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Abstract. The q-coloured coordination number Sn,k(q) counts the number of lattice paths from (0,0) to (n, k)
using steps (0, 1), (1, 0) and (1, 1) without east-steps on the x-axis, among which the (1, 1) steps are coloured
with q colours. We investigate some properties of the polynomial matrix S(q) =

[
sn,k(q)

]
n,k≥0 =

[
Sn−k,k(q)

]
n,k≥0,

including the unimodality problems of sequences located over rays in S(q) and the q-total positivity of S(q).
We show that the zeros of all row sums Rn(q) =

∑n
k=0 sn,k(q) =

∑
i rn,iqi are in (−∞,−1) and are dense in the

corresponding semi-closed interval. We also prove that the coefficients rn,i are asymptotically normal (by
central and local limit theorems).

1. Introduction

Following Conway and Sloane [10], the coordination sequence of an infinite vertex-transitive graphG is the
sequence (S(0),S(1),S(2), . . .), where S(n) is the number of vertices at distance n from some fixed vertex ofG.
O’Keeffe [18] have shown that the coordination sequence can be used as a fingerprint to identity structures
of G (see [1, 10, 18] for details). For the k-dimensional integer lattice Zk, Conway and Sloane [10] gave the
generating functions Sk(x) = (1 + x)k/(1 − x)k of the coordination sequences. Denote Sk(x) =

∑
n≥0 S(n, k)xn,

we can know that the coordination number S(n, k) = [xn] Sk(x) = [xn] (1 + x)k/(1 − x)k. The first few terms of
the coordination number S(n, k) are as follows:

n \ k 0 1 2 3 4
0 1 1 1 1 1
1 0 2 4 6 8
2 0 2 8 18 32
3 0 2 12 38 88
4 0 2 16 66 192
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Liang et al. [14] have investigated the analytic behaviors of coordination number. On the other hand,
coordination number has a nice combinatorial interpretation from the viewpoint of lattice paths. Let D
be those lattice paths starting from (0, 0) that use the steps (1, 0), (0, 1), and (1, 1) without east-steps on the
x-axis (see [26]). The coordination number S(n, k) corresponds to the number of lattice paths D ending at
the point (n, k). Then it follows that

S(n, k) = S(n − 1, k) + S(n, k − 1) + S(n − 1, k − 1) (1)

with the initial values S(n, 0) = 0 for n > 1, and S(0, k) = 1 for n ≥ 0, or a further expression

S(n, k) =
∑

i

(
k
i

)(
n − 1
i − 1

)
2i =

∑
i

(
k
i

)(
n + k − i − 1

k − 1

)
. (2)

Let D′ be those lattice paths that all diagonal steps of paths D are coloured with q colours (q ≥ 0). The
q-coloured coordination number Sn,k(q) denotes the number of the paths D′ ending at the point (n, k) in this
case. Then, analogous to (1) and (2), respectively, we have

Sn,k(q) = Sn−1,k(q) + Sn,k−1(q) + qSn−1,k−1(q), (3)

and

Sn,k(q) =
∑

i

(
k
i

)(
n − 1
i − 1

)
(q + 1)i =

∑
i

(
k
i

)(
n + k − i − 1

k − 1

)
qi.

As a polynomial, Sn,k(q) has some nice properties, which is partly due to the fact that it is a special
Jacobi polynomial P(−1,−n−k)

n (−2q − 1). Moreover, Sn,k(q) can be proved to have only real zeros by the Maló
Theorem [16], which states that if both

∑n
i=0 aiqi and

∑m
j=0 b jq j have only real zeros then

∑min{n,m}
k=0 akbkqk has

only real zeros. It is also worth noting that many well-known combinatorial counting sequences are q-
coloured coordination number. For example, Sn,k(0) is related to the binomial coefficients and Sn,k(1) is the
coordination number. In a sense, that endowing the diagonal steps with being q-coloured pleasantly brings
more research materials to the existing setting. Our paper is to study some properties of the matrix related
to q-coloured coordination number. The q-coloured coordination number constitutes the square matrix

[Sn,k(q)]n,k≥0 =



1 1 1 1 1 · · ·

0 q + 1 2q + 2 3q + 3 4q + 4
0 q + 1 q2 + 4q + 3 3q2 + 9q + 6 6q2 + 16q + 10
0 q + 1 2q2 + 6q + 4 q3 + 9q2 + 18q + 10 4q3 + 24q2 + 40q + 20
0 q + 1 3q2 + 8q + 5 3q3 + 18q2 + 30q + 15 q4 + 16q3 + 60q2 + 80q + 35
...

