equality P (U;~; Ax)=Y.5-1 P(A,) holds for disjoint Borel sets A,
where the series converges weakly. Further, we extend any measure P on [g, b] to a segment [a, bo] (b > b)
letting P(A) = 0 for each Borel sets AC (b, bg].

By Va(P) we denote VA(P) = pp(A) =sup )., [IP(Ay)ll, where the supremum is taken over finite sums of
disjoint Borel sets A, C A. The number VA(P) is called the variation of the measure P on the Borel set A.
Suppose that the measure P has the bounded variation on [, b]. Then for pp-almost all £ € [a, D] there exists
an operator function £ — Wp(&) such that Wp possesses the values in the set of linear bounded operators
acting in H, |[Wp(&)||=1, and the equality

P(A) = fA Wp(s)dpp ®3)

holds for each set A € 8. The function Wp is uniquely determined up to values on a set of zero pp-measure.
Integral (3) converges in the sense of the usual operator norm ([5, ch. 5]).

t .
Further, j;o stands for f[ of) if tg < t, for — f[t,to)

equations (1), (2). A function  is integrable with respect to the measure P on a set A € B if there exists the

Bochner integral fA‘I/p(t)h(t)dpp = fA(dP)h(t). Then the function y(t) = ft:(dP)h(s) is continuous from the left.

By Sp denote a set of single-point atoms of the measure P (i.e., a set t € [a,b] such that P({t}) # 0). The

set Sp is at most countable. The measure P is continuous if Sp = @, it is self-adjoint if (P(A))* =P(A) for each
Borel set A € 8, it is non-negative if (P(A)x, x) > 0 for all Borel sets A € 8 and for all elements x € H.

In addition, we use the following notation. We construct a continuous measure Py from the measure

P in the following way. | We set Py({tx}) = 0 for f; € Sp and we set Py(A) = P(A) for all Borel sets such that

ANSp =2. We denote P = P—P,. Then P( te}) = P({#}) for all # € Sp and P(A) 0 for all Borel sets A such
that AN Sp =

Let {A,A} > 1) (A) be a function with values in the set of linear bounded operators acting in H, where
A e B, A ey CdC\R, C (R) is the set of complex (of real) numbers, respectively. We assume that
this function is the Nevanlinna function for each fixed A, i.e., the following conditions hold: (a) each
point from Cy has a neighborhood (independent of A) such that the function A — r,(A) is holomorphic in
this neighborhood; (b) r(A) = r(A); (¢) (ImA)'Imr,(A) > 0 for all A € B and all A such that ImA # 0.
Moreover, this function satisfies condition (d). Before the formulation of condition (d), we introduce
following designations. We put m(A) = (ImA)"'Imr,(A). Then for all v € Cy N R there exists (at least in
the weak sense) 11rnO m;(A) = m,(A).

if ty > t, and for 0 if tx = t. This implies that y(a) = x¢ in

In [22], it was shown that conditions (a) — (c) imply
ki(m,(A)g, 9) < (my(A)g, 9) < ka(my(A)g, 9). 4)
It follows from [22], [8] that

|4 = )7 (12 (A) - Rer,(A)g, )| <

1/2
c

1/2
1

)

where (i.e., in inequalities (4), (5)) g,h € H; A, u,(,n € Co; the constants k, ki,k, > 0 are independent of
AeB, A u,C,neK(Kisan arbitrary fixed compact, K c Cp).

Condition (d): the function A — r;(A) is an operator measure on [a,b] for all A € Cy such that the
measures Rer;, m), (for some point A; € Cy) have the bounded variation on [a, b].

It follows from condition (d) and (4), (5) that the measures m,, ry —Rery, 1y (A, u € Co) have the bounded
variation on [a, b]. We fix some A; € Cp and put m = my,.
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We denote p = Rer;, ny = ry —Rer; = r) — p and note that the measures p, po, p, m, my, m are self-adjoint,
the measures m, mg, m, Imn,, Imny,, Imn;, m,, my, are non-negative. Condition (b) implies that n =ny.
Moreover,

m, = (ImA)Imn;, mp; = (ImA) ' Imng,. (6)
Using (4), (5), we get

ki(m(A)g, 9) < (mx(A)g, 9) < k2(m(A)g, g), 7)

|(mA(A)g, )] < k[Jm' ()]l [m" (A, ®

where k, ki, k, > 0 are independent of A € B, g,h € H. We note that Sy, = Sp, -
Example 2.1. Suppose
r,=p+Am, )

where p, m are self-adjoint operator measures having bounded variations and m is non-negative. Then Rer; = p
since Re (im) = 0. Therefore, ny = Am. Obuviously, the measure t, satisfies conditions (a), (b), (c), (d). Moreover,
Co=C,my =mforall A € C.

In following Lemma 2.2, p1, p2, q are operator measures having bounded variations and taking values
in the set of linear bounded operators acting in H. Suppose that the measure q is self-adjoint and assume

that these measures are extended on the segment [a, bg] D [a, bp) D [a, b] in the manner described above.

Lemma 2.2. [12] Let f, g be functions integrable on [a, by] with respect to the measure q and yo,zo € H. Then any
functions

t t t t
vO=vo-if [ dpxy) il [ da@)f©), =)=z~ | dpx)e)-if [ da@e) @ <to< o, to<t <)
to to to to
satisfy the following formula (analogous to the Lagrange one):
f dq() f(D), z(t)) - f (y(®), dq(t)g(h) = ({Jy(c2), z(c2)) = ({Jy(c1), z(c1)) + f (y(®), dp2()z(1))—

- f @py®,z0) - Y. [pathy®, pa(thz®) — Y, (AU, paitz(t) -

teSp, NSp, Nlci,c2) t€8qNSp, Nler,c2)
- ), mdy®.adhg®) - Y GadfE,qig®), to<ea <o <b. (10)
tESPl NSqN[e1,c2) teSqN[e1,c2)
We consider equation
t t t
v =x0-1] [ dp@vs) -7 [ o) - [ dm)feo) (1)

If ry = p + Am (see Example 2.1, equality (9)), then equation (11) will take the form

y(t) = 30— 1] f dp(s)y(s) — ij f dm(E)y(s) - i f dm()f(s). 12)

Equations (11), (12) have unique solutions (see [11]).
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By W(t, A) denote an operator solution of the equation

t f
W(t, A)xo = %0 — ] f dpo(s)W(s, A)xo — i] f dnor(5)W(s, Ao, (13)
where xg € H, A € Cy. Using Lemma 2.2, we get
W(t, )JW(t,A) =] (14)

by the standard method (see, for example, [13]). The functions t — W(t,A) and t > W1(t,A) = JW*(¢, N
are continuous with respect to the uniform operator topology. Consequently, there exist constants &; > 0,
& > 0 such that the inequality

e1 Xl < W, Al < e 1] (15)
holds forall x € H, t € [a,by], A € C c Cy (C is a compact set).

Lemma 2.3. Suppose that a function f is integrable with respect to the measure m. A function vy is a solution of the
equation

t t t
y(t) =xo — i]f dpo(s)y(s) — i]f dngp(s)y(s) — i]f dm(s)f(s), xo€H, a<t<by, (16)
if and only if y has the form
t
V() = W, Ao = W i [ (&, Dm0 17)
Proof. We denote pg = po+no,. The measure py is continuous. Equation (16) has a unique solution (see [11]).

It is enough to prove that if we substitute the function from the right side (17) instead y in equation (16),
then we get the identity. With this substitution, the right side (16) takes the form

t S t
xo—i] f d50<s>(W<s,A>xo—W<s,A)z‘1 f W*(E,X)dm(é)f(é))—il f dm(s)f(s) =

t f S t
- f Po&W(s, Ao — ] f ol&W(s, )] f W(E, Ddm(E)f(E) — i] f dm(s)f(s). (18)

We change the limits of integration in the third term of the right-hand side (18). Then the third term
takes the form

t S _ _
J f dpo(s)W(s, A)] f W&, AM)dm(&)f (&) =] : )( Jﬁo(S)W(S,A))IW*(E,A)dm(E)f(é)=

&h

=] ( dﬁo(s)W(s,A))]W*(E,K)dm(é)f(é)— J f ( f diio(s)W(s,A)) JW*(E, A)dm(E) F(E).  (19)
[a)\ JIE D) [a,t) {&

The last term in (19) is equal to zero since the measure py is continuous. Using (13), we continue equality (18)

t t _ t
W(t,)\)xo—f](ﬁ dﬁo(s)W(s,/\))]W*(é,/\)dm(é)f(é)—i]f am(s)f(s). (20)

It follows from (13) that (20) is equal to
¢ _ ¢
W(t, A)xo — f (W, A) = E) = (W(E,A) = E)JW(E, )dm(E) f(£) — i] f dm(s)f(s) =

t f t
= W, Do — i f W, )W (€, T)dm(E)f(E) +i f W(E, AW (&, Ddm(E)(E) - i] f dm()(5).
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Taking into account (14), we continue the last equality

W(t, A)xo — WG 1)) f W&, Dm(E)f(E) +i] f dm(E)F(E) — i] f dm($)f(s) = y().

The lemma is proved. [
For the case in which ny = Am (see Example 2.1, equality (9)), this lemma is proved in [15].

Remark 2.4. Lemma 2.3 remains valid if in formulas (16), (17) we replace m by my together.

3. The space L,(H, dm; a, b)

We introduce the quasi-scalar product

bo
(yYm = | (@dm(t)x(t), y(1) (21)

on a set of step-like functions with values in H defined on the segment [a,bg]. Identifying with zero
functions y obeying (y, ¥)m = 0 and making the completion, we arrive at the Hilbert space denoted by
Ly(H,dm;a,b) = . The elements of $ are the classes of functions identified with respect to the norm
“y”m =(y, y)w?. In order not to complicate the terminology, the class of functions with a representative y is
indicated by the same symbol and we write y € $. The equality of the functions in $ is understood as the
equality for associated equivalence classes. We denote the scalar product (the norm) in $ by (-,)g or (-, )m

(by Illg or ||-/lm, respectively).

Remark 3.1. It follows from (4) that the space $ does not depend on the choice of the point A1 € Cy in the following
sense. If we change the measure m = my, to my (A € Cp) in (21), then we obtain the same set © supplied with an
equivalent norm.

By X4 = X4(t) denote an operator characteristic function of a set A, i.e.,, X4(t) = Eift € A and X4(¢) = 0
if t ¢ A. We shall often omit the argument ¢ in the notation X,4.

Lemma 3.2. The inequality

bo
‘ | o, xo)] < el It 22)

holds for all functions y, x € 9, where k > 0 is independent of A € K (K is an arbitrary fixed compact, K C Cp).

