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Abstract. In this paper, using the classical methods of differential geometry, we define invariants of timelike
circular surfaces in Lorentz-Minkowski spaceR3

1, called curvature functions, and show kinematic meaning
of these invariants. Then we discuss the properties of these invariants and give a kind of classification
of the surfaces with the theories of these invariants. Besides, to demonstrate our theoretical results some
computational examples are given and plotted.

1. Introduction

A circular surface is a special surface generated by a continuously moving of a circle with its center
following a curve, which acts as the spine curve. Circular surfaces have the most important positions and
applications in the study of design problems in spatial mechanisms and physics, kinematics and computer-
aided design. Also, circular surfaces are one of the important topics of differential geometry. Because of
this position, geometers have been studied on these surfaces in Euclidean and Minkowski 3-spaces and
they have investigated many properties of these surfaces. R. Lopez[27] presented the Weingarten surface
includes circular surface when its Gaussian curvature and mean curvature satisfy the formula: aK+ bH = c
(a, b, c are all constants). M. P. Do. Carmo [4] discussed several geometric features of circular canal surfaces
and proved two important theorems in the differential geometry concerning the total curvature of space
curves, namely, Fenchel’s theorem and the Fary–Milnor theorem. Lu and Pottmann [29] verified that
a circular surface with a rational spine curve always admits a rational parametrization and proposed
an algorithm for its computation. Patrikalakis and Maekawa [30] provided a thorough representation
of local and global singularities of a circular surface. Luo [13, 14] delineated the characteristics of the
double envelope of circular surface of constant diameter by means of concepts of parallel surfaces and
parallel conjugate tooth surfaces and investigated systematically two examples which are the Riemann
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worm drive and arc surface worm drive with the double envelope of cylindrical surface. Izumiya et al.
[10, 11] applied the method of moving frames to investigate the circular surfaces with various radii, their
work concentrated on some corresponding properties of circular surfaces with classical ruled surfaces, and
explored the singularities of circular surfaces. In addition, a team of researchers referred to as Li et al.
[15–26] carried out theoretical research and advancement on submanifold theory, soliton theory, and other
related areas. Additional motivations can be found in the papers referenced [1–14, 27–35]. Their work has
contributed to the advancement of related research topics. Inspired by the above studies, the geometric
properties of circular surfaces are helpful to the trajectory planning of the cutting tool and the determination
of the radius of the cutter head in the processing of circular surfaces or the envelop surfaces of circular
surface. By paying attention to this fact, Lei et al. [3] introduced differential geometry to analyze and
synthesis of spatial mechanisms and studied extensively the invariants of some typical constraint circular
surfaces. W. Wang, and D. Wang [32] extend the Serret–Frenet frame of ruled surface to that of circular
surface, and the kinematic invariants introduced to show the differential structure of circular surfaces. It
is well known that, Minkowski geometry provides the theoretical model in mathematics for Einstein’s
relativity theory. Especially, R4

1 (Minkowski space-time) has a solid physical background. The Lorentz-
Minkowski space R3

1 ⊆ R
4
1 has many properties which are different from Euclidean 3-space. Some basic

concepts, such as vector, frame, and the motion of point, have qualitative changes. Since the metric inR3
1 is

not positive definite metric, the distance function ⟨, ⟩ can be positive, negative or zero, whereas the distance
function in the Euclidean space can only be positive. Therefore, the vectors inR3

1 can be classified into three
types: spacelike, timelike and lightlike vectors according to the sign of the distance function. Especially,
emergence of lightlike vectors makes the results of some problems are surprising. As the spatiotemporal
model of relativity theory, Minkowski space gains much attention in the field of mathematics and physics.
However, the differential geometry of the ruled and circular surfaces in the Minkowski space has been
studied thoroughly [1, 2, 5, 6, 12, 28, 31, 33].

This paper aims to study geometric properties and singularities of timelike circular surfaces with
constant radius in Minkowski 3-space R3

1. We classify such timelike circular surfaces into a timelike canal
surface, a Lorentzian sphere, a special kind of timelike surfaces or a timelike surface that is smoothly
connected to three surfaces. The third surface in the classification is called a timelike tangent circular
surface which is analogue to the tangent developable of a space curve.

2. Basic concepts

In this section, we list some notions, formulas and conclusions for curves and surfaces in R3
1 which can

be found in the textbooks on differential geometry (See for instance [4, 28, 33–35]). Let R3 denote the real
vector space with its usual vector structure. We denote (x1, x2, x3) the coordinates of a vector with respect
to the canonical basis of R3. The three-dimensional Minkowski 3-space is the metric space R3

1 = (R3, ⟨, ⟩),
where the metric ⟨, ⟩ is

⟨x,y⟩ =x1y1 + x2y2 − x3y3, x = (x1, x2, x3) , y =
(
y1, y2, y3

)
,

which is called the Lorentzian metric. A vector x ∈ R3
1 is said to be spacelike if ⟨x, x⟩ >0 or x = 0, timelike if

⟨x, x⟩ <0 and lightlike or null if ⟨x, x⟩ =0 and x , 0. A timelike or light-like vector in R3
1 is said to be causal.