. . .


,

whereas our paper focuses on the following triangular matrix

S(q) := [sn,k(q)]n,k≥0 =



1
0 1
0 q + 1 1
0 q + 1 2q + 2 1
0 q + 1 q2 + 4q + 3 3q + 3 1
0 q + 1 2q2 + 6q + 4 3q2 + 9q + 6 4q + 4 1
...

. . .


,

which is derived by arranging the q-coloured coordination number in a triangle array, i.e., sn,k(q) = Sn−k,k(q).
This matrix is more convenient for the following investigation than the former one (albeit more natural),
and therefore is our protagonist here. It is interesting to mention in passing that S(q) can unify some com-
binatorial triangles. For example, S(0) is related to the well-known Pascal triangle, S(1) is the coordination
triangle, S(2) is Riordan array (see [20, A122016]).
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The main objective of this paper is to investigate properties of S(q). The paper is organized as follows.
In section 2, we show that the polynomial sequences located in a ray or a transversal line of S(q) are strongly
q-log-concave and the polynomial sequences located over rays in S(1) are unimodal. In section 3, We also
prove the q-total positivity of matrix satisfying a special recurrence in a unified approach. So we show
that both [Sn,k(q)]n,k≥0 and S(q) are q-totally positive. In Section 4, we show, for the row sums Rn(q), that all
their zeros lie in the open interval (−∞,−1) and are dense in the semi-closed interval (−∞,−1]. In the final
section, we prove that the coefficients rn,i are asymptotically normal by central and local limit theorems.

2. Unimodality problems of sequences located over rays in S(q)

In this section, we investigate strong q-log-concavity of S(q) and the unimodality of sequences located
over rays in S(1).

2.1. Strong q-log-concavity of S(q)
Let f (q) and 1(q) be two real polynomials in q. We say that f (q) is q-nonnegative if f (q) has nonnegative

coefficients. Denote f (q) ≥q 1(q) if the difference f (q) − 1(q) is q-nonnegative. For a polynomial sequence(
fn(q)

)
n≥0, it is called q-log-concave (or q-log-convex ) if

fn(q)2
≥q fn+1(q) fn−1(q)

(
or fn(q)2

≤q fn+1(q) fn−1(q)
)

for n ≥ 1. It is called strongly q-log-concave (or strongly q-log-convex) if

fn(q) fm(q) ≥q fn+1(q) fm−1(q)
(
or fn(q) fm(q) ≤q fn+1(q) fm−1(q)

)
for n ≥ m ≥ 1. Clearly, the strong q-log-concavity (strong q-log-convexity) of polynomial sequences implies
the q-log-concavity (q-log-convexity), which further implies the log-concavity (log-convexity) for any fixed
q ≥ 0, not vice versa. The (strong) q-log-concavity has been extensively studied (see [6, 13, 19]).

It is known that S(0) is related to the Pascal triangle P. Su and Wang [23] proved the log-concavity of the
sequence located in a transversal line of P or a line parallel to the boundary of P. The q-coloured Delannoy
number Dn,k(q) count the number of lattice paths from (0,0) to (n, k) using steps (0, 1), (1, 0) and (1, 1), among
which the (1, 1) steps are coloured with q colours. The polynomial matrix

[
Dn−k,k(q)

]
n,k≥0 is denoted as D(q).

Yu [27] pointed out that such properties also hold in the Delannoy triangle D(1). Recently, Mu and Zheng
[17] studied the strong q-log-concavity of polynomial sequences located in a ray or a transversal line of
D(q). Next we investigate the strong q-log-concavity of the sequence

(
sn0+ai,k0+bi(q)

)
i≥0 in S(q) for nonnegative

integers a and b in the following theorem (the sequence shown in Figure 1).
The lattice path interpretations of q-coloured Delannoy number and q-coloured coordination number

differs only by the east-steps on the x-axis. Very recently, Mu and Zheng [17] showed that polynomial
sequences located in a ray or a transversal line of D(q) are strongly q-log-concave. The following result can
be obtained by means of the same idea used in the proof of Theorem 2.1 in [17]. We omit the details for the
sake of brevity.

