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Geodesic equations of Weyl conformal gravity theory in CSS metric

Nenad Dj. Lazarov?, Ivan Forgiarini®

“Department of Theoretical Physics and Condensed Matter Physics (020),
Vinéa Institute of Nuclear Sciences - National Institute of the Republic of Serbia,
University of Belgrade, P.O. Box 522, 11001 Belgrade, Republic of Serbia
YCara Dugana 27, 26000 Pancevo, Republic of Serbia

Abstract. In our work we presented the modified field equations generated by action of Weyl conformal
gravity. Assuming static cylindric symmetry, we derived the corresponding Bach tensor and from field

equation we find gravity potential. We solved geodesic equations in the case of conformal gravity potential.
Also we consider precession perihelion of Solar planets and S stars.

1. Introduction

The modified theories of gravity have been proposed like alternative approaches to Einstein theory of
gravity [1]. In this work we consider Weyl gravity theories of gravity [4]. Weyl gravity is a straightforward

extension of General Relativity (GR) where, instead of the Hilbert-Einstein action, linear in the Ricci scalar
R, one considers in the gravity Lagrangian density [2, 3, 7]:

1
L =R"R,, — =R>. 1
w3 1)
In the weak field limit, a gravitational potential may be written as [2, 3]:
[ 28 )
CD—E|:—7+]/T—I(T . (2)

and f3, y, and k are integration constants. This solution includes as special cases the Schwarzschild solution
(y = k = 0) and the Schwarzschild-de Sitter (y = 0) solution; the latter requiring the presence of a
cosmological constant in Einstein gravity.

We considered geodesic equations for cilindrically symmetric static (CSS) metric and Weyl gravity. In
Section 2 we presented basic properties of CSS metric, while in section 3 we design an action integral,
also find field equations. In section 4. we find geodesic equations as proposed in [1]. In section 5 we
considered expression for precession perihelion for body rotating around supermassive star or black hole.
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In next section we have done the theoretical results for precession perihelion of potential Weyl’s gravity.
The section 7 is devoted to concluding remarks. Section 8 or Appendix A present detail calculation of Bach
tensor W' [3], while in section 9 or appendix B we repesent solution of differential equation W™ = 0. After
that at finally in section 9 or appendix C are given calculation of precession perihelion.

2. General properties

We proposed metric for cilindical static symmetric (CSS) space [3], because the metric tensor with
components g depend only of radius r

ds* = —=B(r)dt* + A(r)dr* + r’de? + *dz?, (3)

. 1
where is: goo = —B(r), g1 = A(r), g =17, g33 = 1%, gt** = g § = Jo0gn192293 = ~ABr.
pp

. . 1 &Fﬁa 59 uv
Cristoffel symbols are given: I'Y, = ~ ga" (Goev + Gove = Jevo) and I, , = Er and  Gu,a = Eve
Crystoffel symbols I'?, different from zero are:

1 dB 1 dB 1 dA 1
rr=——,n —FO =—=—,T! —,I'! —1”1 = ,TZ —T3 =—.
00~ DA gy’ 10 2Bdr’ 1 2Adr’ 2 A2 T )
Rimman curvator tensor Ry, and Ricci tensor R, are given by the followmg relations [1,5]:
B P _ u p t
Rmﬁ g vaaﬁ Fm i Fvﬁa +T ﬁl“fm Feal“iﬁ, 4)
— pU
RV/S - RVH/;/ (5)
R = Fﬁa v rﬁva + ngrim - rﬁvrga' (6)

Weyl tensor C,qp is defined by expression [5,7]:

Cyvaﬁ = Ryvaﬁ + 3 (gva up + gyﬁRva !]vﬁ ua gw vﬁ) + 1R<gyagvﬁ gyﬁgva) (7)

Ricci tensor Ry, and Ricci scalar R are expressed in the sense of CSS metric:

__1#B 1dAds 1 (4B 1B @
O T T2Adr T 4A? dr dr T 4AB\dr|  rAdr’
Ry LB 1 (dBY 1 dAds_1dA o
T 2Bd2 T 4B\ dr 4AB dr dr  rA dr’
1 1 dB 1 dA
Rp=g+ros g~ T dr R33 = R, (10)
2 2
Re g, = AEB L (A1 dAdb 21y 2dA 2 db -
AB dr2  2AB%\dr 2BAZ dr dr 2\ A rA%2dr rABdr
As we take AB = 1 it has shown that relations (8), (9), (10) and (11) become:
B (d’B dB
ROO S _Z’ (FI’+2E), (12)
1 (d’B dB
Ry = 7B (dr r+ E)' (13)
R22 = R33 = 7’6;—B + B, (14)
2
R= dB+4dB+§. (15)

a2 rdr 12
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3. Weyl conformal CSS gravity