Proof. Using (8), we obtain that inequality (22) holds for step functions. Now the desired statement follows
from the definition of the space $. The lemma is proved. [

It follows from Lemma 3.2 that the one-and-half-form in the left-hand side (22) is continuous on $ X $.
Hence there exists a bounded operator A, :9H— $ such that

bo
f Ay (B, (1) = (Ary, . (23)

In (23), we take x(t) = XA(t)xo for any xo € H, A € 8. Then we obtain f(dn,\(t)y(t),xo) = f(dm(t)(/\;\y)(t),xg).
A
Consequently, the equality :

fdn/\(t)y(t) = fdm(t)(AAy)(t) (24)
A A
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holds for each Borel set A and each function y € 9. The equality n} = ny implies that A = Ay. Using (6),
(23), (24), we get

f (A (), x(8) = (ImA)~ f (A (ImALY)®, x(B); f dma (y(6) = (ImA)™ f dm(B)((ImA YY) (25)
A A A A

Remark 3.3. It follows from (24) that

f dnoy () = f dmo()(ALy) (D). (26)
A A

Moreover, equality (24) implies that A)\(Xyxo)(t) = 0 if t # . Therefore, X1y Ay (Xir1x0) = A (Xyryxo) and
f dny ()Xo (£)xo = f dm(£)(Ax (¥ x0))(£) = m({Th) (A1 (¥ x0))(7) (27)
{7} {t}

for any xo € H and any t € S. Hence, ny({t})xo = m({7)}(A1(X,;}x0))(T). To shorten the notation, we will denote
Ax(Xyx0)(T) = Apxo.

Remark 3.4. Ifr) has form (9) (see Example 2.1), then Ay = AE.

Lemma 3.5. The operator ImA, : $ — $ has an everywhere defined bounded inverse (ImA,)™! for any A such that
ImA # 0.

Proof. First we prove that there exists a number y = y(A) > 0 such that

(ImA) " (ImAy, )5 > Y (¥, v)s (28)
forall y € $ and ImA # 0. Using (21), (24), we get

bo
f Im(dny(Oy(), y(5) = Im(ALY, V). 29)

Therefore, fgbo(dm/\(t)]/(t)/ y(1) = (ImA)'Im(A1Y, Y)m O (¥, Y)m, = (IMA) ' IM(ALY, Y)m. Now inequality (28)
follows from (7), (8). The application of (28) and the equality A = Ay yields R(ImA,) = $, where R(ImA,)
is the range of ImA,. This and (28) implies the desired statement. The lemma is proved. [

Theorem 3.6. The operator Ay:H— $ has an everywhere defined bounded inverse A" for any A such that TmA # 0.

Proof. Using (28), we obtain

Ay s|” = [(Rerny, | + @Ay, ns|* = v [lvlf; (30)

for any y € $. Suppose a sequence {A,y,} converges to zero in $ as n— co. We claim that the sequence {y,}
converges to zero. First we prove that the sequence {y,} is bounded. Assume the converse, let ” yn” g >

as n— oo. We denote v, = y, ||yn||;. Then Ay, — 0 as n — co. By (30), we get y, — 0. But ’%Hb = 1. This

contradiction proves that {y,} is bounded. Now (30) implies that {y,} — 0 in $ as n— co. Finally, using the
equality A’ = Ay, we obtain R(A,) = 9. This completes the proof of theorem. [J

Lemma 3.7. The operator function A — A, is holomorphic on C.

Proof. Taking into account condition (a) and equality (23), we obtain that the function A — A,y is holomor-
phic for each step-like function y. Now the desired statement follows from Lemma 3.2 and the density of
the set of step-like functions in $. The lemma is proved. O
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We investigate the structure of the space $ in detail. It follows from condition (d) that there exists
an operator function Wy, satisfying equality (3) in which the measure P is changed to the measure m. In
particular, the equality m(A) = fA Win(£)dpm holds.

The inequality m(A) > 0 implies W (&) > 0 for pm-almost all & € [a,by). We use some constructions
from [7]. We denote G(t) = ker W, (¢); H(t) = H © G(t). Let Wy(t) be the restriction of Wy, (f) to H(f). Then
the operator Wo(f) acting in H(t) has the inverse W 1(t) (which is unbounded, in general). Let {H.(f)}
(—00 < T < ) be a Hilbert scale of spaces generated by the operator W;'(t) [5, ch.3], [19, ch.2]. It follows
from the definition of Hilbert scale that the operator W(t) can be extended to the operator "I\fo(t) that maps
H_,(t) onto Hi_4(f) (@ > 0) continuously and bijectively. Below the case a = 1/2 is considered. Then
Hipp(t) € H(t) € H-1p2(t). Let ‘T’m(t) denote the operator that is defined on H_1/»(t) ® G(t) and is equal to
\,Ijo(t) on H_i/5(t) and to zero on G(t). The operator \’f’m(t) is the extension of Wi (f) to H_1,2(t) ® G(t) by
continuity. The operator \’I\/m(t) maps H_i2(t) ® G(t) onto Hy/»(t) continuously.

The operator ‘I’(l)/ ?(t) can be treated as an operator that maps H(t) onto Hj 2 (t) continuously and bijectively.
Then the adjoint operator ‘/I\/é/ %(t) maps continuously and bijectively H_j »(t) onto H(t) and it is an extension
of W/A(1) (see [5, ch.3], [19, ch.2]). Hence, Wo(t) = Wi/A()Wh/(t): Hoy2(t) — Hija (D).

In [7], the case is considered in which the measure py, is the usual Lebesgue measure, i.e., pm([a1, b1)) =
b1 — a1. By the literal repetition of the argumentation from [7], it is proved that the spaces H_1/x(t) are
Pm-measurable with respect to the parameter ¢ [24, ch. 1] whenever for measurable functions one takes

functions of the form t — \’I\fgl(t)‘lfllf(t)h(t), where } is an arbitrary pm-measurable function ranging in H.
The space $ is a measurable sum of the spaces H_»(f) with respect to the measure p, and $ consists of

all functions of the form t— "I\/a 1(1?)\5[’,1,<Z(t)g(t), where g is an arbitrary pm-measurable function ranging in H

such that fﬂ bo” g(t)”z dpm <co. We note that the above description of the space $ follows also from [25]. Thus,
we obtain that the equality

by by __ -
& Pm = | (Tm®x(t), y(O))dpm = f (W (t)x(t), U (1)y(t)dpm

holds for all functions x,y € $. In general, if a function y € 9, then y(t) € H_12(f), \/I\’(l)/ 2(t)y(t) € H(1),
WAHWA(Hy(t) € Hipo(t) for pm-almost all £.

4. Linear relations generated by the integral equations

Let us define a family of relations £(A) (a relation L) generated by equation (11) (equation (12) for
A = 0, respectively) in the following way. The relations £(A), L consist of pairs {y, f} €  x $ satisfying the
conditions: for each pair {y, f} there exists a pair {y, f} such that the pairs {y, f}, {y, f} are identical in $ x H
and {y, f} satisfies equation (11) (equation (12) for A = 0, respectively).

Now we define a family of minimal relations Lo(A) (a minimal relation Ly) generated by equation (11)
(equation (12) for A = 0, respectively) in the following way. The relations Ly(A), Lo are restrictions of £(A)
(L, respectively) to a set of pairs {y, f} € H x $ satisfying equalities (31) (for Ly(A)), (32) (for Ly) (see below)

y@) = y(bo) = y(@) =0, aeSy; m{HyB)+m{Hf(B) =0, B€ Sm; (31)

y@) = ybo) = y(@) =0, aeSy m(phHf(F) =0, B€Sm. (32)

Further, without loss of generality, it can be assumed that if {y, f} € Lo(A), ({y, f} € Lo), then equalities
(11), (31) ((12) for A = 0, (32), respectively) hold for this pair. In general, the relations £y(A4), Ly are not
operators since a function y can happen to be identified with zero in $, while f is non-zero.

In Lemma 2.2, we set c; = 4, ¢ = by, p1 = p2 = p, q = m. Using (10), we obtain that the relation Ly is
symmetric and L C Lj. Now in Lemma 2.2, we set p; = p + ny, p2 = p + ny, ¢ = m. Then (10) implies that

L) c LyA).
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Lemma 4.1. If the pair {y, f} € Lo(A), then
¢ t t
y(t) = —i]f dpo(s)y(s) — z']f dnpa(s)y(s) — i]f dmy(s)f(s). (33)

Proof. Let {y, f} € Lo(A). It follows from the definition of the relation Ly(A) that the pair {y, f} satisfies the
equation

t t t
y(t) = —i]f dp(s)y(s)—i]f dn/\(s)y(s)—i]f dm(s)f(s).
Therefore,
t t f
y() = —i] f A(po(s) + PENY(E) — ] f dnon(s) + T (s)y(s) = i] f d(mos) + BE)FE).

Now using (31), we obtain (33). The lemma is proved. O

Remark 4.2. It follows from the proof of Lemma 4.1 that every pair {y, f} € Lo(A) satisfies the equation

t t t
y(t) = —i]f dpo(s)y(s) — i]f dn, (s)y(s) — i]f dm(s)f(s), (34)
Corollary 4.3. [15] If the pair {y, f} € Ly — AE, then

¥ = —i] f dpo(9)y(s) — ifA f dmo($)y(s) — i] f dmo($)f ().

Lemma 4.4. A pair {y, f} €9 x $ belongs to the relation Ly(A) if and only if there exists a pair {y, f} such that the
pairs {y, f}, {y, f} are identical in $ X $ and the equalities

y(H)=—W(t, )i f W (s, Ddmo(s) £(5), (35)
y(@)=Wia, A)i] f W(s, Ddmo()f(5)=0, a € S, U {bo), (36)
0 (B)Y(B) + mUBNFB)= 0, PESm, 37)

hold.
Proof. The desired assertion follows from (31) and Lemmas 2.3,4.1. O
Corollary 4.5. If y € D(Ly(A)), then y is continuous and y(b) = 0.

Corollary 4.6. Suppose a pair {y, f} satisfies equality (35). The function f € $ belongs to the range R(Lo(A)) if and
only if the function f satisfies the conditions

f W (s, Didmo(s)£(s) = 0, mu((B)Y(B) + m(BNf(B)= 0,

where a € Sp U {bo}, BESm.

Remark 4.7. Lemma 4.4, Corollary 4.5 imply that we can replace by by b in (36) and Corollary 4.6.
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Remark 4.8. It follows from (23) that the second condition in (31) (and in equality (37)) can be written as
m({B)((Ay)B) + f(B) =0, B € Sm. (38)
Remark 4.9. Equality (38) means that the function X5 ((Ayy)(B) + f(B)) is identified with zero in $.

It follows from (24) and the definition of Ly, L that equation (11) can be written as

t t t
Y = xo— ] f dp(s)y(s) — i] f dm((An)(0) — i] f dm(s)f(s). (39)
Using (39), we get
Lo(A)=Lo— Ay, LA)=L-A,. (40)

It follows from (10), (40), and the equality A = A5 that
Li(A) =Ly = A 2> L. (41)
Lemma 4.10. The families of the relations Lo(A), L(A), LB(K) are holomorphic on C.
Proof. The desired statement follows from Lemma (3.7), equalities (40), (41). O

Let Sy be the set t € [a, b] such that y(t) = 0 for all y € D(Ly). The set Sy is closed and EP Ulal U {b} Cc So.
Lemma 4.11. [15] Suppose {y, f} € Lo. Then f(t) = 0 for m-almost all t € S,.