Theorem 2.1. Let n0, k0, a, b be four nonnegative integers and n0 ≥ k0, a + b , 0. Define the sequence

Si(q) = sn0+ai,k0+bi(q), i = 0, 1, 2, . . . .

If a ≤ b, then the polynomial sequence
(
Si(q)

)
i≥0 is strongly q-log-concave.

From Theorem 2.1, we have the following results immediately.

Corollary 2.2. All the polynomial sequences located in a transversal of S(q) or in a line parallel to the boundary of
S(q) are strongly q-log-concave.

Corollary 2.3. All the sequences located in a transversal of S(1) (or S(2)) or in a line parallel to the boundary of S(1)
(or S(2)) are log-concave.
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1

1

1

1

1

1

0

0

0

0

0

0

1 + q

1 + q

1 + q

1 + q

1 + q

2 + 2q

3 + 4q + q2 3 + 3q

4 + 6q + 2q2 6 + 9q + 3q2 4 + 4q

5 + 8q + 3q2 10 + 18q + 9q2 + q3 10 + 16q + 6q2 5 + 5q

s4+k,1+2k(q)s1+k,k(q)

Figure 1: The triangular array of q-coloured coordination number.

Remark 2.4. A polynomial sequence
(
ai(q)

)
i≥0 is called a q-Pólya frequency (q-PF for short) sequence if all minors of

the corresponding Toeplitz matrix
[
ai− j(q)

]
i, j≥0

are q-nonnegative. In fact, the polynomial sequence
(
Si(q)

)
i≥0 forms a

q-PF sequence, which could be proved by the same technique used in the proof of Theorem 2 in [27].

2.2. Unimodality of sequences located over rays in S(1)
Let (ak)k≥0 be a sequence of nonnegative numbers. We say that the sequence is log-concave if ak−1ak+1 ≤ a2

k
for k ≥ 1, and unimodal if

a0 ≤ a1 ≤ · · · ≤ am ≥ am+1 ≥ · · ·

for some m. It is well known [5] that a log-concave sequence without internal zeros is unimodal.
Following Karlin [12], a (finite or infinite) matrix is called totally positive (TP for short) if all its minors

are nonnegative. Let (ak)k≥0 be an infinite sequence of nonnegative numbers (we identify a finite sequence
a0, a1, . . . , an with the infinite sequence a0, a1, . . . , an, 0, 0, . . .). Define its Toeplitz matrix

[ai− j]i, j≥0 =


a0
a1 a0
a2 a1 a0
a3 a2 a1 a0
...

. . .


.

We say that the sequence is a Pólya frequency (PF for short) sequence if the corresponding Toeplitz matrix is
TP. A fundamental characterization for PF sequences is due to Schoenberg and Edrei as following (see [12,
p. 412] for instance).

Schoenberg-Edrei Theorem. A sequence (ak)k≥0 of nonnegative numbers is PF if and only if its generating
function has the form∑

k≥0

akxk = axmeγx

∏
j≥0(1 + α jx)∏
j≥0(1 − β jx)

,
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where a > 0,m ∈N, α j, β j, γ ≥ 0 and
∑

j≥0(α j + β j) < +∞.

In this case, the generating function is called a Pólya frequency formal power series.
Let s(n, k) = S(n−k, k). Then the coordination triangle [s(n, k)]n,k≥0 is derived by arranging the coordination

number in a triangular array and s(n, k) can be obtained by the following recurrence relation:

s(n, k) = s(n − 1, k) + s(n − 1, k − 1) + s(n − 2, k − 1), n ≥ 2, k ≥ 1, (4)

where s(0, 0) = 1, s(n,n) = 1 and s(n, 0) = 0 for n ≥ 1. We use the convention s(n, k) = 0 for k < {0, . . . ,n}.
What’s more, the following identity can be obtained from (2),

s(n, k) =
∑

i

(
k
i

)(
n − k − 1

i − 1

)
2i. (5)