Actionis: S = —a f d*x [=gCH P Chyap = — 20 f d*x \/=g[R*' Ry, — 1R?], [2,3,7] where lagrangian density
is:

1
L =R"Ryy - §R2. (16)
The Euler-Lagrange equations turn out to be second order [2]

d d JdL 9* JdL
—gW" = —gL) — — | V- , = Al 17
Vg aguv (\/_!] ) ox" \/_ga(’?uv) ' 9 (<t \/_ga(!hV) "

’ ” 2
where (gw) = gg% , (gw) = %, and W* is Bach tensor [5,6,7], which is given by the following equations

expression
1
WH = Cuﬁmw + Ecﬂavﬁ Rag, (18)

where CHF"*, 5 is covariant derivate second order of Weyl tensor.

The Euler-Lagrange equations is W*" = 0 [2,3]. In the static geometry it is enough to find out W". Two
other components of Bach tensor W and W' can get from the trace of Bach tensor W#" and the divergence
of W [2,6,7] , ie.

guwWH =0, WH,, =0. (19)

After some manipulation we get from equations (19) following two equations:

—BW!" + AW +2°W™ =0, (20)
d 1dA 1dB 2\ . 1dB_ ., 2r .
ZJFZEJF@WJF?) AW W= (21)

From equation (15) and Appendix A [2,3,4] we get third equation:

A B (&#B  #B\| L[| (4B ,(&B\ _ dB(.#B B
TW = —4B —47’B|:—2E +T(W+7’W +r°|-4 E —-r W +27’E 2@ +TW . (22)

In our case field equations are
Wit =0, (23)
then from Appendix B and [2,3] we get
2
B(r)=1—7ﬁ+yr—kr2. (24)

and f3, y, and k are integration constants. This solution includes as special cases the Schwarzschild solution
(y = k = 0) and the Schwarzschild-de Sitter (y = 0) solution; the latter requiring the presence of a
cosmological constant in Einstein gravity.
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4. Geodesic equations in Weyl gravity

We are solving relativistic equations of motion for massive particles in Weyl gravity [1] with common
assumption given in the paper by Capozziello at al. [14], Manheim at al. [2], Jackson Levi Said at al. [3]:
AB=1.

Geodesic equations are:

2\l a J,p
dxl e dde (25)
dp>  Pdp dp
These equations provide differential equations for the four space-time components: x* = (t(p), r(p), (p), z(p)),

where p is affine parameter describing the trajectory. The coordinate system may be oriented so that the
orbit of the particle lies in (r(p), ¢(p)) plane, and fix the z = 0 [1,4]. These equations become:

d*t  1dBdrdt _

7 " Bardpdp " =
» 2 2 do\2 2

@r 1 dB(d\ 1 dA(drf o r e\ () -

dp?  2A dr \dp 2A dr \dp Aldp Aldp

Ao 2drde

ﬁ + ;%E = 0, (28)

d’z  2drdz
From the first equation we get:

a1

B (30)
From the third equation we obtain:

249
J = r»== = const. = VGML = \/GMa(1 — ¢?), (31)

dp

where | is sector velocity, G is gravitation constant, M is mass of supermasive black hole, a is semimajor
axis, L is semilatus rectum, e is eccentricity. From the fourth equation we obtain in general case:

dz
K= rZ% = const. (32)

where K is second sector velocity and in our case is zero. We assumed that the orbital of particle lies in the
plane z = 0, i.e. coordinate z is fixed and does not depend on p. From the second equation we obtain:

ar\Y P+R 1
A (@) + 2 TF" const. = E, (33)
and using the second equation we finally have:
2 2/, g2 2 2,4
ary  r (LK BR)_ e (34)
dp) A\ ] J> ] ABJ?