By 9o (by 91) denote a subspace of functions that vanish on [a, b] \ Sy (on Sy, respectively) with respect
to the norm in $. The subspaces $, 91 are orthogonal and H = Hy ® H1. We note that Ho = {0} if and only if
l‘n(So) =0.

Lemma 4.12. $ L D(Ly(A)) and Ho L R(Lo(A)), i.e., the equalities (g0, Y)s =0, (9o, f)s = 0 hold for all gy € Do,
y € D(Lo(A)), f € R(Lo(A)).

Proof. It follows from (40) that D(Ly(A)) = D(Lg). Suppose y € D(Lg). Then y(t) = 0 for t € Sp. Con-
sequently, (g0, y)s = 0. Suppose f € R(Lo(A)). It follows from (40) that f = fy — Ay, where fy € R(Lo),
y € D(Ly), {y, fo} € Lp. Lemma 4.11 implies that (fy, g0)s = 0. We claim that (Axy, go)s = 0. Indeed, using
(8), we obtain [(n1(So)y(t), go(t))| < k [m">(So)y(t)| [|m'/2(So)go(t)[| = 0 since [m"*(So)y(®)]| = 0. By (24), so
that (Axy, 90)s, = 0. The lemma is proved. [J

It follows from Lemmas 4.11, 4.12 that Ly N (Ho X Ho) = {0,0}, Lo(A) N (Ho X Ho) = {0,0}. We denote
Lip = Lo N (D1 X 91), Lio(A) = Lo(A) N (H1 X H1). Lemma 4.12 implies that D(L1) € H1, R(L1o) C H1,
D(Lio(A)) € H1, R(L10(A)) € 91. Therefore,

Ly = (H0 X Do) @ L1y, Ly(A) = (Ho X Ho) & Liy(A). (42)
Using (40), (42), we get
L10(A) = Lig — Ay, L;O(X) =L, — A LW =L, — Aq (43)

Theset 7, = (a,b)\ Sp is open and it is the union of at most a countable number of disjoint open intervals

Jr ie, Tp = Uﬁl Jrand N J; = @ for k # j, where k; is a natural number (equal to the number of
intervals if this number is finite) or the symbol o (if the number of intervals is infinite). By ] denote the set
of this intervals J.

Remark 4.13. The boundaries ay, By of any interval Ji = (ax, Pr) € J belong to Sy. This follows from (32).



V.M. Bruk / Filomat 38:4 (2024), 1153-1183 1163

We denote
Wi(t, A) = Xja, gy W(E, YW Hay, A), (44)
where (ax, fr) = Jk € J. Using (14), we get
wi(t, NJwt, A) = ], o <t < B (45)

Lemma 4.14. Let g € $1 and let a function G, be given by the following equality
t
Galt) =~ 010, 0] [ w365, DrtmE)g(9),
223

where (ax, Br) = Tk € J. Then the pair {G,, g} € L;O(X) if g vanishes outside of [a, Br).

Proof. We denote

G(t) = —wi(t, M)i] f wj(s, A)dm(s)g(s).

Equalities (44), (14) imply

t —
G(t) = —X[a,poW(L, /\)i]f W(s, A)dm(s)g(s).

It follows from Lemma 2.3 that the function G is a solution of equation (16) in which xo = 0, ax <t <y,
y < Br, and a, y, f are replaced by ax, G, g, respectively, i.e., the pair {G, g} satisfies equation (16) on the
segment [ay, V]

Suppose a pair {y, f} € Lo(A). Using the definition of Ly(1), we obtain that this pair {y, f} satisfies
equation (34) and conditions (31) in which A is replaced by A. We can apply formula (10) to the functions
Y, f,G,gforci = ay,c2 =y,q=m,p; = pg+ny, p2 = po + noy. Since the measures pg, np, are continuous,
Po, m are self-adjoint, we obtain

Y Y 4
f (dm(E)f(s), G(S)) - f (v, dm($)9() = {Ty(), GO) - f (dT(5)(5), G(S)).

Ak

Using the equality G,(t) = G(t) — Xs, G(t) and (37), we get

Y Y
f (dm(E)F(), Gols) - f (v, dm($)9(6) = ({Ty(), CO))~

Qak

= ) @shye),.GE - Y, @(sHFE),GE) = ([y0), GO (@6)

seSmNlak,y) seSmN[ak,y)

The function y is continuous from the left and y(x) = 0 (see (36) and Corollary 4.5). Hence passing to
the limit as y — B¢—0in (46), we obtain

Br Br
f (dm(E)f(5), Gols)) = f (¥(5), dm($)g(s)).

This implies the desired statement. The lemma is proved. O
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Lemma 4.15. A pair {y, f} €9 x $ belongs to the relation Lio(A) if and only if there exists a pair {y, f} such that the
pairs {y, f, {y, f} are identical in $ X $ and the equalities

ST t _
y(t==Y welt, V)] f w5, Ddmo(s) £(s), (47)
k=1 Fk

Br _ f _
f (s, MAmo(s)f6) = 0, ~Xsyranpitilt, A)i] f Wi s, Ddmo)f(s) + (A7 X, PO =0 (48)

hold for all k, where k = 1, ...,k if kq is finite and k is any natural number if k; is infinite, ImA # 0.

Proof. Using (44), (45), we obtain that equalities (35), (36) are equivalent to equality (47) and first equality
(48). It follows from (38) and Remark 4.9 that the function X5 y(8) + A;liiﬁ} f(B) (B € Sm) is identified with
zeroin $. This and (47) imply second equality (48). Now the desired statement follows from Lemma 4.4. [J

Corollary 4.16. The function f € 9 belongs to the range R(L10(A)) if and only if f satisfies conditions (48).

By 910 (by $11) denote a subspace of functions that belong to $; and vanish on Sy, (on [4,b] \ S,,,
respectively) with respect to the norm in $. So, H10 (911) consists of functions of the form X, ;j\(s,us,.)/t (of
the form X;g_\s, /1, respectively), where h € 9, is an arbitrary function. Therefore,

D1=5100D11, H= 90D D10 ® Hi1-

Obviously, the space 911 is the closure in $ of the linear span of functions that have the form X;j(-)x, where
x € H, 1€ S8n\ So. By (32), it follows that $11 C ker L,
We define an operator Ui (A): H1 — H1 by the equality

(UM = =Xpapn s, wr(t, D)i] f wy(s, Mdm(s)(Arf)s), f € 1. (49)

The operator Uy(A) is bounded. Taking into account (44) and Lemma 4.14, we obtain that the pair
{UN)f, Xpay (DL} € Lo(A). Let uk(t, A, 7): H— $; be an operator acting by the formula

t —
u(t, A, D)x = (U(A) X0y x)(E) = =X a5\ 8, Wk (E, A)i] f wy (s, A)dm(s)(Ar Xz x)(s), (50)

where x € H, T € (a, Br) N Sm, (%, Br) = Tk € J. Then the pair {u(-, A, 1)x, Ay Xqx} € L;O(X). The definition

of Ly implies that the function X;x € ker Lj. It follows from (43) that the pair {X(;x, —A X|x} € L;O(X).
Thus, for any x € H, the function

u(, A, D)x + ¥ ()x € ker L35(A). (51)

The linear span of functions of the form X;j(-)x (x € H, T € S; \ &) is dense in the space 911. It follows
from (50), (51) that for any the function z; € $11

UMz + 21 € ker Li;(A). (52)

Lemma 4.17. The linear span of functions of the form Xi, p)\(8,uS)Wk(-» )Xo is dense in H19 N ker L;O(X). Here
xo € H; k=1, ...,k ifk is finite and k is any natural number if kq is infinite.

Proof. Suppose that hy € $H19 N ker L;O(X) and

b
(ho, X\ Wk(+, A)X)g = f (dmg(s)ho(), X b s, Wi(s, A)x) =0 (53)
a
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for any x € H and for all k. Let us prove that /ip(f) = 0 mg-almost everywhere. We set hy(t) = 0 for t € Sp and
denote

S t
) == Y, i [ i Ao 64
k=1 Ak

We define the function & as follows. We put h(t) = ho(t) for t € [a,b]\ S, and k(1) = —(A5y)(7) for T € S\ So.
It follows from (24) for A = {7} that ny({t})y(t) = m({t})(A7y)(1). Therefore, m({t})h(7) + ny({t})y(7) = 0.
The function y will not change if &y is replaced by h in (54). Moreover, equality (53) will remain with
this replacement. Then it follows from Lemma 4.15 that the pair {y, h} € .[:10(1). Hence, (ho, h)g = 0 since
hy € ker L;O(X). On the other hand, (h, )¢ = (ho, ho)s. This implies iy = 0. The lemma is proved. [

Lemma 4.18. The linear span of functions of the form Xy p)\(s,use)Wk(-, A)xo and ux(-, A, T)x; + X(1)(-)x; is dense in
ker L;O(X), Here xo,xj € H; T€(ay, fr) NSm,; k =1, ..., Ky if kq is finite and k is any natural number if k is infinite.

Proof. Let z € ker L;O(X). Then z = zy + z;, where zp € 9109, z1 € D11. Suppose that the function z is
orthogonal to the functions listed in the condition of this lemma. We claim that z = 0. Indeed, the pair
{z1, —Aaz1} € L;,(A) since z1 € ker L} and (43) holds. Therefore, {zy, Arz1} € L;,(1). We denote z; = X[y, 5,2,
Zok = X[y, )20, Z1k = X[ pZ1- Using Lemma 4.14, we get

f
20c(t) = = ooy s, 0clt, A)i] f (s, Mdm(s)(Aazi)(s) + ho(h), (55)

where hy € ker L;O(X). Moreover, hy € 910 since zg, € H10 and the first term in (55) belongs to $H1p. It
follows from Lemma 4.17 that hy belongs to the closure of the linear span of functions that have the
form X, pns.Wk(-, A)x’, ¥ € H. Using (49), (55), we obtain zx = Ui(A)zix + zix + ho. By assumption,
(zk, Ur(A)zak + z1x)s = 0 and (2, ho)g = 0. Hence, (zx, zx)s = O for all k. Therefore, (z,z)g = 0. The lemma is
proved. O

Remark 4.19. Lemma 4.18 remains true if the functions of the form wi(-, A, T)x; + X)(-)x; are replaced by the
functions ug(-, A, T)Br(A)xj+X 1) (-)B< (A)xj, where B.(A): H— H is a bounded continuously invertible operator, x; € H.