Especially, the triangular array S(1) = [s(n, k)]n,k≥0 is coordination triangle. To explore the properties of
combinatorial triangles, the properties of row sequences and central sequences are generally considered
[9, 25]. The log-concavity of sequences (s(n0 + k, k))k≥0 located on a line parallel to the right-hand boundary
of S(1) can be obtained from Corollary 2.3, so we can know that the sequences are unimodal and its algebraic
proof is given in following Theorem. More generally, we aim to study unimodality of a sequence located
over rays of S(1). For all fixed n0, k0, a, b, the sequences over rays of the coordination triangle are obtained
by this expression sk = (s(n0 + ka, k0 + kb))k≥0 (see Figure 2). We present unimodality of the sequences
sk = (s(n0 + ka, k0 + kb))k≥0 in following Theorem.
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2

2

2

2

2

2

4

8 6

12 18 8

16 38 32 10

20 66 88 50 12

24 102 192 170 72 14

28 146 360 450 292 98 16

s(2k, k) s(1 + 3k, 1 + 2k)s(2 + 2k, 2) s(3 + k, k)

Figure 2: The triangular array of coordination number.

Lemma 2.5 ([24]). If the sequence (xn)n≥0 is log-concave, then the linear transformation

yn :=
n∑

k=0

(
n
k

)
xk,n = 0, 1, 2 . . .

preserves the log-concavity property.

Lemma 2.6 ([23, Lemma 1]). If a sequence (ak)k≥0 of positive numbers is unimodal (resp. increasing, decreasing,
concave, convex, log-concave, log-convex), then so is its subsequence (an+kd)k≥0 for arbitrary fixed nonnegative integers
n and d.
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Theorem 2.7. Let n0, k0, a, b be four nonnegative integers and n0 ≥ k0. Define the sequence sk = (s(n0 + ka, k0 + kb))k≥0,
therefore

(i) if k0 = 0 and a = b = 1, the sequence (s(n0 + k, k))k≥0 is log-concave and thus unimodal.

(ii) if b = 0, the sequence (s(n0 + ka, k0))k≥0 is increasing, log-concave and hence unimodal.

(iii) if b > k0, a − b ≥ 0, the sequence (s(n0 + ka, k0 + kb))k≥0 is nondecreasing and hence unimodal.

Proof. (i) According to (5), we can know that if k0 = 0 and a = b = 1, then the sequence s(n0 + k, k) =∑
i
(k

i
)(n0−1

i−1
)
2i. Since the sequence x j :=

(n0−1
i−1

)
2i is trivially log-concave, then the sequence (s(n0 + k, k))k≥0 is

log-concave and thus unimodal from Lemma 2.5.
(ii) The log-concavity of (s (n0 + ka, k0))k≥0 are obtained from the log-concavity of (s (k, k0))k≥0 by Lemma

2.6.

It’s easy to see that the generating function of the k0th column of S(1) is xk0
(1 + x)k0

(1 − x)k0
and is PF from

Schoenberg-Edrei Theorem, thus the sequence (s (k, k0))k≥0 is increasing and log-concave in k. Then so is
sequence (s (n0 + ka, k0))k≥0. It’s clearly that sequence (s (n0 + ka, k0))k≥0 is unimodal.

(iii) In order to prove that the sequence (sk)k≥0 = (s(n0 + ka, k0 + kb))k≥0 are nondecreasing, one has to
prove that the following relation is satisfied

s (n0 + (k + 1)a, k0 + (k + 1)b) = s(n0 + ka, k0 + kb) + σ

with σ ≥ 0.
Using the relation (4), we have

s(n0 + (k + 1)a, k0 + (k + 1)b)
= s (n0 + (k + 1)a − 1, k0 + (k + 1)b) + s (n0 + (k + 1)a − 1, k0 + (k + 1)b − 1)
+ s (n0 + (k + 1)a − 2, k0 + (k + 1)b − 1)
= s (n0 + (k + 1)a − 2, k0 + (k + 1)b) + s (n0 + (k + 1)a − 2, k0 + (k + 1)b − 1)
+ s (n0 + (k + 1)a − 3, k0 + (k + 1)b − 1) + s (n0 + (k + 1)a − 1, k0 + (k + 1)b − 1)
+ (n0 + (k + 1)a − 2, k0 + (k + 1)b − 1) .