(35)

gz_er ¢ AP+K)
dt] ~ A ABE ErtA
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dr\> EB> B2 (2+K3)B?
(a) = A YA A 36)
where E, | and K are constants of the motion and c is velocity of light [1,4].
Also,
ds? = dt” = Edp*. (37)
where 7 is proper time. Angle ¢(r) is given by expression:
' VAdr
o0 =)+ [ @)
-, |E & JP+K
2yl + == - —
27 B2 22
and
re=(1xe)a A L:(l—e2)u, (39)

where r; is maximum (aphelia) and minimum (perihelia) values of 7, a4 - semimajor axis, L - semilatus
rectum, e - eccentricity.
The angle of orbital precession per revolution is [1,4]:

Ap = 2|p(ry) — @(r-)| — 2m. (40)
In the case of Weyl gravity, taking into account the following equations:

20
B=1+ = (41)

20
whichis goo =1+ = in Newtonian limit in weak field, and @ is gravitation potential.
-1 26 2
B(n=A (r):1—7+yr—kr, (42)

O = c2_2[_2_ﬁ +yr—krz]. (43)

We also obtained angular velocity w in Weyl gravity:

_dp JB ] 2p 2
—E—r—z—ﬁ[l—7+yr—kr , (44)

and:

dr (J> + K?)
i —B\/c2+B(E 3 ) (45)

5. Orbital precession in the potential of Weyl gravity

As proposed in the reference [4] and described in Appendix C following expression is used to calculate
precession:

Ap = (™) - 9 0) = f VAWV, (46)
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where VW is parameter which substitute of radius r to simplify the integral of precession and C is a constant.

_ (uy —u) (uy +u)A”(L7Y) A"(L™Y)
C(LY)~1- ~1-———, 47
() 2TAGes) — AW LA 4
and
1 1+ ecosW
e 4
5.1. The case of Schwarzschild metric
In this case B(r) can be simplified, taking y = 0 and k = 0:
-1 28
B(r)=A (r):1—7:1—2[3u. (49)
By taking series expansion, concluding in second order in u:
VA () =1+ pu +2p%u% (50)
We also simplified expansion involving C:
1 2B
— =1+ (51)
\C L
Precession is then:
A = 28] (7 2,2
=1+ | (1+pu+2622)dv, (52)
L 1Jo
2 T 2
Ap = 1+_[3 f l+ﬁ[1+ecos\1/]+2ﬁ2[1+ecos‘l’] g (53)
L|Jo L L
6mp AR [4+¢? 3nr, 2[4+
Aqi)+2n—2A(p+2n—2n+T+nF > =2n+ T +n§ > | (54)
A 3nr51 (55)
L
where 7, = > is Schwarzschild radius.
5.2. The case of Weyl potential
Using now completing formula (42), and then series expansion we have:
-1 2p 2
B(r)=A (r):1—7+)/r—kr, (56)
VAG) =1+ pu+2g42 - L+ (57)
2u  2u?
And similary for C:
1 2
— =1+ —ﬁ (58)

VC L
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Precession is given by integral expression:

[ 28] (T 2o Vo k
=[] [ repueami- e oo )
26 fﬂ ( [1 + ecos‘I’] 2[1 + ecos\I’]2 yL KL?
Ap =1+ — I+p|——F—|*2 B - . 0
@ [ I ] ; B I p L 2(1+ecosW)  2(1 + ecosW)? ©0

From [9] we get the solution of following integrals:

T

" 1 s " 1
A= , f dv= . 61
jo‘ (1 + ecosW) V1= e? 0 (1+ecosW)? (1-e2)’ ©)
Finaly integral expresion reduces to:
L 2
Ad = 37er oy kL 62)

+ '
V1 —e? \/(1 —e2)?

and we take following expresion for integral constants y and k, which can be compared with Einstain
precession in equation (55),

)/_1’51’2" k_rsi’;n

3T 2T DD )
where m is scaling parameter.
2r 2r
A = 37zrs 1- 7’,—5 =+ L : (64)

6. Results

In this section we compare our calculations with some astronomical observations for Solar planets and
S-stars. In tables 1 and 2 first column present a semimajor axis, second is e eccentricity, thrid is observation
period of revolution (T), fourt is orbital precession (A¢) in general theory of relativity, fifty column is orbital
precession (A¢) given by astronomical observations, sixty column is orbital precession (A¢) calculate by
equation (64) and m is scaling parameter. In table 1 we get results for solar planets and the results are
for S-stars (S2, S38 and S55) in second table. The observed orbital elements from Table 2 are taken from
references [11, 12, 13, 15, 16] while the observed orbital elements in Table 1 are taken from Table 8.1 of [1,10].
A¢ in Table 1 is in unit arcseconds for one century, while in second table is in degrees for one revolution.