Let W(t) be an operator solution of the equation
t
WO =0~ ] [ dpa& o) (56)

where xo € H. We denote
Wi(8) = X o WOW ™ (), (57)
where (ay, fi) =Tk €]. The following lemma is proved in [15].

Lemma 4.20. The linear span of functions of the form Xi,u)\s,,wi()xo and Xiy(-)x; is dense in kerL;,. Here
xo,Xj € H; t€(ay, fr) N Sm/; k =1,..., Kk if kq is finite and k is any natural number if k; is infinite.

Let M be a set consisting of intervals J € J and single-point sets {t}, where 7 € Sy, \ Sp. The set M is
at most countable. Let k be the number of elements in IM. We arrange the elements of M in the form of a
finite or infinite sequence and denote these elements by &, where k is any natural number if the number of
elements in M is infinite, and 1 < k < k if the number of elements in IM is finite.

To each element & € M assign operator functions 9, 9 in the following way. If & is the interval,
Ex = Tk = (o, Pr) €], then

Sk(t, A) = Xpa ponsn®i(t, A, k(t) = Xy o5 Wi(E)- (58)
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If & is the single-point set, & = {tx}, then
Olt, 1) = (Un(MAL ¥, (D) + Xy (DA X )(B), Sk(t)= Xy (8), (59)

where 74 € (Sm \ So) N T, Tn =(an,Bu) €], n =1,..., K if Kk is finite and k is any natural number if k; is
infinite. In case (59), using (49) and Remark 3.3, we get

t
Silt, D)x = —Xpg b\ (SmuSe) Wn(t, /\)i]f w;,(s, 1)dm(s)(X () x)(s) + (A Xy 2)(1). (60)
a
Remark 4.21. It follows from (44),(57) that equalities (58) are equivalent to the following: Si(t, A) = X[g pps,, Wi (t, A),
Sk(t) = X( 58, Wk (t)-

Lemma 4.22. The linear span of the functions t — S(t, A)&; (t — gk(t)éj) is dense in ker L;O(X) (in kerL],,
respectively). (Here {j € H, k € Nifk = oo, and 1 < k < k if k is finite.)

Proof. The required statement follows from Remark 4.19 and Lemmas 4.18, 4.20 immediately. [

Corollary 4.23. A function f € 91 belongs to the range R(Li0(A)) (the range R(L1o)) if and only if the equality
(f, S;&,X)Ej)g =0 (the equality (f, 9x(-)&j)s = 0, respectively) holds for all k and all for £; € H. (Here k € IN if
k = oo, and 1 < k < kif k is finite.)

Proof. The proof follows from the equalities R(L19(A))®ker L] (1)= 91, R(L1o)®ker L] =H1and Lemma 4.22.]
Lemma 4.24. There exist constants y1x = Y1k(A), Yok = Yax(A) > 0 such that the inequality

e[S <9 Al < e[S (61)
holds for all x € H.
Proof. Using (13), (56), and Lemma 2.3, we obtain

W(t A)xg = W(t)xo — W(H)i] f tW*(s)dnm(s)W(s, Mxo, xo €H, (62)

W(t)xo = W(t A)xo + Wt A)i] f tw*(s, Ndnor(5)W(s)xo, xo € H. (63)
Suppose that 9, 9 have form (58). Iut follows from (26), (44), (57), (62), (63) that

St Mxo = Si(B)xo — (B)i] f :§Z(S)dmo(s)(AASk(-, Dxo)(s), X € H, (64)

Si()xo = Sx(t, A)xo + Sx(t, A)iJ f :s;(s, A)dmo(s)(Arxx0)(s), xo € H. (65)

Equalities (15), (64), (65) imply (61) in the case when 9, gk have form (58).
Suppose that 3¢, 9 have form (59). It follows from Remark 3.3 and (49) that

19, DRI = U )AL X + A7 Kpef > (|47 X}, > 5 [Sicx]

2
35,

where y3 = y3(A) > 0. On the other hand, using Remark 3.3 and (49), we obtain

196, Ml < U AT X + ¥y AT Xl < 72 AT Xl < s [0n]

7

9

where y4 = y4(A) > 0, y5 = y5(A) > 0. The lemma is proved. O
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Let Qo be a set xe H such that the functions t — gk(t)x are identical with zero in $. We put Qr=H © Q.
On the linear space Qk, we introduce a norm ||-||_ by the equality

el =[S

&k €Ok (66)
$

By Q, denote the completion of Qi with respect to norm (66). This norm (66) is generated by the scalar

product (&, i)- = (gk(~)£k, §k(')72k)55/ where &, N € Qk. From formula (3) in which the measure P is replaced
by m, it follows that

€kl < v IIEKH, &k € Qk, (67)

where y > 0 is independent of &, € Q. It follows from (67) that the space Q,” can be treated as a space with
a negative norm with respect to Qx ([5, ch. 1], [19, ch.2]). By Q;" denote the associated space with a positive
norm. The definition of spaces with positive and negative norms implies that Q; ¢ Qx € Q,". By (-,-)+ and
Il we denote the scalar product and the norm in Qy, respectively.

Remark 4.25. By (61), it follows that the set Qo will not change if the function () is replaced by (-, A) in the
definition of Qxo. Moreover, with this replacement, the space Q, will not change in the following sense: the set Q,” will
not change, and the norm in it will be replaced by the equivalent one. The similar statement holds for the space Q;'.

Suppose that a sequence {x,}, Xk, € Qk, converges in the space Q, to xo € Q, as n— co. It follows from
Lemma 4.24 that a sequence {9(-, A)xt,} is fundamental in . Therefore, this sequence converges to some
element in §. By 9x(-, A)xo we denote this element.

Let Qy =Q7 X ... X Qy (Q =Q7 X ... XQ},) be the Cartesian product of the first N sets Q; (Q;, respectively)
and let VN(t A) = (91(t, A), ..., On(t, A)) be the operator one-row matrix. It is convenient to treat elements

from QN as one-column matrices and to assume that Vy(, /\)EN Ziil Jk(t, )&k, where we denote §N =

COl(éll weey EN) € QN’ ék € Q;:
Let kery(A) be a linear space of functions t — Sk(t, A)&x, & € Q, - By (66) and Lemma 4.24, it follows that
ker(A) is closed in $. We denote Ky(A) = keri(A)+...4+ kery(A). Obviously, K, (A) € K, (A) for N1 < No.

Lemma 4.26. The set UyKn(A) is dense in ker L}O(K).
Proof. The required statement follows from Lemma 4.22 immediately. [J

By Vn(A) denote the operator 51\1 - Vn(, )\)EN, where cEN € QN The operator Vy(A) maps continuously
and one-to-one QN onto Kn(A) € H1 C 9. Hence the adjoint operator V3 (1) maps $ onto QN continuously.
We find the form of the operator V- For all EN € QN = Q1 X..Qn, f€H, we have

. bo - bo — —
(f,VN(A) EN)s = | (dm(s)f(s), VN(s, M)En) = | (Vi(s, ))dm(s)f(s), En) = (Vi (D) f, En)-

a a

Since Qy is dense in Qy, we obtain

bo
V;\,()\)f:f Vi (s, A)dm(s) f(s). (68)

Thus, we have proved the following statement.

Lemma 4.27. The operator Vy(A) maps continuously and one-to-one éﬂ/ onto K, (A). The adjoint operator V3,(A)
maps continuously $ onto QY and acts by formula (68). Moreover, V3, (A) maps one-to-one Ki(A) onto Q.
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Let @, Q,, Q be linear spaces of sequences, respectively, 71 = {ni}, ¢ = {px}, & = (&}, where 1, € Q,
@k € Q;, &€ Qr; ke INifk = 00, and 1 < k < Kk if k is finite; k is the number of elements in IM. We assume

. (o) 2 oo 2 oo . . .
that the series ) ;- ||17k Ykt ”(pk o Lkt llE]1? converge if k = co. These spaces become Hilbert spaces if
we introduce scalar products by the formulas

k Ik Ik
@0-=) (G-, 1CeQ; @)=Y @uin)e PPeQs (E08)=) (Enox), &T€Q.
k=1 k=1 k=1

In these spaces, the norms are defined by the equalities

k k k
717 = Yol 171 = Yol (€] = Y newi?.
k=1 k=1 k=1

The spaces Q,Q_can be treated as spaces with positive and negative norms with respect to Q ([5, ch. 1],
[19, ch.2]). So, @+ € Q € Q- and 1 ||(ﬂ|_ < “ﬂ) <2 ”ﬂ o where ¢ € Q., y1,72 > 0. The “scalar product”
(17, @) is defined for all € Q,, 17 € Q-. If ] € Q, then (77, ¢) coincides with the scalar product in Q.

Let M C Q_ be a set of sequences vanishing starting from a certain number (its own for each sequence).
The set M is dense in the space Q_. The operator V(A7) is the restriction of Vy,1(A) to é;l. By V’(A) denote
an operator in M such that V'(1)7 = Vy(A)ny for all N € N, where 7 = (n,0,...), Iy € é;,. It follows
from (66), (61) that V’(A) admits an extension by continuity to the space Q_. By V(A) denote the extended
operator. This operator maps continuously and one-to-one Q_ onto ker L;O(X) C D1 C 9H. Moreover, we
denote V(t, A = (V(A)n)(t), where ) = {1} € Q.

The adjoint operator V*(1) maps continuously $ onto Q.. Let us find the form of V*(1). Suppose f € 9,
ne M, n=1{nn,0,...}. Then

by

M, V' M=V, s =f @dm(t)V(t, A)n, f(t)) =f (, V*(t, dm(t) £ (1)).
Since V*(1)f € Q, and the set M is dense in Q_, we get
by _
Vs = [V amos (©9)

Taking into account Lemmas 4.26,4.27, we obtain the following statement.

Lemma 4.28. The operator V(A) maps Q_ onto ker L;O(X) continuously and one to one. A function z belongs to
ker L]O(X) if and only if there exists an element 1= {n} € Q_ such that z(t) = (V(A)n)(t) = V(t, A)n. The operator
V*(A) maps $ onto Q. continuously, and acts by formula (69), and ker V*(A) = $Ho & R(L10(A)). Moreover, V*(A)
maps ker L] (A) onto @, one to one.

The following theorem is proved in [15] for the relation Lj — AE. We have changed some designations
from [15] to shorten the record.