If we use the relation (4) (a − b) times, we obtain a relation of the following form

s (n0 + (k + 1)a, k0 + (k + 1)b) = s (n0 + ak + b, k0 + (k + 1)b) + σ′ (6)

with σ′ ≥ 0. One can show that the relation (6) can be rewritten as follows

s (n0 + (k + 1)a, k0 + (k + 1)b)
= s (n0 + ak + b − 1, k0 + (k + 1)b) + (n0 + ak + b − 1, k0 + (k + 1)b − 1)
+ s (n0 + ak + b − 2, k0 + (k + 1)b − 1) + σ′

= s (n0 + ak + b − 1, k0 + (k + 1)b) + s (n0 + ak + b − 2, k0 + (k + 1)b − 1)
+ s (n0 + ak + b − 2, k0 + (k + 1)b − 2) + s (n0 + ak + b − 3, k0 + (k + 1)b − 2)
+ (n0 + ak + b − 2, k0 + (k + 1)b − 1) + σ′.

Repeating this process b times we get the desired result

s (n0 + (k + 1)a, k0 + (k + 1)b) = s (n0 + ak, k0 + kb) + σ

with σ ≥ 0. Consequently the sequences (sk)k≥0 are nondecreasing and hence unimodal.
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3. q-total positivity

We use

A
[

i0, . . . , ik
j0, . . . , jk

]
and A

(
i0, . . . , ik
j0, . . . , jk

)
to denote the submatrix and minor of the matrix A determined by the rows indexed i0 < i1 < · · · < ik and
columns indexed j0 < j1 < · · · < jk respectively.

Let f (q) and 1(q) be two real polynomials in q. Let M(q) =
[
mn,k(q)

]
n,k≥0 be the matrix whose entries are

all real polynomials in q. We say that M(q) is q-totally positive (q-TP for short) if all minors are q-nonnegative.
We also need the following classical results.

Cauchy-Binet Formula. Let A,B,C be three matrices and C = AB. Then

C
(

i1, . . . , ik
j1, . . . , jk

)
=

∑
ℓ1<···<ℓk

A
(

i1, . . . , ik
ℓ1, . . . , ℓk

)
· B

(
ℓ1, . . . , ℓk
j1, . . . , jk

)
.

Remark 3.1. It immediately follows that the product of TP matrices is still TP.

We may investigate the q-coloured coordination number and the q-coloured Delannoy number [17] in a
unified approach. Let m ∈N, define the numbers L(m)(n, k) by

L(m)(n, k) = L(m)(n − 1, k − 1) + L(m)(n − 1, k) + L(m)(n, k − 1) (7)

with the initial values L(m)(0, k) = 1 for k ≥ 0 and L(m)(n, 0) = m for n ≥ 1. Let D(n, k) denote Delannoy
number. Note also that

L(m)(n, k) = D(n, k) + (m − 1)D(n − 1, k) (8)

for n, k ≥ 0, hence we have

L(m)(n, k) =
∑

i

(
k
i

) [(
n − 1
i − 1

)
+m

(
n − 1

i

)]
2i

=
∑

i

(
k
i

) [(
n + k − i − 1

k − 1

)
+m

(
n + i − 1

k

)]
.

(9)

Let L(m)
n,k (q) is the q-analogues of L(m)(n, k), satisfying recurrence:

L(m)
n,k (q) = L(m)

n−1,k(q) + L(m)
n,k−1(q) + qL(m)

n−1,k−1(q),

analogous to (9), we have

L(m)
n,k (q) =

∑
i

(
k
i

) [(
n − 1
i − 1

)
+m

(
n − 1

i

)]
(1 + q)i

=
∑

i

(
k
i

) [(
n + k − i − 1

k − 1

)
+m

(
n + i − 1

k

)]
qi.

(10)

Clearly, the q-coloured coordination number Sn,k(q) = L(0)
n,k(q), the q-coloured Delannoy number Dn,k(q) =

L(1)
n,k(q) and the binomial coefficients Pn,k = L(1)

n,k(0). L(m)
n,k (q) constitute the square matrix

[L(m)
n,k (q)]n,k≥0 =


1 1 1 · · ·

m 1 +m + q 2 +m + 2q
m 1 + 2m + qm + q 3 + 3m + 4q + 2qm + q2

...
. . .

 , (11)
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we focus on the following triangular matrix

L(m)(q) := [l(m)
n,k (q)]n,k≥0 =


1
m 1
m 1 +m + q 1
m 1 + 2m + q + qm 2 +m + 2q 1
...

. . .


,

which is derived by arranging the numbers L(m)
n,k (q) in a triangle array, where l(m)

n,k (q) = L(m)
n−k,k(q).