We point out that the null vector x = 0 is considered as a spacelike type although it satisfies ⟨x, x⟩ =0.
For x ∈R3

1 the norm is defined by ∥x∥ =
√
|⟨x, x⟩|, the vector x is called a spacelike unit vector if ⟨x, x⟩ =1

and a timelike unit vector if ⟨x, x⟩ = −1. Similarly, a regular curve inR3
1 can locally be spacelike, timelike or

null (lightlike), if all of its velocity vectors are spacelike, timelike or null (lightlike), respectively. For any
two vectors x = (x1, x2, x3) and y = (y1, y2, y3) of R3

1, the vector product is defined by

x × y =
(
(x2y3 − x3y2), (x3y1 − x1y3),−(x1y2 − x2y1)

)
.

The angle between two vectors in R3
1 is defined by [28, 33]:
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Definition 2.1. i) Spacelike angle: Let x and y be spacelike vectors in R3
1 that span a spacelike vector subspace; we

have
∣∣∣⟨x,y⟩∣∣∣ ≤ ∥x∥ ∥∥∥y

∥∥∥, and hence, there is a unique real number θ ≥ 0, such that ⟨x,y⟩ = ∥x∥
∥∥∥y

∥∥∥ cosθ. This number
is called the spacelike angle between the vectors x and y.
ii) Central angle: Let x and y be spacelike vectors inR3

1 that span a timelike vector subspace; we have
∣∣∣⟨x,y⟩∣∣∣ > ∥x∥ ∥∥∥y

∥∥∥,
and hence, there is a unique real number θ ≥ 0, such that ⟨x,y⟩ = ∥x∥

∥∥∥y
∥∥∥ coshθ. This number is called the central

angle between the vectors x and y.
iii) Lorentzian timelike angle: Let x be spacelike vector and y be timelike vector in R3

1. Then, there is a unique real
number θ ≥ 0, such that ⟨x,y⟩ = ∥x∥

∥∥∥y
∥∥∥ sinhθ. This number is called the Lorentzian timelike angle between the

vectors x and y.

The hyperbolic and Lorentzian unit spheres, respectively, are:

H2
+ = {(x1, x2, x3) ∈ R3

1 | x
2
1 + x2

2 − x2
3 = −1, x3 ≥ 1},

and

S2
1 = {(x1, x2, x3) ∈ R3

1 | x
2
1 + x2

2 − x2
3 = 1}.

We denote a surface M in R3
1 by

r(u, θ) = (x1 (u, θ) , x2 (u, θ) , x3 (u, θ)) , (u, θ) ∈ D ⊆ R2.

Let N be the standard unit normal vector field on a surface M defined by N = ru×rθ
∥ru×rθ∥

, where, ri =
∂r
∂i (i = u, θ).

Then the metric (first fundamental form) I of a surface M is defined by

I = 111du2 + 2112dudθ + 122dθ2,

where 111 = ⟨ru, ru⟩, 112 = ⟨ru, rθ⟩, 122 = ⟨rθ, rθ⟩. We define the second fundamental form II of M by

II = h11du2 + 2h12dudθ + h22dθ2,

where h11 = ⟨ruu,N⟩, h12 = ⟨ruθ,N⟩, h22 = ⟨rθθ,N⟩.
M is called a timelike (spacelike) surface if the induced metric on M is a Lorentzian (Riemannian) metric
on each tangent plane. This is equivalent to saying that the unit normal vector N is spacelike (timelike) at
each point of M. Moreover, the Gaussian curvature K and the mean curvature H are given by

K = ⟨N,N⟩
h11h22 − h2

12

111122 − 1
2
12

, H = ⟨N,N⟩
h11111 − 2h12112 + h22122

2(111122 − 1
2
12)

.

Since Brioschi’s formulas in Euclidean and Minkowski 3-spaces are the same, we are able to define the
second Gaussian curvature KII by [1, 2, 12]:

KII =
1
h2



∣∣∣∣∣∣∣∣∣
−

h11,22

2 + h12,12 −
h22,11

2
h11,1

2 h12,1 −
h11,2

2
h12,2 −

h22,1

2 h11 h12
h22,2

2 h12 h22

∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣
0 h11,2

2
h22,1

2
h11,2

2 h11 h12
h22,1

2 h12 h22

∣∣∣∣∣∣∣∣∣


, (1)

where h = det(hi j), hi j,α =
∂hi j

∂uα , and hi j,αβ =
∂2hi j

∂uα∂uβ . Furthermore, the second mean curvature HII is given by:

HII = H −
1
2
∆

(
ln

√
|K|

)
, (2)
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where ∆ is the Laplacian with respect to the second fundamental form of M, expressed as:

∆ = −
1
√
|h|
∂

∂ui

[√
|h|hi j ∂

∂u j

]
,

(
hi j

)
=

(
hi j

)−1
.