Theorem 4.29. A pair {?,ﬁ € H X 9 belongs to LB(X) if and only if there exist a pair {’y\,f} € 9 X 9, functions

Yo, Yy € D0, Y, f € 91, and an element 1 € Q_ such that the pairs {y, f}, {y, f } are identical in $x $ and the equalities

Y=yw+y f=y+f (70)
—_— ]](1 t —
YO=VEAT =Y Xopnsawilt, A)i] f w (s, A)dm(s) £ (s) (71)
k=1 .

hold, where the series in (71) converges in 91, kq is the number of intervals Ji €].
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Proof. Equalities (70) follow from (42). Let us prove that equality (71) holds. It follows from Lemma 4.28
that V(1)1 € ker L]O(X). We prove that if the functions y, f satisfy equality (71), then the pair {y, f} € L;O(X).
If kk; is finite, then this statement follows from Lemmas 4.14,4.28. We assume that k; = oo and first prove
that the series in (71) converges in $; for each function f € $;. We denote fi(t)= X[y, 5, f(t). The function

t f
046 = — Ko s, it A)i] f (s, Mdm(s)fu(s) = — X il A)i] f 0.6 D@ i dpm®  (72)

vanishes outside the interval [ay, fx). (Here Wi, pm are functions from formula (3) in which the measure P
is replaced by m.) Using (72), (15), (3), we get

— Bk 5 1/2
s DA dpms) < o [ 10820RON dpate) =l

Br
or(B)Il <ex llwi(t, Dl f | o €16 >0.
This implies
Br
lloxlly, = f (Wan(D0K(8), D)) Apim(t) < £2prmlate, BO) || ] - (73)

We denote S, (t) = Y;_; vk(t) and prove that the sequence {S,} converges in ;. From (73), we obtain
n n 5 2
1S4l =Y loely < &2 pm(Te B [|illg < €2pm(la, D) |11 -
k=1 k=1
Hence the sequence {S,} converges to some function S € $; and

oo t
S() ==Y Xiapns,welt, Vif f wi(s, DAm(E)f(), 11Slls, < e |[fll, €20, (74)
k=1 a

It follows from Lemma 4.14 that the pair {S,, Y.;_; fx} € L;O(X). The relation L;O(X) is closed. Consequently,
the pair {S, f} € £;,(}) and the pair {y, f} € £;,(1), where y = V()7 + S.
Now we assume that a pair {y, f} € L;O(X). For the function f, we find a function S by formula (74).

Then {S, f}e L;O(X). Hence y — S€ ker L;O(X). By Lemma 4.28, it follows that there exists an element ) € Q-
such that y — S = V(A)n. Therefore, y has form (71). Now (42) implies the desired assertion. The theorem is
proved. O

5. Continuously invertible extensions of the relation L;4(A)

Lemma 5.1. Equality (71) holds if and only if
—_—~ —_— ]kl t —_—
y()=V(t, )T+ 2—12 [—%[u,b]\smwk(t, A)i] f wi(s, 1)dmo(s) £(5) = (A7 X s po f)(t)] +
k=1 k
Kk, Br _
+ 2*12 [%[ﬂlb]\smwk(t, A)i] f wj (s, A)dmo(s) £(5) — (A X s, naepe f)(t)], (75)
k=1 t

where Ee QY fed.

Proof. By standard transformations, equality (71) is reduced to the form
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—_— —_— ]l(l t —_
yt)=V(t, 1)6 - 2‘12 Xpo oS, Wi(t A)i]f wi (s, A)dm(s) f(s)+
k=1 a
Ik b _
+ 2‘12 X oS, Wil )\)z’]f wi(s, A)dm(s)f(s), (76)
k=1 t

where 6= {6k} € Q_, and Oy = 1 if 9y has form (60), and Oy = n—271i] jf wi(s, X)dm(s)f(s) if ¢ has form (58).
Let us write the function

¢
040, 2) = =S5, 010, ] [ s Didm(s) 9 77)
a
in a different form. Using (77), (49), and Remark 3.3, we get
¢ _ ¢ _
wi(t, A) = =X S Wi(t, A)i] f wi (s, A)dmg(s) f(s) — Xgpns, Wi(t, A)i] f wi(s, A)Am(s)X s, (0 (8) f(5) =
[ 293

t
= X Wkl )T f (s, Dimo()f(&) — (AT Esynionp O+
+ I X s N + LA Esynagn HIOL

We denote
T = AXlemﬂ(ak,ﬁk)f + (L{k(/\)Ailxsmﬂ(akﬁk)f'
Using (27), (52), we get 1; € ker L;O(X). Therefore,
t —
wi(t, A) = =X pps, Wk(t, A)i] f wi (s, A)dmo(s) () = (A X s o ) + 1(t). (78)
23
Similarly, we transform the function
—_— h o
wi(t, A) = %[u,b]\smwk(f, /\)l]f w,’;(s, A)dm(s)f(s)
t
to the form
— k -
wi(t, A) = Xpg s, Wi(t, A)i] f w (s, N)dmo(s) £ (5) = (A} X s f) D+
t
k —
+ [(AT' X s, 000 NB + U DA Xs, @0 O] + X pnns, Wit A)i] f wi (s, A)dm(s)X s, A(ar,p) (8) f (5)-
293

By Lemma 4.18, Remark 4.19, and (27), (52), it follows that here the sum of the last three terms belongs to
ker £],(A). Consequently,

wi(t, A) = =X s, Wk(t, /\)i]f wy (s, X)dmo(s)f(s) - (A;lffsmn(ak,ﬁk)f)(t) +14(t), (79)
t

whereT; € ker L;O(X). Now the desired statement follows from (76), (78), (79), and Lemma 4.28. The lemma
is proved. O
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Theorem 5.2. Let T(A) be a linear relation such that L19(A) C T(A) C L;O(X). The relation T(A) is continuously
invertible in the space 91 if and only if there exists a bounded operator M(A) : Q. — Q- such that the following
equality holds for any pair {y, f} € T(A) and for any A, ImA # 0,

b~ —_— —_
y(t) = f V(t, DM (s, Dim(e)f(s)+

a

k; b ST
+27 ka fa oy po\Sm Wi (t, A)sgn(s — H)iJwi(s, A)dm(s)X g, g\s.. (8)f(8) — ;(Ailfsmn(ak,ﬁk)f )(®). (80)

Proof. First note that the range R(Li9(A)) is closed and ker L19(A) ={0}. This follows from Lemma 4.4 and
Corollary 4.6. Suppose that the relation T~}(A) is a boundary everywhere defined operatorand y = T~ T f.

Then y has form (75). In this equality, Ce@ is uniquely determined by f and A, ie., C = &l (f,A). Indeed,
if f =0, then V(t )\)C =T 1()\)O = 0. It follows from Lemma 4.28 that C = 0. Moreover, C depends on

f linearly. Consequently, C=5(A) f, where S(A) : $1 — Q_ is a linear operator for fixed A. We claim that
the operator S(A) is bounded. Indeed, if a sequence {f,} converges to zero in the space $; as n — oo, then

the sequence {ya}={T1(A) fu} converges to zero in $;. Hence the sequence {V(/\)En} (where En = S(A)fn)
converges to zero in ;. By Lemma 4.28, it follows that the sequence {S(A) f,} converges to zero in the space
Q_. Therefore, S(A) is the bounded operator.

Now we prove that O f,A) is uniquely determined by the element V*(1)f € Q,. Suppose V*(1)f = 0.
The application of Lemma 4.28 and Corollary 4.16 yields that f € R(Li0(A)) and fa ﬁkkw;(s, Aydmy(s) f(s) = 0.
Therefore, the second and third terms coincide in equality (75). Then equality (75) takes the form

—_— —_— Ikl t p—
yO=Vt N +Y | = Eaansawoilt, Ai] f Wi (s, NAmo(s) £ () = (A} ¥ () |- (81)
k=1 Pk

We denote

¢
ur(t) = —wil(t, /\)i]f wi (s, A)dmg(s) f(s)

293

and continue equality (81)

Iy
Y=Y+ Y [1el) = (Xs,000080 OB + (AT X pn HO)]
k=1
Using Lemma 4.15, Corollary 4.16, and equality (38), we get
X5, (e p0 D) + (A7 X, 00,50 () = 0
and the pair { k 1 Uk, f} € L1o(A). This and the invertibility of T(A) imply that 7 f,A)=0
Thus, S(A)f = M(A)V*(A) f, where M(A): Q; — Q- is an everywhere defined operator. Let VB(X) be a

restriction of V*(1) to ker L;,(A). By Lemma 4.28, it follows that M(A) = S(A)(VB(X))‘l. Hence M(A) is the
bounded operator. Thus, equality (75) takes the form

]/(t) V(t /\)M(A V (A f + 27 Z|: [4,51\Sm wi(t, A l]f wk(s /\)dmo(s)f(s) (A 1%5 N ﬁk)f)(t)]

k=1
Br _
+ 2-12 [x[a,b]\smwku, )] f w} (5, Ddmo(5) £(5) = (A3 Xsia o f)(t)], (82)
k=1 t

where the pair {y, f} € T(A).
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Conversely, assume that equality (82) holds. Then y = 0if f = 0 in (82). Therefore, T~!(A) is an operator.
We claim that the operator T~!(A) is bounded. Indeed, suppose that pairs {y,, f,} satisfy equality (82) and
the sequence {f,} converges to zero in $. It follows from Lemma 4.28 and equality (82) that the sequence
{y} converges to zero. So, T~(A) is the boundary everywhere defined operator. To conclude the proof, it
remains to note that equality (80) is the another form of equality (82). The theorem is proved. [

The proof of the next lemma repeats verbatim the proof of the analogous lemma from [17].

Lemma 5.3. In Theorem 5.2, the function A — T~Y(A) f is holomorphic for any f € $ at a point A1 (ImA; # 0) if and
only if the function A — M(A)X is holomorphic for any element x € Q.. at the same point A;.

Remark 5.4. Let f(/\) C 9 X 9 be a linear relation and Lo(A) C T"(A) - La(X). It follows from (42) that T"(A) is
continuously invertible in the space $ if and only if 7:(/\) has the form 7:(/\) =To(A) ® T(A), where To(A) C Ho X Ho,

T(A) € 91 X 91 are linear relations, L1o(A) € T(A) C L;O(Z), T(A) is continuously invertible in $1, To(A) is any
continuously invertible relation in $y.

6. The characteristic operator

Let T be a closed symmetric relation, T € B X B, and let T be a self-adjoint extension of T to B, where B,
B are Hilbert spaces, B O B, and scalar products coincide in B and B. By P denote an orthogonal projection
of B onto B. A function A — R(A) defined by the formula R(A) = P(T — AE)|g, ImA # 0, is called the
generalized resolvent of the relation T (see, for example, [1, ch.9], [18]).

A.V. Straus (see [28]) obtained a formula for all generalized resolvents of a symmetric operator. It is
shown in [18] that this formula remains true for symmetric relations also. By %t, denote a defect subspace of
the closed symmetric relation T, i.e., the orthogonal complement in B to the range of the relation T — AE. We
fix some number Ao (ImAg # 0). Let A — % (1) be a holomorphic operator function, where F(A): 9%, — 95
is a bounded operator, ||[F(A)]| < 1, ImA - ImAg > 0. Let T#(y be the relation consisting of all pairs of the
form {yo + F (Mu —u, y1 + AoF (A)u — Aou}, where {yo,y1} € T, u € Ny,. Then T4,y C T*. The articles [28], [18]
prove that the family of operators R(A) is a generalized resolvent of T if and only if R(A) can be represented
in the form

R(A) = (Tgpy — AE)™!, ImA-ImAg > 0.