A (proper) Riordan array, denoted by R(d(x), h(x)), is an infinite lower triangular matrix whose generating
function of the kth column is d(x)hk(x) for k = 0, 1, 2, . . ., where d(0) = 1, h(0) = 0 and h′(0) , 0.

Chen and Wang [8, Theorem 2.1] gave the following criterion for the total positivity of Riordan arrays
(see also [21, Theorem 1.2]).

Lemma 3.2 ([8, Theorem 2.1]). Let R = R(d(x), h(x)) be a Riordan array. If both d(x) and h(x) are PF formal power
series, then R is TP.

Theorem 3.3. The square matrix
[
L(m)

n,k (q)
]

n,k≥0
is q-TP.

Proof. Note that, since (9), the square matrix
[
L(m)

n,k (q)
]

n,k≥0
= MDPT, where P is the Pascal triangle, D =

diag
(
1, 1 + q, (1 + q)2, (1 + q)3, . . .

)
and

M =


1
m 1
m m + 1 1
m 2m + 1 m + 2 1
...

. . .


.

Next we want to show that the triangle M is TP. Note that M = R
(

1+(m−1)x
1−x , x

1−x

)
, it’s clearly that Riordan

array M is TP by Lemma 3.2.
Hence the q-total positivity of

[
L(m)

n,k (q)
]

n,k≥0
follows immediately from the Cauchy-Binet formula and the

total positivity of the Pascal triangle.

It follows immediately from Theorem 3.3 that the square matrix
[
Sn,k(q)

]
n,k≥0 is q-TP. Moreover, the the

q-total positivity of the square matrix
[
Dn,k(q)

]
n,k≥0 follows immediately from Theorem 3.3, which has been

shown in [17].

Lemma 3.4 ([17, Lemma 3.1]). Let M(q) = R(d(x), h(x)) be a Riordan array, where d(x) =
∑

n≥0 dn(q)xn and
h(x) =

∑
n≥0 hn(q)xn. If the matrix

d0(q) h0(q)
d1(q) h1(q) h0(q)
d2(q) h2(q) h1(q) h0(q)
...

. . .


is q-TP, then so is the Riordan array M(q).

Theorem 3.5. The triangle L(m)(q) is q-TP.
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Proof. Note that L(m)(q) = R(d(x), h(x)) = R
(

1+(m−1)x
1−x ,

x+qx2

1−x

)
. Let T(q) = R(h(x), x) and v(q) =

(
d0(q), d1(q), d2(q), . . .

)T.

By Lemma 3.4, it suffices to show that (v(q),T(q)) is q-TP. We have

(v(q),T(q)) =


1
m 1
m 1 + q 1
m 1 + q 1 + q 1
...

. . .


=


1
0 1
0 1 1
0 1 1 1
...

. . .




1
m 1

q 1
q 1
. . .

. . .


.

One can check that both matrices on the right-hand side are q-TP. Therefore, (v(q),T(q)) is q-TP by the
classic Cauchy-Binet formula, as required.

An immediate consequence of Theorem 3.5 is that both the q-coloured coordination triangle S(q) and
q-coloured Delannoy triangle D(q) are q-TP. What’s more, the the q-total positivity of D(q) has been shown
in [17].

4. Zeros of row sums

Let Rn(q) =
∑

i rn,iqi be the sum of the nth row of S(q), i.e.,

Rn(q) =
n∑

k=0

sn,k(q).

The first few entries of
(
Rn(q)

)
n≥0 are (1, 1, 2 + q, 4 + 3q, . . .). The coefficient matrix of Rn(q) is defined by

the matrix

[
rn,i

]
n,i≥0 =


1
1
2 1
4 3
...

. . .


.

Note that the q-coloured coordination number Sn,k(q) satisfies the recurrence (3), hence

sn,k(q) = sn−1,k−1(q) + sn−1,k(q) + qsn−2,k−1(q).

Thus, we can get the following proposition.