As it is known, a timelike canal surface in R3
1 satisfying the Jacobian equation f (K,H) = 0 is called a

Weingarten surface or a W-surface. Also, if a surface satisfies a linear equation with respect to K and H, that
is, aK+bH = c (a, b, c ∈ R, (a, b, c) , (0, 0, 0)), then, it is said to be a linear Weingarten surface or a LW-surface.

3. Circular surface

In this section, we define the notion of circular surfaces in Minkowski 3-space R3
1: Given a non null

curve γ = γ(u); that is, a smooth regular curve whose tangent vectors t = γ′ such that
∥∥∥γ′∥∥∥ , 0 for every u

∈ I, and a positive number r > 0, a circular surface is defined to be the surface that is swept out by a set of
circles with their center points following the curve γ. Each circle is called a generating circle, which lies on
a plane named circle plane.

Let e1 be the timelike unit normal vector of the circle plane and u be the arc length of the spherical image
curve e1(u) ∈ H2

+. We can get: e2 = e′1(u), and e3 = e1 × e2. So e2, and e3 constitute orthogonal vectors lies
on the circular plane. The Blaschke moving frame {e1(u), e2(u), e3(u)} whose origin point is on the spine
curve, is set up, the differential operation equation is: e′1

e′2
e′3

 =
 0 1 0

1 0 γ
0 −γ 0


 e1

e2
e3

 , (3)

where γ(u) is called the geodesic (spherical) curvature function of the spherical curve e1(u) ∈ H2
+. From

now on, we assume such a parametrization and indicate its differentiation with respect to u with primes.
One can easily have:

⟨e1, e1⟩ = −1, ⟨e2, e2⟩ = ⟨e3, e3⟩ = 1,
e1 × e2 = e3, e3 × e1 = e2, e2 × e3 = −e1.

(4)

Let the vector equation: γ = γ(u), u1 ≤ u ≤ u2 be the general equation of the spine non-null curve. In this
work we will assume that M is a timelike surface, we can get the vector equation of the circular surface:

M : r(u, θ) = γ(u) + r (cosθe2(u) + sinθe3(u)) ,
u1 ≤ u ≤ u2, 0 ≤ θ ≤ 2π,

}
(I)

where the positive number r > 0 is the radius of the generating circle. The tangent vectorγ
′

can be expressed
by the moving frame attached to each of its points as

γ
′

= αe1 + σe2 + ηe3. (5)

The four functions γ(u), α(u), σ(u) and η(u) constitute a complete system of curvature functions (invariants)
of the surface M. When α , 0, and σ = η = 0, the spine curve is perpendicular to the circular plane and
when α = 0, and σ, η don’t equal to zero simultaneously, the spine curve is tangent to the circular plane. It
is easily checked that the two tangent vectors of M are given by:

ru = (r cosθ + α)e1 + (σ − rγ sinθ)e2 + (η + rγ cosθ)e3,
rθ = r(− sinθe2 + cosθe3).

}
(6)

Thus, we have

111 = −(r cosθ + α)2 + (σ − rγ sinθ)2 + (η + rγ cosθ)2,
112 = r(rγ − σ sinθ + η cosθ), 122 = r2,

111122 − 1
2
12 = r2

{
−(α + r cosθ)2 + (σ cosθ + η sinθ)2

}
.

 (7)
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So, the unit normal vector is:

N(u, θ) =
−(σ cosθ + η sinθ)e1 − (r cosθ + α) (cosθe2 + sinθe3)√∣∣∣−(σ cosθ + η sinθ)2 + (α + r cosθ)2

∣∣∣ . (8)

By a straightforward calculation, we get:

ruu = (α
′

− σ)e1 + (σ
′

+ r cosθ + α)e2 + (η
′

+ σγ)e3 + γrθu,
ruθ = −r(sinθe1 + γ cosθe2 + γ sinθe3),

rθθ = −r(cosθe2 + sinθe3).
(9)

Then, the coefficients of the second fundamental form are:

h11 =

(r cosθ + α)[rγ − (η
′

+ σγ) sinθ − (α + r cosθ + σ
′

) cosθ]
+(α

′

− σ − rγ sinθ)(η sinθ + σ cosθ)√∣∣∣−(σ cosθ + η sinθ)2 + (α + r cosθ)2
∣∣∣ ,

 (10)

h12 =
r[−(σ cosθ + η sinθ) sinθ + γ(r cosθ + α)]√∣∣∣−(σ cosθ + η sinθ)2 + (α + r cosθ)2

∣∣∣ ,
h22 =

r(r cosθ + α)√∣∣∣−(σ cosθ + η sinθ)2 + (α + r cosθ)2
∣∣∣ .