In [18], [28], it is established that a function A — R(A) is a generalized resolvent if and only if this function
is holomorphic on the half-planes ImA # 0, R(A) = R* (A), and the inequality

(ImA) ' Im(R(A)f, f)s — (R(A)f, R(A)f)p > 0.

holds. In the article [29], A.V. Straus described the generalized resolvents of a symmetric operator generated
by a formally self-adjoint differential expression of even order in the scalar case. In such a description, a
function M(A) (A € C) plays an essential role. This function has the property (ImA)~'ImM(A) > 0. In [29],
the function M(A) is called the characteristic function of the generalized resolvent. The article [17] describes
the generalized resolvents of the symmetric relation L1y generated by integral equation (2). This description
uses the characteristic function.

The definition of the characteristic operator is given in [21], [22] for a differential equation with a
Nevanlinna operator function. Using this definition and Theorem 1.1 from [22], we introduce the notion
of a characteristic operator for integral equation (11). An essential role in the study of the characteristic
operator is played by Theorem 6.1 that is formulated below.

It follows from Lemma 4.28 that for any element X € Q. there exists a function f € $; such that

V*(A)f = X. We denote
— LS B _
z(t) = z(t, f, A) = V(t, A)M(A)x — Z 2_1%[%4;")\3‘“ (Hw,(t, )\)i]f wi(s, A)dmy(s) f(s), (83)
n=1 an

where ¥ = V*(1) f. By Lemmas 4.18, 4.22, it follows that z € ker L;O(X).
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Theorem 6.1. Suppose T(A) is a linear relation such that Lip(A) € T(A) C L’io(X), and T(A) is continuously
invertible in the space $1 for ImA # 0, and R(A) = TY(A). Then the equality

(ImA) " ImMD)T, X) = (2, 2)m, = (ImA)IMRA)f, s = IMRA)f, RA) i, (84)
holds for all f € $1 and X = V*(A)f € Q., where M(A) is the function from Theorem 5.2.

We recall that the symbols (-, -)s, (-, )m denote the scalar product in $. The symbol m, is defined in
equality (6). The proof of Theorem 6.1 is given in section 7.

Corollary 6.2. Ifry has form (9) (i.e., Ay = AE, see Example 2.1), then equality (84) has the form
(ImA) "Im(M(A)X, X) = (2, 2)m = (ImA) ' IM(R(A)f, lm = (R(A)f, R(A) -

Suppose T(A) is a linear relation such that Lio(1) CT(A) C L;O(X) and T(A) is continuously invertible.
Let R(A) = T"!(A). By R(A) denote an operator in $; defined by the equality
R(A)f = ImA)'R(A)(ImA,) f (85)

for all f € 9 and for all A such that ImA # 0. Using (25), (80), and the equality Sm = Sm,, we get

b~ —_~ p—
(R()N(E) = f V(t, M(A)V(s, A)dm, (s) f(s)+

a

kq b
+ 271 Z f %[ak/ﬁk)\sm(t)wk(tr A)sgn(s — t)i ]w]*{(s, A)dm /\(S)%[ak,ﬁk)\ 5. (5)f(s)-
k=1 V4

ISt
= (ImA) AT Y (Rsunis MADAD.  (36)
k=1

Definition 6.3. Let A — M(A) = M*(A) be a function holomorphic for TmA # 0 whose values are bounded linear
operators and D(M(A)) = Q.+, R(M(A)) € Q-. This function M is called the characteristic operator of equation (11)
if the operator R(A) (86) satisfies the inequality

(ImA) " IM(RA)f, fm, = R(A)f, R(A)m, >0
for all functions f € $1 and for all A such that ImA # 0.

We note that if Sy, = @, then Definition 6.3 is the same as the definition of the characteristic operator from
[21], [22] (see Definition 1.1 , Theorem 1.1 in [22]).

By zA(t) = za(t, f) denote z(t, ImA) " (ImA,) f, A), where z(¢, f, A) is defined by equality (83). Using (25),
we get

— bU.,
zy(t) = V(t, AAM(A) f V' (t, )dm(B)((ImA) ™ (ImAn) f)(H)~

]1(1 ﬁ” _
= Y2 s Ot 0 | 5, Dotmo(©)(Imd) ™ (ImA ) 9 =
n=1 An

— L] B —
= Vb, DMT: = Y27 %o, g5 D0t D] f W} (s, Ndmoy () (5),
n=1 Qp

where %, = [""V*(t, A)dm, (O (¢).
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Lemma 6.4. Let the operator R(A) be defined by equality (86) (or (85)) . Then the equality
(ImA) " Im(M(A)x3, X1 ) = (22, 22)m, = (ImA) 'TM(R(A)f, flm, = IN(R(A)f, R(A) fm, (87)
holds for all functions f € 91 and for all A such that ImA # 0.

Proof. Substituting (ImA)~}(ImA,)f for f in (84) and using equalities (25), (85), and the equality z,(t, f) =
z(t, (ImA)~1(ImA,) f, A), we get (87). The lemma is proved. [

Lemma 6.5. The inequality

ImA) IMRA)f, fHm — (RA)f, R(A) flm, >0 (88)
holds for all f € $1 if and only if the inequality
(ImA) " Im(R(A)g, 7)m, = (R(A)g, R(A)P)m, >0 (89)

holds for all g € $1 and for all A such that ImA # 0.
Proof. Replace the function f by (ImA)}(ImA,)g in (88). Then we obtain
(ImA) ' Im(R(A)ImA) " (ImA,)g, ImA) H(ImAL)g)m — (R(A)(ImA) " (ImA,)g, R(A)(ImA) ' (ImA)g)m, > 0.

Using (25), (85), we get (89). According to Lemma 3.5, the operator ImA, has an everywhere defined
bounded inverse. If we replace the function g by ImA(ImA,)~! f in (89), then we obtain (88). The lemma is
proved. [J

We fix some number Ay (ImAy # 0). Let A = F(A) be an operator function such that F(A):9t,, — ERXD isa
bounded operator, |[|F(A)||<1, where ImA-ImA>0; 9t is a defect subspace of the symmetric relation Lyo. Let

Lr(y) be the relation consisting of all pairs of the form {yo +F(A)u —u, y1 + AgF(A)u — Xgu}, where {yo, 11} € L1o,
u € Ny,. We set F(A) = F*(A) and denote L) = Lrg) — Ax. By (43), so that Lig(A) € Ly € L,(A).

Lemma 6.6. The family of relations Lry = Lpy — Ay is holomorphic if and only if the function F(A) is holomorphic
(ImA # 0).

Proof. The relation L) = Lry — Aj consists of all pairs of the form
{yo + FNu — u, y1 + AgF(A)u — Agu — Ay (yo + F(A\)u — )}, (90)

where {yo, y1} € Lio, u € Ny,. It is known (see, for example, [18]) that L], = Lio ® Ry, ® ‘RXO C H1 X 91 (the
norm of space 91 X 91 is considered on L’io). We denote By = Lig®R,,. Let the operator K(A): By — L) take
each element {1, y1, u} € By to element (90) belonging to Lr(1). Then the operator K(A) bijectively maps By
onto Lr(y) for any fixed A. Since the function A — A, is holomorphic, we see that the function A — K(A) is
holomorphic if the function A — F(A) is holomorphic. Hence, the family A — Lp()(A) is holomorphic.

Conversely, suppose that the family A — Lp)(A) is holomorphic. The operator F(A) is bounded.
Therefore, it follows from (90) that the function A — F(A) is holomorphic. O

Lemma 6.7. There exists a number y = y(A) > 0 such that the inequality
~(mA) " m(y1, y)s > Y@, Y)s (91)
holds for all pairs {y, y1} € L.

Proof. If a pair {y,y1} € Lr), then there exists a pair {y,v1} € Lryy such that y; = v; — Ajy. Note that
(ImA)~'Im(vq, v)5 < O for all pairs {v,v1} € Lrq) (see, for example, [18]). Therefore, using (28), we get

—(ImA) ™ m(y1, y)g = —(ImA) " Im(vy, y)g + IMA) ' Im(Ary, v)s = VY, Y)s-

The lemma is proved. O
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Theorem 6.8. The relation Ly has an everywhere defined bounded inverse operator (L A))*l = (Legy — A O lin
1 for any A such that ImA # 0.

Proof. Using (91), we obtain

|1 sl = [Re(ws, ws|” + [mys, s[> 7 [ly]l; (92)

for any pairs {y, y1} € L. Consider a sequence {{y,,, y1,}} of pairs {y,,, 1.} € L) such that the sequence
{y1n} converges to zero in $ as n — co. We claim that the sequence {y,} converges to zero. First we prove

that the sequence {y,} is bounded. Assume the converse, let Hyn H g 00 asn—co. We denote v, = v, Hyn H:

Then V1, = Yin ”yn”;1 — 0 as n— oo. By (92), we get y, —» 0. But ”%” 6= L This contradiction proves that
{yn} is bounded. Now (92) implies that {y,} — 0 in $; as n — co. Finally, using the equalities A} = A; and
LF(X)/ we obtain R(Lr)) = H1. This completes the proof of theorem. [

*

FA) ~

Theorem 6.9. Inequality (88) holds if and only if R(A) has the form R(A) = (Lr) ™' = (Lepy — A1) 7L

Proof. First we assume that R(A) = (Lry — Ax)™'. We denote y = R(A)f. Then there exists an element
y1 € R(Lpy) such that the pair {y, y1} € Lr) and y1 — Ayy = f. Hence, (Y1, Y)m — (A1Y, Ym = (f, Y)m. Using
(25), we obtain

—(ImA) " 'Im(y1, Y = AMA) "IN, N = Y Yimy-

By (ImA) "' Im(y1, ¥)m < O (see, for example, [18]) , so that inequality (88) holds.

Now we assume that inequality (88) holds. According to (43), we have Lip — Ay € T(A) € L}, — Ay,
where T71(A) = R(A). Then T(A) = L(A) — A, where Ly € L(A) C L},- Consequently, there exists an element
y1 € R(L(A)) such that the pair {y, y1} € L(A)and y1—Ayy = f, R(A) f = y. Hence, (y1, V)m—(ArY, Y)m = (f, Y)m-
Using (25), (88), we obtain

—(ImA) m(y1, Y)m = IMA) TITMRA) f, lm — RA)f, R(A) fm, = 0.