Proposition 4.1. The row sum Rn(q) satisfies the simple recurrence

Rn(q) = 2Rn−1(q) + qRn−2(q) (12)

with R1(q) = 1,R2(q) = 1 and has the Binet form

Rn(q) =
(1 − λ2)λn

1 − (λ1 − 1)λn
2

λ1 − λ2
=
λn

1 + λ
n
2

2
, (13)

where

λ1,2 = 1 ±
√

1 + q.
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Let ( fn(x))n≥0 be a sequence of complex polynomials. We say that the complex number x to be a limit
of zeros of the sequence ( fn(x))n≥0 if there is a sequence (zn)n≥0 such that fn(zn) = 0 and zn → x as n → +∞.
Suppose now that ( fn(x))n≥0 is a sequence of polynomials satisfying the recursion

fn+k(x) = −
k∑

j=1

p j(x) fn+k− j(x),

where p j(x) are polynomials in x. Let λ j(x) be all roots of the associated characteristic equation λk +∑k
j=1 p j(x)λk− j = 0. It is well known that if λ j(x) are distinct, then

fn(x) =
k∑

j=1

α j(x)λn
j (x), (14)

where α j(x) are determined from the initial conditions.

Beraha-Kahane-Weiss Theorem [3, Theorem]. Under the non-degeneracy requirements that in (14) no α j(x) is
identically zero and that for no pair i , j is λi(x) ≡ ωλ j(x) for some ω ∈ C of unit modulus, then x is a limit of zeros
of ( fn(x))n≥0 if and only if either

(i) two or more of the λi(x) are of equal modulus, and strictly greater (in modulus) than the others; or

(ii) for some j, λ j(x) has modulus strictly greater than all the other λi(x) have, and α j(x) = 0.

Theorem 4.2. (i) Zeros of Rn(q) are real, distinct and in the open interval (−∞,−1).

(ii) All the zeros of Rn(q) are dense in the semi-closed interval (−∞,−1].

Proof. (i) We next show that

Rn(q) =
1
2

⌊n/2⌋∏
k=1

(
4 + 4q cos2 (2k − 1)π

2n

)
. (15)

We do this only for n even since the case n odd is similar. Let wk = e
(2k−1)πi

n . Then λn + 1 =
∏n

k=1 (λ − wk).
Denote Ck = cos (2k−1)π

2n . Note that

(λ − wk) (λ − wn−k+1) = λ2
− 2λ cos

(2k − 1)π
n

+ 1 = (λ + 1)2
− 4λC2

k ,

since cos (2k−1)π
n = 2C2

k − 1. Hence for n even,

λn + 1 =
n/2∏
k=1

[
(λ + 1)2

− 4λC2
k

]
,

and so

λn
1 + λ

n
2 =

n/2∏
k=1

[
(λ1 + λ2)2

− 4λ1λ2C2
k

]
.

Clearly, λ1 + λ2 = 2 and λ1λ2 = −q. We have by (13)

Rn(q) =
λn

1 + λ
n
2

2
=

1
2

n/2∏
k=1

[
4 + 4q cos2 (2k − 1)π

2n

]
.



H. Liang et al. / Filomat 38:4 (2024), 1465–1477 1475

This proves (15), as desired.
Denote zn,k = −1/ cos2 (2k−1)π

2n , k = 1, 2, · · · ,n/2. Then the polynomial Rn(q) has distinct real zeros zn,1 >
zn,2 > · · · > zn,n/2. Since

lim
n→∞

zn,1 = −∞ and lim
n→∞

zn,n/2 = −1,

all zeros of Rn(q) are in (−∞,−1).
(ii) Next we prove a stronger result: each q ∈ (−∞,−1] is a limit of zeros of the sequence

(
Rn(q)

)
n≥0.

Recall that the Binet form of Rn(q) is

Rn(q) =
(λ1 − 1)λn

1 − (λ2 − 1)λn
2

λ1 − λ2
, (16)

where

λ1,2 = 1 ±
√

1 + q.

The non-degeneracy conditions of Beraha-Kahane-Weiss Theorem are clearly satisfied from (16). So the
limits of zeros of

(
Rn(q)

)
n≥0 are those real numbers q for which |λ1| = |λ2|, i.e.,∣∣∣1 + √

1 + q
∣∣∣ = ∣∣∣1 − √

1 + q
∣∣∣ .

Thus 1 + q ≤ 0, i.e., q ≤ −1,which is what we wanted to show. This completes the proof.

A classical approach for attacking the unimodality and log-concavity problem of a finite sequence is to
use the famous Newton inequality.

Newton Inequality. Suppose that the polynomial f (x) =
∑n

k=0 akxk has only real zeros. Then

a2
k ≥ ak−1ak+1

(k + 1)(n − k + 1)
k(n − k)

, k = 1, 2, . . . ,n − 1.