It is well known that, one can give a classification to the circular surfaces M into timelike or spacelike
surfaces if 111122 − 1

2
12 < 0 or 111122 − 1

2
12 > 0 is satisfied.

3.1. Local singularities and striction curves
Singularities and striction curves are essential for understanding the properties of circular surfaces and

are investigated in the following.
It can be seen that the circular surface M has singularities if and only if

∥ru × rθ∥ =
√∣∣∣−(σ cosθ + η sinθ)2 + (α + r cosθ)2

∣∣∣ = 0.

This is equivalent to

α + r cosθ = 0,
σ cosθ + η sinθ = 0.

}
(11)

There are three cases for Eq.(11) to be discussed for all values of θ as follows:

Case 3.1. : α , 0, and σ = η = 0, the tangent vectors of the spine curve γ are always perpendicular to the circle
planes. Hence, the circular surfaces become timelike canal surfaces, which have been extensively studied in [2]. In
this case, if |α| > r, there are no singular points, and If |α| < r, the singular points occurring at θ = ± cos−1(α/r).

Case 3.2. : α = 0, for a circular surface to have singular points, it is necessary that cosθ = 0, and η = 0. Hence,
there are two singular points on the generating circle, occurring at θ = ±π/2.

Case 3.3. : σ , 0, and η , 0, the singular points occur at θ = sin−1(ασ/ηr). If |α| > r, there are no singular points.
If α = ±r, the singular points occur at θ = ± sin−1(σ/η).

We now define striction curves of circular surfaces compared with those of ruled surfaces [4, 11]:
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Definition 3.4. A curve is given by

ξ(u) = γ(u) + r(cosθe2(u) + sinθe3(u)), (12)

is a striction curve of the circular surface M, if γ′, e2, and e3 satisfy:

⟨e2,γ′⟩ = ⟨e3,γ′⟩ = 0⇔ σ = η = 0, (13)

for all u ∈ I.

This definition means that any curves on the circular surface M transverse to generating circles satisfy
the condition of striction curves. So, the class of the circular surfaces M is an analogous class to the class of
cylindrical surfaces. A thorough treatment on timelike canal surfaces will be given in Section 4.
We can also define the notion of non-canal circular surfaces analogous to that of non-cylindrical ruled
surfaces.

Definition 3.5. A circular surface M is a non-canal surface of radius r, if γ′, e1, e2, and e3 satisfy:

⟨e1,γ′⟩ = α , 0, and ⟨e2,γ′⟩ = σ , 0 or ⟨e3,γ′⟩ = η , 0, (14)

for all u ∈ I.

4. Timelike canal surface

Timelike canal surfaces are defined to be those that the tangent vectors of spine curve are always
perpendicular to the circle planes. This section examines in details the properties of timelike canal surfaces.

Let s be the arc length parameter of the timelike spine curve γ(u), then

s =

u∫
0

∥∥∥γ′∥∥∥ du,

and {t(s), n(s), b(s)} is the moving Frenet frame along γ(u). Then, we have:

t(s) =
γ′∥∥∥γ′∥∥∥ = e1, n(s) = e2, b(s) = t(s) × n(s) = e3. (15)

It is interesting to note that as long as e1 is perpendicular to the circle planes at each point of the spine curve
γ(u). Depending on the causal character of the curve α = α(s), we have the following Frenet formulae:

d
ds

 t(s)
n(s)
b(s)

 =
 0 κ(s) 0
κ(s) 0 τ(s)
0 −τ(s) 0


 t(s)

n(s)
b(s)

 , (16)

where the curvature κ(s), and torsion τ(s) of γ(u) are given by:

κ(s) =
1
α
, τ(s) =

γ

α
, α > 0. (17)

Then, a timelike canal surface of radius r about γ(u) is the surface with parametrization

M : r(s, θ) = γ(s) + r(cosθn(s) + sinθb(s)). (18)
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4.1. The relation among the curvature functions
We now study timelike canal surfaces satisfying some equations in terms of the Gaussian curvature, the

mean curvature, the second Gaussian curvature, and the second mean curvature as follows:
Firstly, the Gaussian curvature K and the mean curvature H are, respectively