This implies that the relation (ImA)™'L(A) is accumulative, i.e., (ImA) " Im(y1, Y)m < O for all pairs {y1, y} €
(ImA)~'L(A). Since the range R(T(A)) = 9, it follows that the relation T(A) is maximal accumulative.
Therefore, the relation (ImA)™'L(A) is maximal accumulative. Consequently, there exists an operator F(A):
Ny, = Ny (ImA # 0) such that [[F(A)ll < 1 and L(A) = Lr) (see, for example, [18], [19]). This implies that
T(A) = Lgpy — Ax. The theorem is proved. [

We denote LLr(;) = (ImA)(ImA A)‘l(LF(A) —A,). By Theorem 6.8 and Lemma 3.5, it follows that the relation
Lrq) is continuously invertible and

(Lry) ™" = (ImA) " (Lrgy — Ay) " (ImAy) = ImA) ™ (Ley) ' ImA,.
Theorem 6.10. Inequality (89) holds if and only if R(A) has the form R(A) = (ImA) ™} (Lpy—Ax) " AmAL) = (Lppy) ™

Proof. First we assume that R(A) = (ILrz))~!. Using (85), we get R(A) = (L) — Ax)7!. It follows from
Theorem 6.9 that inequality (88) holds. Taking into account Lemma 6.5, we obtain inequality (89). Now
we assume that inequality (89) holds. Arguing as above in reverse order, we see that R(A) = (Lf))~!. The
theorem is proved. [

We note that the function M(A) is the same in equalities (80), (86). Let M(A) be holomorphic and M*(A) =

M(A) (ImA #0). It follows from Lemma 6.5 and Definition 6.3 that the function M(A) is the characteristic
operator in equalities (80), (86) if and only if inequalities (88), (89), respectively, hold. According to
Lemma 6.5, the inequalities (88), (89) hold together. Moreover, M(A) is the characteristic operator if and
only if R(A) = (Lrpy — Ax) 7! or R(A) = AImA) (L — Ax) " (ImA,), where F(A) is the holomorphic function
and F*(A) = F(A).
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7. The proof of Theorem 6.1

Proof. For the case in which the measure r; has form (9), this theorem is proved in [17]. Below is a more
detailed proof. By standard transformations, equality (82) (or (80)) is reduced to the form

p— —_ ]kl t —
yO)=V({t, AYMA)V(A) f - Z Xja, p\Sm D)W (t, /\)i]f wy, (s, A)dmg(s) f(s)+

n=1
Ik By _ Ik
# 32 s Ot 0 [0 Do) = Y (A Xt s NO- 99
n=1 n n=1

We fix an interval (@, f4) € J and introduce some notation. Let IM,, C M be a set consisting of the

interval (@, B) € J and single-point sets {7}, where T € Sy N (ay, B1). Suppose En is a natural number (equal
to the number of elements in IM,, if this number is finite) or the symbol co (if the number of elements in
M,, is infinite). We arrange the elements of IM,, in the form of a finite or infinite sequence and denote these

elements by &,, where k is any natural number if the number of elements in IM,, is infinite, and 1 < k < k,
if the number of elements in IM,, is finite; &, is the interval (@, fu), Eur (k > 2) is the single-point set {1z},
Tk € Sm N (an/ﬁn)'

To each element &, € M, assign the operator function 9, in the following way (see also (44), (58), (59)).
Ifk =1, then

91t A) = Xg, porsa@n(t, A), wat, A) = X, gy W(E W (a, A); (94)
if k > 2, then
t
Suilt, 1) = Un(A)AL ¥ (D) + (AT X)) (1) = = X(a, pr8m Wlt, A)i] f Wi (s, A)Adm(s) X,y (s) + (A7 Xig)() =

0 for t< Ty,
= (A X)) for t =1, (95)
=X [0, p)\Sn Wn (t, V)iJw;, (tr, Aym({7i}) for t >4

Using (94), (95), and the equality A’ = Ay, we get

0 for t <y,
‘9;1 tA) = %[ay,,ﬁy,)\Smw;(t/ A); S;k(t/ A) = (Aglxm})(f) for t =1y, _
m({Twu(Tr, V)i X1, 51X 0, p)\Su Wr (E, A) fOr t > 71

Suppose p;:Q-— Q]T is an operator defined by the formula p;n = 1;, where 1={n;} €Q-. Then by p; , (by

P, fork > 2) we denote the projection of @ onto the space Q7 ; supplied with the norm [|&;]|- = [[9,1(-, 0)&1llg
(onto the space Q supplied with the norm [[&l|- = [|9k(-, 0)&kllg for k > 2, respectively)(see equality (66)).

We denote f, = X[, 4, f, and V*(1)f, = X,,, and

B _ B _
v = [, Dm0 = [ it Dimae) 6, 6)

an

B _
o = f 9 (s, dm(s)f(s) =
- f{ YT i (09 + ml o, )] f w5, Mm@ f(s), k>2. (97)

By (69) and Lemma 4.28, it follows that x, € Q. C Q C Q_ is a sequence X, = {x;} with elements x,;, X,x and
zeros. It follows from the definition of adjoint operators in the spaces with the negative and positive norms

thatx,n € Q7 € Q. xuk € Q7L C Q.
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Let r be a natural number such that 1 < r < k; if k; is finite and r any natural number if k; is infinite (I

is the number of intervals (a,, 5;) € ]J). We denote pi,1 = p]-ﬂM(A)?n and ppy = p]-rkM(A)fn for k > 2. Using
(94), (95), we get

ki k,
Vi, A)M(/\)’fn = Z [‘971 Unr1 + Z 19rklunrkJ =

r=1 k=2
Lk K, t _
=Z Xa, 8)\Sm Wr(t, A) 1 + (—f[a,,ﬁ,)\smwr(t, A)i] f w,(s, ?\)dm(S)%{Tk}(S)Mmk+(A}13€{Tk}ynrk)(f)) . (98)
r=1 k=2 ar

where 7, € S N (ocr, B:). Moreover,

ki Kk
(~ M(/\)JC) Z [xrlz Z Hnrl) +

n=1 r=1 k=2

ISt
[xrkr Z Hnrk] . (99)

n=1

Let y, = R(A) f,. It follows from (93) that the equality
t
Yu(O) =V, DMA)X = X, po\Sm (D0t A)i] f w(s, A)dmo(s) fu(s)+

ﬁn _
+ 2_1%[“m‘8n)\8m (Hywn(t, /\)i]f wy, (s, A)dmy(s) fu(s) — A;_(lfsmﬂ(amﬁn)fn(t) (100)
holds. We denote

2a(t) = V(t, YMA)T, — 27 X o150 (Dwa(t, A)i] f W (s, D)dmo(s) fu(s). (101)

By (83), so that z(t) = Z 1 Zn(t). We note that z,, € ker(L], — Aj) = ker L;O(K).
Using (98), (100), (101) and (96), we obtain

Yn(t) = 20(t) = =X, g 0\Sm (O)n (£, A)i] f (5, )dmo(5) fu(5) + Xpa, g5 (Dt )\)IIXM—ZA e po fo®);

k=2

Yu(t) +2zu(t) =

r=1

K, ‘
= ZZ[ [ p\Sm Wr(E, A Hm+Z( X, p\SmWr(t, A)i] f w:(srA)dm(s)x{”(k](s)[unrk'i'(AXl%{Tk]Hnrk)(t))] -
k=2 ar

t K,
= Xt s 00T [ 306, Dm0 = AT Epto s o)
a =

We decompose the functions y, — z,, ¥, + z, into terms to which Lagrange formula (10) is applicable.
Let us introduce the following designations:

t
P1a(t) = =X[a, p)\Sm B)Wn(t, )\)i]f W) (s, A)dmo(s) fu(8) + X(a, po\Sm (DWn(t, A)i]x1;
K, "
P2(8) = = Y AT Rt (Ofi (0 (102)
k=2

ﬂ(] t
P1a(t) =2 Z %[ay,ﬁ,)\Smwr(t/ At — %[amﬁn)\sm(t)wn(t, A)i] f wy (s, A)dmg(s) f4(s);
r=1 Gn
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Pault) = 22 Z(A Xy nm,ﬁ,)umk)(t)—ZA X (O full) (103)
r=1 k=2
Ikl ir ]kl ~r
Ps )= 2)" Y X prsant A f (5, DM Xy Ot = Y Y Psun(8),
r=1 k=2 r=1 k=2
where

0 for t< 1y,

¢
k() =—2%[, t, Vi | wi(s, Adm(s) ¥z, (s) thnr
Yamk(1) S 01 )ljﬂ,w (8, M)A (E) X100y 5t = { 2X(a, p)\Sulr(t, V)i W (Ty, /\)m( Tie}) nrifor ¢ > Ty

Then
Yn—Zn = Pin+ P2, Ynt+2zZp= 1111171 + l,bZn + 1P3no (104)

We denote @; = Ziil Q1n, P2 = Z],l,(il Qon, W1 = Zi(il P1n, Vo = Zil Vo, W3 = Zi(ll 3,. Using (104), we get

—Z—Z(yn—zn) @, + D, y+z—Z(yn+zn) Wy + W+ W, (105)
n=1

Since z € ker L (1), {y, f} € L;,(A), it follows that {y — z, f} € L, (A), {y +z, f} € L},(A). Theorem 4.29

implies that {1, Xjyp)\swusof} € LioA), (W1, Xpnsausnf} € Li(A). By (27), (32), so that @, € kerL;,
W, € ker L]. Using (43), we obtain

*

ly—zMy—-20+flely, (y+zMy+2)+flely,

{O1, Ap D1 + X pp\(Smuso) f1 € Ligy W1, AaW1 + Xpgpp\Smuso f1 € L
We denote
u-=My-2)+f us=My+z)+f. (106)

Then {y —z,u_} € L;

10- \y +z,us} € L},. We note that for all functions g,k € $ the equalities

X p\Sn? X852 Mm=0; (X[ap0\8nd Mm = Xjap1\Sn T X[a,o)\SuMm = (7, Mmy; Xs_ 9, M)m = (Xs5,9, X5,/)m
hold. Therefore, using (105), (106), we get

U_, Y+ 2)m — (Y =2, U )m = (AP + D) + [, W1 + Wo + W3)m— (P + Do, Aa(W1 + W2 + W3) + flm=
= (A)\qjlr\yl)mo + (f/ \pl)mo + (A/\(DZ/ \PZ)m + (f/ Wz)m + (A/\q)ll \I/3)1110 + (fl \113)1110_
= (P, AAW¥1)mg — (P1, AxW¥3)my — (D1, flmg — (P2, AYW2)m — (D2, f)m.  (107)

It follows from (102) (103) that

ki K,
(ArD2, Wa)m = Ay Z Z ~AT Xt g fr T, W) 5 (£ Wm= )Y (Rienap fulT), Wa)_; (108)
n=1 k=2 n=1 k=2
ky K
—(D2, AaW2)m = —(Pz,/\AZ ZZ E(A Xirn(a,pr) tnrk) — ZA Xirnan ) fn(Tk) (109)
n=1 r=1 k=2 m
ki ki
~( @2, hm = |02, Y Y Xt falT) | - (110)
n=1 k=2
m