Solar a(10%m) | e T (days) GR A¢ Observ Weyl m
Planet Agp relativity

A
Mercur 57.91 0.2056 87.9692 43.03 43.1+05 | 42912 1
Venus 108.21 0.0068 224.7091 | 8.6 84+48 8.4 1
Earth 149.60 0.0167 365.256 3.8 50+£1.2 5.02 -0.42

Table 1: Period of revolution (T) in (yr.) and orbital precession (A¢) in (seconds for one century) for Solar planets (Mercur, Venera and
Earth), estimated for the Weyl gravity.

Probably dark matter is reason for m = —0.42 for Earth, while all other cases suggest that m = 1 is good

match.
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The GRAVITY Collaboration was detected orbital precession of the S2 star around the Galactic Center
[15] and found that it is similary to GR prediction which for S2 star is Ap = 0°.201 per orbital period.
Also, according to data analysis in the framework of Yukawa gravity model in the paper [16], the orbital
precessions of the S38 and S55 stars corespond to GR predictions for these stars, which are 0°.119 and 0°.106
per orbital period, respectively. Also the scaling parameter m is 1.

S stars a(AU) e T (years) | GR A¢ ObservA¢ | Weyl m
relativity
A
S2 1044.2 0.8839 16.00 0.20078 0.201 0.20116 1
S38 1178.1 0.8201 19.2 0.11888 0.119 0.11950 1
S55 896.9 0.7209 12.80 0.10743 0.106 0.10745 1

Table 2: Period of revolution (T) in (yr.) and orbital precession A¢ in (degree for orbital period) for S stars (52, S38 and S55), estimated
for the Weyl gravity. The observed orbital elements are taken from [11,12,13,15,16]

From the Table 2. we can see the orbital precession of Weyl gravity for S-stars (S2, S38 and S55) are in
good agreement with astronomical observations.

7. Conclusions

In this work we presented the modified field equations and geodesic equations in the case of a Weyl
gravity. We assume cilindrical static symmetry because the metric tensor g** depend only of radius r. After
that we find the equations of field and geodesic equations for Weyl gravity. Solving geodesic equations of
motion we find orbital precession (A¢) in limit of weak field. Then our results represent in Table 1 and
Table 2 are compared with astronomical observations.

As we can see from tables our results are agree with observed values, while in the case of Earth the Weyl
gravitation get good agreement with observation. Weyl gravitation include dark matter and dark energy
which Einstain’s prediction are given by term of cosmology constant. Weyl gravity consists three term.

From equation (43) we can calculate gravitation force, is given by following relation:

o

oD c?
v —7¢ €5 — _7/_€>_) +kre . (65)
r 2 r r

ﬁ
F=-Vo&=

o 7T TR

The first factor is Newton force.

Second force is constant and present galaxy rotation curves as a factor of expansion cosmos. What is
galaxy rotation curves? Spiral Galaxies rotate such that the rotation speed: Rises steadily from the center to
the inner disk and becomes roughly constant (flat) with radius in the outer parts as far as can be measured
in the disk. Evidence of dark matter has been confirmed through the study of rotation curves. To make a
rotation curve one calculates the rotational velocity of e.g. stars along the length of a galaxy by measuring
their Doppler shifts, and then plots this quantity versus their respective distance away from the center (for
example Figure 1)

Vera Florence Cooper Rubin (July 23, 1928 December 25, 2016) was an American astronomer who
pioneered work on galaxy rotation rates. She uncovered the discrepancy between the predicted and
observed angular motion of galaxies by studying galactic rotation curves. Identifying the galaxy rotation
problem, her work provided evidence for the existence of dark matter. These results were confirmed over
subsequent decades.

Thrid force is given by Einstain along constant ¢’k and also it is likewise force of Hook and constant c¢*k
is similary as Hook constant. In this case we have only expansion of cosmos because force is greater than
zero.