K(s, θ) = −
κ cosθ

rζ
, and H(s, θ) =

2rκ cosθ + 1
2rζ

, (19)

where ζ = 1 + rκ cosθ. From Eq. (19) it is interesting to note that K, and H are independent of τ. In other
words, if a family of timelike canal surfaces has the same value of κ, then the values of their Gaussian,
and mean curvatures are the same at the corresponding point which is a fact is geometrically nontrivial.
Moreover, we also have

r2K + 2rH − 1 = 0, (20)

and this means that M is a W-surface. On the other hand, from Eqs. (1), (2), (18), it follows that

KII =
κ

4rζ2

(
6rκ cosθ − 4r2κ2 cos2 θ − sec2 θ − 1

)
,

HII =
1

4ζ4r2κ2 [a0 + a1r2κ cosθ − 2a2r3κ4 sec2 θ + a3rκ3 secθ

+a4r3κ2 sinθ + a5κ
2 tanθ], (21)

where a0, a1,..., a5 are

a0 = r2κκss − 3r2κ4
− 2rκ2 + r2κ2

s − κ
2,

a1 = 10κ2 + rκ4 + 3rκ2
s − rκκss,

a2 = 9 + 7rκ cosθ − 2r2κ2 cos2 θ,

a3 = 3κ − 2r2κτ2 + r2κτ2 cos 2θ + rτ2 secθ,
a4 = 4κsτ − κτs,

a5 = r2τs + tanθ.

Differentiating K, KII, H, and HII with respect to s and θ respectively, then after straightforward calculations,
we get

(K)s = −
κs cosθ

rζ2 , (K)θ = −
κ sinθ

rζ2 ,

(H)s =
rκs cosθ

2rζ2 , (H)θ =
κ sinθ
2rζ2 ,

(KII)s =
κs(8r3κ3 cos3 θ−18r2κ2 cos2 θ+12rκ cos3 θ+cos2 θ+1)

4ξ2 cos2 θ ,

(KII)θ =
κ(8r3κ3 cos3 θ−18r2κ2 cos2 θ+12rκ cos3 θ+sin2 θ+2rκ cosθ) sinθ

4ξ2 cos2 θ ,

(HII)s =
1

8κ4ξ4 cos3 θ

6∑
i=0

pi cosi θ,

(22)

and where the coefficients pi are

p0 = 3κ2τ(κsτ − 2κτs),
p1 = 2κ (2κs(κsτ − κτs) − κτκss) sinθ + 6rκ3τ(3κτs − 2ksτ),
p2 = 2rκ2 (9κs(κsτ − κτs) + 2κτκss) sinθ + 6r2κ4τ(3κτs − 2ksτ)

+κs(9κ2
s − 10κκss) + κ2τ(2κτs − ksτ),

p3 = 2rκ3 (κs(16κsτ − 7κτs) − 4κτκss) sinθ +

2rκ
[
15κκsκss − (15κ2

s + κ
4)κs + k2τ(2τκs − 5κτs)

]
,

p4 = 2r2κ2
[
5κs(3κ2

s − 2κκs) + 2k2τ(2τκs − 5κτs)
]
− 2κ2κs,

p5 = 6rκ5κs, p6 = −4r2κ6κs.
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And, we have

(HII)θ =
1

8rκ3ξ4 cos4 θ

6∑
i=0

µi cosi θ, (23)

where the coefficients µi are

µ0 = −9κ2τ sinθ,

µ1 = 2κ3
(
1 + 15r2τ2

)
sinθ + 4rκ(κτs − ksτ),

µ2 = r
[
2κκss − 8κ4 + κ2τ2(1 − 30r2κ2) − κ2

s

]
sinθ + 6r2κ2(3κτs − κsτ),

µ3 = 4r2κ
[
2κ4
− τ2κ2

− 2κκss + 3κ2
s

]
sinθ +

2rκ
[
κτs − κsτ + 4r2κ2(κτs − 4κsτ)

]
,

µ4 = 2r2κ3
[
3r2(2κ2τ − κ3 + κss) + κ

]
sinθ + 2r2κ2

[
4(κτs − κsτ) − 9rκ3

s

]
,

µ5 = 6r2κ3
[
r(4κτs − κsτ) − κ2 sinθ

]
, µ6 = 4r3κ6 sinθ.

Now, for the timelike canal surface M, one can obtain the following:
(i) f (K ,HII) = (K)s (HII)θ − (K)θ (HII)s = 0,
(ii) f (H,HII) = (H)s (HII)θ − (H)θ (HII)s = 0,
(iii) f (KII,HII) = (KII)s (HII)θ − (KII)θ (HII)s = 0.
From (i) − (iii), one can get the Jacobian equations which are equivalent to τs = κs = 0. Therefore, κ, τ are
constants. Consequently, we have the following theorem:

Theorem 4.1. Let X,Y ∈ {K, KII, H, HII}, and let M be a timelike canal surface defined by Eq. (18) with non-
degenerate second fundamental form. Then M is a (X,Y)-timelike canal W-surface if and only if M is a timelike canal
surface around a timelike circle or a timelike helix.