Summing equalities (108), (109), (110), we get
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((AA(I)ZI \IIZ)m + (f/ \IIZ)m - (CDZI A/\\IJZ)m - (q) 2/ f)m =

]1(1 ]k,, ]kl ]kr lk1
Z ZAT%[Tmm”,ﬁ,,)fn(Tk),z Z Xirdn(ap) Z [Jnrk]
n=1

n=1 k=2 =1 k=2

=2

m

Kk i” )51
=2 AT g fo(T0), Xndn,p,) Z Mok | - (111)
=1 k=2 V=1 m
We denote @; = Z]::;l P, V1 = Zil Y, W3 = Zﬁl 13, where
t
P1a(t) = —walt, /\)iff Wy, (s, A)dmg(s) fu(s) + wn(t, A)i]xm; (112)
_ IS o t _
Yin(t) = ZZ wy(t, A pinrt — Wk, /\)i]f w),(s, A)dmo(s) fu(s); (113)
r=1 [
ki Kk
~ 0 for t <y, ~ ~
nrk(£) = . - ’ n(f)= k().
Yanill) {—2wy(t, NiJw;(ti, Am({Ti}) ik for t > 14, where 7, € SN (ar, ;) yonll) ;‘H Vi)

Then the eqlialities P1a(D=Q1a(t) = X[, p)nSm (OP1(E), Jln(t)_lljln(t) = aE[an,ﬁn)ms,,.(f)‘:l;ln(t), %nrk(t)—%mk(f) =
Xirinlayp) B3k (t) hold. This implies that

((f)lnz len)mo = (651n, ;bvln)mo/ (§01m f)mo = ((Flnr f)m()/ (f: lllln)mo = (f/ 1,Fbvln)mo/ ((Pln/ 1l/?mk)mo = ((Flnl EFESnk)mo‘ (114)
Using (111), (114), we continue equality (107)

U=, Y+ Dm — (Y = 2,1 )m = (AP + £, FD)m, — (@1, A1 + ] + [(AaD1 + £, U3)m, — (@1, A Pa)m, ]+
ki Ky Ik
+2 Z Z [Ailf{mm(an,/s”)fn(Tk)/ Xizn@n o) Z tnk | - (115)
n=1 k=2 v=1 m
We claim that the equality
(A D1 + £, W 1)my — (P, A1 + flm, = Z ((A/\Eﬁln + fur I,DSn)mO— (Eﬁlm Aaysy, + f")mo)' (116)
n=1
holds, where
]1(1 t
Psn(t) = 20,4, 1) Y gt — walt, A)i] f (5, M)dmo($)fs). (117)
v=1 Qn
Indeed, using (44), (113), and the equality (h,,, w;)m, = 0 for n # r, we obtain
Tk _ Ty ki Ik ki t _
[Z hn,wl] = (Z hn(®),2 )Y Wit Dt = Y walt, )i f W) (s, )\)dmo(s)fn(s)] =
n=1 my n=1 n=1 r=1 n=1 ®n my

ki ky kg k1 t _
= (2 hn(®),2 ) W0alt, A) Y o = Y walt, V] f w) (s, A)dm()(s)fn(s)] -
n=1 n=1 v=1 n=1 ay

ki ki :no LS| —
= [Z hy, Z 77[}5;1] = Z (hnl ll/Evn))mO (118)
n=1 n=1 my n=1

for any function h,(t) such that h,(t) = X[, p,)h(t), where h € $. It follows from (112), (117), (118) that
equality (116) holds.
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Let us transform the formula
(Ar@in + fw%n)ma - (alnzAAJSn + fi)mo-

It follows from Lemma 2.3, Remark 2.4, and equalities (112), (117) that

t t t
Funlt) = ifxm i f AP0 P1n(s) — i] f oy (§)F1m(s) — 1] f dmo(s)fo(s),

_ LS| t _ t _ t
G5u) =2 s =11 [ o)~ 7 [ dnoa(95,(5) =1 [ dma(9(9),
v=1 ay ay ap

Using these equalities and (26), we get

t t t
Funt) = 131 =1 [ o7, =i [ dmaA5)6) = [ dma(9£,(9), (119)
_ K, ¢ ~ ¢ - ¢
G5u) =2 s =11 [ dpo©F9) = 7 [ dmo©2135.)0) = T [ dmo(©)5o). (120)
=1 a a ay

We denote Fy, = A@1n + fu, Py, = A)\{/;gm + fu. Then

(A/\aln + fnr gb.dSn)mo - (5111/ AAJ;5n + fn)mg = (fln/ lZ;Sn)mo - (alnr ﬁln)mo-

Using (119), (120), we obtain that equations (121), (122) hold (see below)

¢ ¢ _

Fnlt) = i1 — ] f Apo(S)Pin(s) — i] f dmo($)Fun(s); (121)

_ Kk ! t _ o t .

i =2 st~ 1] f Apo(s)Pen(s) — i] f dmo($)P1n(s). (122)
v=1 an an

Therefore, we can apply Lagrange formula (10) to the functions @1, F1n, 12;5”, Py, forcy = ap, ca = Bn, q = my,
P1 = P2 = po- By (96), (112), it follows that lim;_,g, o 1(t) = @1(B.) = 0. Using (10), we get
— _ — ﬁn — — ﬁn . —
(Ar@1n + fu, Usn)me = (@10, APsn + fu)my = (dmg(t)F1,(t), Psu(t)) — (dmo(t)@1a(t), P1a(t)) =

Qy an

Ky Kk
= WP (B), P50 (Ba)) = [ P1n(eta), Ysn()) = =(iJifx1,2 ) i) = 2%, ) o). (123)

v=1 v=1

Equalities (116), (123) imply that

H(l H(l
(AN + f, W)y = (P1, AWy + flmy =2 (xnl,z um]. (124)
n=1 v=1
We claim that the equality
—_— —_— —_— —_— ]1(1 ﬁ;ﬂ —_— —_—
(AAD1 + f, ¥3)my— (D1, Ay W3)m, = —2 ((/\/\(Fln + fu, lP4nk)m0— ((Fln,/\/\ll&;nk)mo) (125)
n=1 k=2

holds, where

Vani(h) = {

0 for t < 1y,

0ty AYiJ0 (e D)m((Tel) T2 pioe for 3 11 (126)

Indeed, using (44), (113), and the equality (1, w;)m, = 0 for n # r, we obtain
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ki 1 ki ko K
[Zhn,%] [Z t)ZZ xm,b]w,<t,A)z‘fw:m,bm({fk})umk] =
my n=1

n=1 r=1 k=2

<

my

Kk, kq
= 2| Y u(®), ) Xie it A) lewm, Mm({t, )ZM] =
n=1 r=1

0

1 Ikl i’l ]kl
=-2 Z (t), Z i, i) Wu(t, ViJw), (T, Aym({Ti}) Z ,uvnk] =
n=1 n=1 k=2 v=1
Ik1 ~n ]kl in
=2 |t Z X a1t V)i (i, A)m(( )Z | =23 (s Gs), . (127)
n=1 k=2 n=1 k=2
mg

for any function h,(t) such that h,(t) = X4, p,)h(t), where h € $. It follows from (112), (126), (127) that
equality (125) holds.
Now let us transform the formula

(AAaln + fn/ 7:[;4nk)mo - (aln/ A/\{[;4nk)mg-
It follows from Lemma 2.3, equalities (126), (45), (13) that the equality

Pank(t) = iJm({ze)) Z Mok = ] f Ao T — ] f g, (5)Pank(s)
holds. Using this equali:}Zand (26), we get

Panrk(t) = ifm({7}) Z; ok — 1] f dpo(s)anc(s) — i f dmo(S) (A ane)(s).
We denote Py = Ay Then the pair (g, Py} satisfies the equation

Pane(t) = iJm({7e)) i ok = ] f Ao Ta) — ] f g (5)P(S)-

We can apply Lagrange formula (10) to the functions @n, fln = AA@H + fu, 154,,;{, ﬁmk forcy =, c2 = B,
q = my, p1 = p2 = po. We first note that equalities (112), (96) imply

() = —ton(re, )i f "5, Ddmo(s) fo(9)+

B _ B _
+ w0yt )] f (5, Tdmo(s)f(6) = wa(ti A)iJ f (5, D)dmo(s) £, (9)

Moreover, it follows from (45), (126) that 1,74”;((’[;() = iJm({1x}) 2521 tvnk- Now using (10) and the equality
lim;_g,—0 1(t) = 1(Bn) = 0, we get

(Ar@in + fn,@nk Jmo — ((ﬁn,/\ﬂﬁmk)mg = (Fin, ll74nk)mo - (aln,54nk)mo =

f dmoF (), To(t) f (Amo(OFn(®), Ponk(t) =

Tk
B

wn(s /\)dmO(S)fn(S) l]m( Tk )Z ank] =

Tk

= ({J@1n(Bn), Yane(B)) = (P1n(Th), Pani(T)) = [—z’fwnm, A)i]

= [—wn(’ck,/\)i]fnw;(S,X)dmo(s)fn(s),m({Tk})Zyvnk]. (128)
Tk v=1
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Using (96), (97), (99), (124), (125), (128), and the equality m({tx}) = m*({7x}), we continue equality (115)

1

Iy Iy kK Iy
U,y +2)m — (Y =2, Uy)m =2 Z Xnl, Z Pyt |+ 2 Z Z Axlx{’[k}ﬁ(a,,,ﬁn)fn(’(k)/ o0 (@ pn) Z Honk |+
n=1 v=1 v=1 m

n=1 k=2
K ks B _ Lk
+2Y Y fwalr, AT f W} (5, M)dmo(s) fu(s), m((ch Y ot | =26 M(AT).  (129)
n=1 k=2 T V=1
On the other hand, using (106), we get
fy+2m—W—=2 lm=W- =My =2,y +2)m — Y =2z, us — Ay + 2))m =

= (U-, Y+ 2)m — (Y = 2, U)m — (ALY, Ym + (A2Z, Ym — (A1Y, Z2)m+
+ (AAZ/ Z)m + (]// A/\]/)m - (Z/ AA]/)m + (]// A/\Z)m - (Z/ AAZ)m- (130)

Combining (129) and (130), we obtain

(f/ y+ Z)m — (}/ -z f)m = 2(5;/ M(A)E) - (A/\yr y)m + (Aaz, y)m_
- (AA]// Z)m + (AAZ/ Z)m + (]// A/\]/)m - (Z/ A/\y)m + (]// A/\Z)m - (Z/ A)\Z)m-

Therefore, Im(f, y)m = Im(x, M(A)x) — Im[(ArY, Y)m — (ArZ,2)m]. Since y = R, f, we get

IM(M(A)F, %) — Im(A12, Z)m = IMRA)f, Hm — INM(ALRA) £, RA) Han.

It follows from (29), (25), (23) that

M) - [ Iz, 2) = RO, N - f[ | Im@mROL R,

[a,b1\So b]\So

Using (6), we obtain equality (84). The theorem is proved. [J
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