In particular, if all ak are nonnegative, then the sequence a0, a1, . . . , an is log-concave and unimodal. We
refer the reader to [4, 5, 22] for details.

Corollary 4.3. For each n ≥ 1, the sequence rn,0, . . . , rn,n is log-concave and unimodal.

5. Asymptotic normality

Let a(n, k) be a double-indexed sequence of nonnegative numbers and let

p(n, k) =
a(n, k)∑n
j=0 a(n, j)

denote the normalized probabilities. Following Bender [2], we say that the sequence a(n, k) is asymptotically
normal by a central limit theorem, if

lim
n→∞

sup
x∈R

∣∣∣∣∣∣∣∣
∑

k≤µn+xσn

p(n, k) −
1
√

2π

∫ x

−∞

e−t2/2dt

∣∣∣∣∣∣∣∣ = 0, (17)

where µn and σ2
n are the mean and variance of a(n, k), respectively. We say that a(n, k) is asymptotically normal

by a local limit theorem on R if

lim
n→∞

sup
x∈R

∣∣∣∣∣∣σnp(n, ⌊µn + xσn⌋) −
1
√

2π
e−x2/2

∣∣∣∣∣∣ = 0. (18)
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In this case,

a(n, k) ∼
e−x2/2 ∑n

j=0 a(n, j)

σn
√

2π
as n→∞, (19)

where k = µn + xσn and x = O(1). Clearly, the validity of (18) implies that of (17).
Many well-known combinatorial sequences enjoy central and local limit theorems. For example, the

famous de Movior-Laplace theorem states that the binomial coefficients
(n

k
)

are asymptotically normal (by

central and local limit theorems). Other examples include the signless Stirling numbers
[

n
k

]
of the first

kind, the Stirling numbers
{

n
k

}
of the second kind, the Eulerian numbers A(n, k) [7] and the Delannoy

numbers d(n, k) [25]. Recently, Liu et al. proved the asymptotic normality of combinatorial numbers
related to Dowling lattices [15] and the Stirling-Whitney-Riordan triangle [11]. A standard approach to
demonstrating asymptotic normality is the following criterion (see [2, Theorem 2] for instance).

Lemma 5.1. Suppose that An(x) =
∑n

k=0 a(n, k)xk have only real zeros and An(x) =
∏n

i=1(x + tn,i), where all tn,i are
nonnegative. Let µn =

∑n
i=1

1
1+tn,i

and σ2
n =

∑n
i=1

tn,i

(1+tn,i)2 . Then if σ2
n → +∞ as n → +∞, the numbers a(n, k) are

asymptotically normal (by central and local limit theorems) with the mean µn and variance σ2
n.

Combining Theorem 4.2 and Lemma 5.1, we obtain the following.

Theorem 5.2. The coefficients rn,i are asymptotically normal (by central and local limit theorems) with the mean
µn ∼

2−
√

2
2 n and variance σ2

n ∼
√

2
8 n.

Proof. Combining (15) and Lemma 5.1, we have

µn =

n∑
k=1

1
1 + 1

cos2 (2k−1)π
2n

=

n∑
k=1

cos2 (2k−1)π
2n

1 + cos2 (2k−1)π
2n

.

Hence

µn →
n
π

∫ π

0

cos2 θ

1 + cos2 θ
dθ

=
2n
π

∫ π/2

0

cos2 θ

1 + cos2 θ
dθ

=
2n
π

θ −
arctan

(
tanθ
√

2

)
√

2


π
2

0

=
2 −
√

2
2

n.

On the other hand, we have

σ2
n =

n∑
k=1

1
cos2 (2k−1)π

2n[
1 + 1

cos2 (2k−1)π
2n

]2 =

n∑
k=1

cos2 (2k−1)π
2n[

1 + cos2 (2k−1)π
2n

]2 .
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Thus

σ2
n →

n
π

∫ π

0

cos2 θ

(1 + cos2 θ)2 dθ

=
2n
π

∫ π/2

0

cos2 θ

(1 + cos2 θ)2 dθ

=
2n
π


arctan

(
tanθ
√

2

)
4
√

2
+

sin 2θ
4(cos 2θ + 3)


π
2

0

=

√
2

8
n.

The statement follows from Lemma 5.1.
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