Secondly, we study (K,HII), (H,HII), (HII,KII), (K,H,HII), (K,H,KII), (H,KII,HII),
(K,KII,HII), and (K,H,KII,HII)-timelike canal surfaces in R3

1, whereas (K,H), (K,KII), and (H,KII)-timelike
canal W/LW-surfaces are studied in [32].
Let a1, a2, a3, a4, and b are constants, a linear combination of K , KII, H , and HII can be constructed as:

a1K + a2KII + a3H + a4HII = b. (24)

After some algebraic manipulations, we can give the following theorems:

Theorem 4.2. Let X,Y ∈ {(K,HII), (H,HII), (HII,KII)}. Then, there are no (X,Y)-timelike canal LW-surfaces M
defined by Eq. (18)with non-degenerate second fundamental form.

Theorem 4.3. Let X, Y, Z ∈ {(K,H,HII), (K,H,KII), (H,KII,HII), (K,KII,HII)}. Then, there are no (X, Y, Z)-timelike
canal LW-surfaces M defined by Eq. (18) with non-degenerate second fundamental form.

Theorem 4.4. Let M be a timelike canal surface defined by Eq. (18) with non-degenerate second fundamental form.
Then, there are no (K,H,KII,HII)-timelike canal LW-surface in Minkowski 3-space R3

1.

Therefore, the study of timelike canal W/LW-surfaces in Minkowski 3-spaceR3
1 is completed with [2, 12].

In the following, we give simple examples.

Example 4.5. Suppose we are given a parametric timelike circular helix

γ(s) = (a cos s, a sin s, bs), a > 0, b , 0, a2
− b2 = −1, 0 ≤ s ≤ 4π.

After simple computation, we have:

t(s) = (−a sin s, a cos s, b), n(s) = (cos s, sin s, 0), b(s) = (−b sin s, b cos s, a).

Figure 1 shows a timelike canal W-surface with b =
√

3, a =
√

2, r = 1, and 0 ≤ θ ≤ 2π.



J. Li et al. / Filomat 38:4 (2024), 1423–1437 1431

Figure 1: The timelike circular helix γ(s) and corresponding timelike canal W-surface r(s, θ).

Example 4.6. Given a parametric timelike curve,

γ(s) = (0, cosh s, sinh s), a > 0, −1 ≤ s ≤ 1.

By computing, we get:

t(s) = (0, sinh s, cosh s), n(s) = (0, cosh s, sinh s), b(s) = (−1, 0, 0).

Figure 2 shows a timelike canal W-surface with a timelike planar curve.

Figure 2: The timelike planar curve and corresponding timelike canal W-surface.

5. Timelike tangent circular surfaces

Since the lines of curvature are geometric features of surfaces, it is interesting to know in what conditions
the generating circles are lines of curvature. This section will discuss these conditions for a timelike circular
surface. For this purpose, we review a known theorem, which characterizes lines of curvature on a surface
[4, 28].
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Theorem 5.1. A necessary and sufficient condition that a curve on a surface be a line of curvature is that the surface
normals along the curve form a developable surface.

According to Theorem 5, the circles are lines of curvature if and only if

∂N(u, θ)
∂θ

∥ rθ, (25)

for all the values of θ. After some algebraic manipulations, the following can be obtained

(α + r cosθ)
[
α(η cosθ + σ sinθ) − rη

]
= 0,

(σ cosθ + η sinθ)
[
α(η cosθ + σ sinθ) − rη

]
= 0.

Then, for all non-singular points, we obtain

α(η cosθ + σ sinθ) − rη = 0. (26)

Since, singular points on a generating circle are at most two points, then by differentiating Eq. (26) with
respect to θ, we have

α(−η sinθ + σ cosθ) = 0. (27)

This is equivalent to η(u) = σ(u) = 0 or α(u) = 0 for all u ∈ I. From Eq. (27) we have two different cases:
(1) In the case of α = η = σ = 0, the tangent vector of the spine curve is zero vector, that is, γ′ = 0. Thus the
spine curve γ is a fixed point. The circular surfaces become Lorentzian spheres with radii r.
(2) In the case of α = η = 0, and σ , 0, the tangent vectors of the spine curve γ lie on the circle planes at
each point of γ. From Eq. (5), it follows that

γ′ = σe2, (28)

when σ is a constant, integrating Eq. (28) gives

γ = σe1 + γ0, (29)

where γ0 is a constant vector. From Eqs. (I), and (29) it can be found that:∥∥∥r − γ0