In the context of cosmology the constant ¢k is a homogeneous energy density that causes the expansion
of the universe to accelerate. Originally proposed early in the development of general relativity in order
to allow a static universe solution it was subsequently abandoned when the universe was found to be
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FIGURE 1. Rotation speed of spiral galaxies versus distance r from the center of galaxy. Right picture is the
rotation curve for the galaxy NGC3198 from Begeman 1989. Left picture is the rotation curve for the Milky
Way galaxy and show that the rotation curve is nearly flat with increasing radius. Evidently there are huge
amounts of unseen "dark” matter in the outer parts of the galaxy that add gravitational field beyond that
just from the center, causing the stars and gas to orbit faster. (Figure from The Essential Cosmic Perspective,
by Bennett et al.)
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o [ ]
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distance from center of Milky Way T T T T

(thousands of light-years) R {(kpe)

expanding. Now the constant ¢’k is invoked to explain the observed acceleration of the expansion of the
universe. The constant c?k is the simplest realization of dark energy, which is the more generic name given
to the unknown cause of the acceleration of the universe.

Also, our calculations showed a good agreement with the corresponding astronomical observations of
several S-stars. We hope that using this method with geodesics, we can evaluate parameters of alternative
models for a gravitational potential at the Galactic Center with higher accuracy.

8. Appendix A. Calculation of W™ Weyl conformal CSS gravity [2,3]

For any action S = —«a f d*x \/=gL, where lagrangian density is L and any static line element
ds* = =B(r)dt* + A(r)dr* + C(r)de? + D(r)dz?, (66)
where in our case C(r) = D(r) = ?, and langragian density is
v 1 2
L=R“Ry, - =R, (67)

We can calculate on the following way W'" component of Bach tensor:

v——gwrr=§—j=§(HL)—%(W%)+%(W%)- )
We define

L=Li+Ly+Ls+Ly 69)
where

1
Ly = R®Ro = g5yR5,, Lo =RY"Ry1 =g3R3,, L3y =RPRyp =g3,R3, Li= —§R2. (70)
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Now we calculate

= —1/- —_I + L+ 13+ 1y,
a(A) 1 2 3 4
where
_ 8L1 8R00 > BBy
11_—\/_—98(14) = —2+/=9Rqo ( ) = - (B r+28'),
_ &Lz - R &RH( )2 (BB r + B2) (B”T + ZB,)
V— a(A) V— 11 4 7
dL; aR22 m2 2B
L= —+= = —4+/=gRy B'r+B),
=TS = s G2 = 2 (6r+5)
~ oy 2 OR _( BB 4B%\(B'r*+4rB +2B
14-V‘99(A)f-§v‘9Rﬁ-(‘ 3 73 )( P '

Then we calculate the partial derivate of I by coordinate r:

(91 _ 811 8[2 (913 814
oo o T T

311 (9[2 813 19[4

where the components of partial derivate of [ are 5}, 5%, 52, 5* and given by next four relations:

o, [Br BB'r , BB BBr [ . .

§= T+ 1 4](B 7’+ZB)+T(B r+ 3B ),

o, |B?%r BB'r  9BB BB\ .

=ty 7 ](Br+ZB) (4 +B?|(B"r+3B"),

ol;  [2B%], . , , 4BB"  2B?

W: 7:|(B 7’+ZB)+(1’B +B)( . —r—z,
dl, BB B?*? 10, 4B’|(B'r*+4rB +2B BB'r2  4rB*\ (..
— =|-—— - —— - —BB'r +- - B
or 3 3 3 3 72 3 3

After that we find out the

d
=== (v=9L),
which are divided in four components 113, 11, 1I3 and 114,

I =111 + 11, + 113 + 1l4.

In the following four equations are given by the expresions of 11, II5, I3 and Ily:

goo 2

1= 2 (V)= g (VAA(Re )| < B 2 (a2

B,
4

1460

(71)

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(79)

. (80)

(81)

(82)

(83)
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2

=5 (\/_L2>= 9 («/Eﬂ(&)z]:—%@ r+2B) +r(B”r+2B’)(—B—— B/B], (84)

_A g11 4 r
_d _d »f Ro» B 4, 3rB'B
113—8—A(\/—_gL3)——A(\/_ (922 rz(Br+B) +r—2(Br+B) - , (85)
_d _d (1 202
I = = (\/_—gL4) = — (‘5 VABrR ) (86)
2/ 0, : , 6BB 2B* B?
= —;(B P+ 4rB +2B) - 5(B 7 + 4rB +2B)(—B B-—— - - 7). (87)
So we can get the finally expresion for Bach tensor W' is:
dl
294717 _ 22
rrW" = > +1I, (88)
where
B = d_B B = dZ_B B” = 113_B (89)
Cdr’ Codr’ dr’

and finally we get equation (20):