∥∥∥2
= −σ2 + r2, (30)

which means that all the circle points lie on a Lorentzian sphere of radius
√

−σ2 + r2 < r with γ0 being its
center point in R3

1.
A timelike circular surface with a non-constant σ, and α = η = 0, is coined as the timelike tangent

circular, since it is analogous to the tangent developable of a space curve [2]. Moreover, in view of Eqs. (6),
the singular points can be obtained as:

∥ru × rθ∥ = |cosθ|
√

−σ2 + r2 = 0. (31)

From Eq. (31) it follows that singularities only occur when θ = ±π/2 since
√

−σ2 + r2 , 0. Hence, there
are two singular points on every generating circle. Connecting these two sets of singular points gives two
striction curves that contain all the singular points of a timelike tangent circular surface. Further, from Eq.
(12) it follows that the expression of the two striction curves is

ζ1(u) = γ(u) + re3(u), ζ2(u) = γ(u) − re3(u). (32)

Obviously, their curvatures κi and torsions τi (i = 1, 2) can be obtained as

κ1 =
1
σ−rγ

√
−1 + γ2, τ1 =

γ
′

(−1+γ2)(σ−rγ) ,

κ2 =
1
σ+rγ

√
−1 + γ2, τ2 =

γ
′

(−1+γ2)(σ+rγ) .

 (33)

From Eq. (33) it follows that if γ is a constant, then each of the torsions τi equals zero. Thus the striction
curves are planar spacelike curves. Hence, the following conclusion can be reached.
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Theorem 5.2. In the Minkowski 3-space R3
1, besides the timelike circular surfaces there are two families of timelike

circular surfaces whose generating circles are lines of curvature. These two families are the timelike tangent circular
surfaces and the Lorentzian spheres with the radius being less than that of the generating circles.

Since α = η = 0 in the timelike tangent circular surface, the Gaussian, and mean curvatures can be
obtained as:

K(u, θ) = 1
r2−σ2 +

rσ′

(r2−σ2)2 cosθ ,

H(u, θ) = σ
′

2
(√

r2−σ2
)3

cosθ
+ 1
√

r2−σ2
. (34)

Because every generating circle is a line of curvature for a timelike tangent circular surface, the value of one
principal curvatures is:

k1 =
1
r
. (35)

So, the other principal curvature is given by:

k2 =
K
k1
=

r
[
(r2
− σ2) cosθ + rσ′

]
(r2 − σ2)2 cosθ

. (36)

It is a remarkable fact that concepts such as Gaussian and mean curvatures whose definitions make essential
use of the position of a surface in the space, do not depend on geodesic curvature of the spherical indicatrix
of e1, but only on θ and σ. In other words, if a family of timelike tangent circular surfaces has the same
value of γ, then the values of their Gaussian, and mean curvatures are the same at the corresponding point,
a fact that is geometrically nontrivial. By the above calculation, we have the following Corollary.

Corollary 5.3. If a family of timelike tangent circular surfaces have the same radius, scalar σ, and it is derivative
σ
′ , the Gaussian and the mean curvatures are the same at corresponding points. Furthermore, these values are

independent of the geodesic curvature of the spherical indicatrix of the vector e1.

However, in order to describe the kinematic geometry properties of timelike circular surface, the Serret–
Frenet of the spine curve γ(u) is needed to be built. For this purpose, let s denote the arc length of the spine
curve γ(u) and assume that σ(u) > 0, at any u ∈ I ⊆ R, the Frenet frame of the spine curve can be obtained:

T(s) =
γ′∥∥∥γ′∥∥∥ = e2, N(s) =

T ′

∥T ′∥
=

e1 + γe3√
−1 + γ2

, B(s) =
γe1 + e3√
−1 + γ2

. (37)

Consequently, the following relations exist: T(s)
N(s)
B(s)

 =
 0 1 0

sinhφ 0 coshφ
coshφ 0 sinhφ


 e1(s)

e2(s)
e3(s)

 , (38)

where

coshφ =
γ√
−1 + γ2

, sinhφ =
1√
−1 + γ2

, γ > 1.

By taking the derivative of Eq. (38) with respect to s, and using the inverse transformation, we obtain:

d
ds

 T(s)
N(s)
B(s)

 =
 0 κ(s) 0
−κ(s) 0 τ(s)
0 τ(s) 0


 T(s)

N(s)
B(s)

 , (39)
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where the curvature and torsion of spine curve γ can be obtained in terms of σ and γ as:

κ(s) =

√
−1 + γ2

σ
, τ(s) −

dφ
ds
= 0,

dφ
ds
=

γ
′

σ(−1 + γ2)
. (40)

That is

φ(s) = −

s∫
s0

τds + φ0,

where s0 is the starting value of the arclength. In terms of the Frenet frame {T(s), N(s), B(s)}, the parametric
expression of the timelike tangent circular surface can be given as follows:

M : r(s, θ) = γ + r[cosθT + sinθ(coshφN − sinhφB)], (41)

In the above equation, we do not only prove the existence of the timelike tangent circular, but also give the
concrete expression of the surface. This is very meaningful in practical application.
With the aid of Eqs. (34), (35), (36) and (40) we have the following theorem for timelike tangent circular
surfaces.

Theorem 5.4. For the timelike tangent circular surface M expressed by Eq. (41), we have the following results:
1- The Gaussian K(s, θ) and mean H(s, θ) curvatures of M can be obtained as:

K(s, θ) =
κ sinhφ

[
(−1 + r2κ2 cosh2 φ)κ coshφ cosθ + r(κs sinhφ + κτ coshφ)

]
(
−1 + r2κ2 cosh2 φ

)2
cosθ

,

H(s, θ) =
2r2κ3 sinh3 φ cosθ + κ(2 sinhφ cosθ + rτ coshφ) + rκs coshφ

2
(√
−1 + r2κ2 cosh2 φ

)3

coshθ

.

2- The principle curvatures k1 and k2 are given, respectively, as:

k1(u, θ) =
κ sinhφ√

−1 + r2κ2 cosh2 φ
,

k2(u, θ) =
(−1 + r2κ2 cosh2 φ)κ coshφ cosθ − r(κs sinhφ + κτ coshφ)(√

−1 + r2κ2 cosh2 φ

)3

cosθ

.

In particular, the principle direction of k1 points the direction of the generating circle and this curvature is constant
along the generating circle, i.e., k1(u, θ) = k1(u).
3- Two striction curves coincide singular locus and their curvatures κi and torsions τi (i = 1, 2) are given as follows:

κ1 =
κ√

1−rκ coshφ
, τ1 =

τ√
1−rκ coshφ

,

κ2 =
κ√

1+rκ coshφ
, τ2 =

τ√
1+rκ coshφ

.


It is known that a regular surface is flat if and only if its Gaussian curvature vanishes identically.

Therefore, we immediately derive that:

κ sinhφ
[
(−1 + r2κ2 cosh2 φ)κ coshφ cosθ + r(κs sinhφ + κτ coshφ)

]
= 0. (42)
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Thus in a neighborhood of any point on M with κ , 0, we get κs sinhφ + κτ coshφ = 0 for any s ∈ R. This
is equivalent to that κs = τ = 0 which means that τ is an identically zero function. By Eqs. (42), we have
sinhφ = 0. A timelike tangent circular surface satisfying this condition is a part of a Lorentzian plane. In
the same manner, we get that M is a minimal flat surface.

Hence, we state that: Every flat (minimal) timelike tangent circular surfaces are subsets of Lorentzian
planes.
We now give some examples of timelike tangent circular surfaces. They also serve to verify the correctness
of the formulae derived above.

Example 5.5. Given a parametric spacelike helix, whose normal vector and binormal vector are spacelike and timelike
respectively,

γ(s) = (a cosh
s
c
, b

s
c
, a sinh

s
c

), a > 0, b , 0, b2
− a2 = c2, −2 ≤ s ≤ 2.

After simple computation, we have

T(s) = ( a
c sinh s

c ,
b
c ,

a
c cosh s

c ),
N(s) = (cosh s

c , 0, sinh s
c ),

B(s) = (− b
c sinh s

c ,−
a
c ,−

b
c cosh s

c ),


and τ = − b

c2 , then φ(s) = − b
c2 s+φ0. If we choose φ0 = 0, a = 1, b = 2, and r = 1, then the timelike tangent circular

surface is shown in Figure 3.

Figure 3: The spacelike helix and corresponding timelike tangent circular surface.

Example 5.6. Suppose we are given a parametric spacelike curve

γ(s) = (0, sinh s, cosh s), −2 ≤ s ≤ 2.

It is easy to show that

T(s) = (0, cosh s, sinh s), N(s) = (0, sinh s, cosh s), B(s) = (1, 0, 0),

and τ = 0 which follows φ(s) = φ0 is a constant. If φ0 = 3/2, and r = 1, the timelike tangent circular surface is
shown in Figure 4.
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Figure 4: The spacelike curve γ(s) and corresponding timelike tangent circular surface.

6. Conclusion

In this paper, we extend the work of Izumiya et al. [11] to Minkowski 3-space R3
1, and derive the

invariants of circular surface, by setting up an orthonormal moving frame to each point of the spine curve
and applying the moving frame method. A new type of timelike circular surfaces was identified and
coined as the timelike tangent circular surface. The new timelike circular surface has the property that
all generating circles being lines of curvature and its Gaussian and mean curvatures being independent
of the geodesic curvature of the spherical indicatrix. This study is intended to clear away to conduct the
geometric analysis of circular surfaces through the spine curve and the spherical indicatrix of the normal
vector of circle planes.
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