1274 5 dB (B B dB\> ,(&?BY _ dB(.#B 4B
TW = —4B 41’B|: Zd +r (d > Vﬁ)]+1’2|:—4(5) —r (W) +27’E (ZW +1’ﬁ) . (90)

9. Appendix B. Calculation of differential equation W' = 0 Weyl conformal CSS gravity [2,3]
This appendix represent the way of calculation of equation W'" = 0. First we take substitution for B(r)
B(r) = r*1(r). (91)

Put that in W™ we get following expression:

27 el fdl@) g o d*1(r) 2 dal(r) dzl (r) A1)

TW =7 [8( ar | \Tar ) T 27 dr er || ©2)
After that we take second substitution:

dl(r

D _ g, 93)

and put it in equation (91), we get following expression for W™

2 »  ofdy "\ dy (ry  d?y(r)

?Wr =r [Sy(r) -r 7 +2r ( ) dar +7r a2 . (94)

Then we take thrid substitution

yn =0 (95)

and put in the equation (93), we get new expression for W'

1274 dh(n\ dh(r)  d*h(r)
T’w = h(r)? —rz(d—:) + 2rh(r) [d—: +r727]. (96)
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Then we take fourth substitution
red, ©7)

and put it in equation (95) we get following expression for W’

24 (dh®)) 420 (t)
And finally we take last substitution

h(t) = v3(t), (99)
to get finally expression for W'":

1N Y 1 0))

TW = o(f) [4 o o(f)|. (100)

Solving the equation W'" = 0 we finally get B(r)

d*v (t)
4 T u(t) =0, (101)
v =1+ oor + C?S, (102)
, d
B(r)y=a+br+cr +;, (103)

where g, b, c and d the constants of integration.

10. Appendix C. Calculation of precession [1,4]

We start from equation (42)

2p

Br)=A"'(r)=1- — - kr?, (104)

We are consider the case K = 0 and we get following equation from equation (34):

AldrYY 1 & E
In the case: AB =1,
T VB-ldr
p(re) —(r-) = f = , (106)
"~ 7’2 E + C_ _ l
2TBRE P
where
re=(xe)a, L=a(l-¢), (107)

7+ is maximum (aphelia) and minimum (perihelia) values of r, a - semimajor axis, L - semilatus rectum, e -
eccentricity.
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At perihelia and aphelia, r reaches its minimum and maximum values r_ and r,, and at both points
dr/d¢ vanishes so gives

dr E 1 2
A ) =0 = - 108
R A TN .
From these two equations we can derive two constants of motion K and J:
1 __1_
=, (109)
Fo
2 2
—E=2) PO (110)
ri—r2

The angle swept out by the position vector as r increases from r_, using equations (108) and (109), is
given by

@(r)—qo(r—)=fA5

BB R o

2.2 (p-1_ p-1 N
r+r_(B+ B_)

where B, = B(r;), B = B(r-). The total change ¢ per revolution is 2(¢ (r+) — ¢ (r-)). This would equal 2n
if the orbit is closed ellipsa, so in general the orbit precesses in each revolution by an angle which is given
by equation (40).

We make the argument of first square root in (110) a quadratic function of 1/r. Futhermore, it vanishes
at7_ and r.. It can be shown that expression can write in the following shape:

7’2_<B_1—B:1)—7’3_<B_1—B;1)_ 1 B (1 _1)(1_ 1) (112)
272 (B! - B') o\ e
where C is a constant. Then letting u = 1 and differentiating twice with respect to u gives
Coqo W) e tu) AL AL / (113)
2[A(uy) = Au-)] LA'(L™)
where
2 L__ 2 (114)

T ru) e (-—uy)

If we put next parametrs u_, 1, and C in equation (110), we get next expression:

1 \/M

P ) — ) = —— du. (115)

VC Ju - —u) (u—uy)

If we set following substitution in equation (114)

+ _ _ -
u=4 > it > qucos‘I’, (116)

we get for precession finally expresion:

Ap=p @) -9 == | Vawaw. (117)
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