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Abstract. In this article, we introduce the notion of orthogonal F-weak contraction mapping in an orthog-
onal metric space, as well as certain fixed point results. Furthermore, the examples presented in the main
result illustrates that the results proved in this article are a proper extension of some of the results presented
in the literature. The results are used to show the existence and uniqueness of the solution to a first order
differential equation.

1. Introduction

S. Banach [1], in 1922, came up with a classical and the most celebrated outcome called “Banach Contrac-
tion Principle” for the existence and uniqueness of the fixed point of a self-map on a complete metric space
along with a contractive condition. Thereafter, numerous generalizations of Banach Contraction Principle
have been presented by the researchers (see [2–4, 7, 13, 14] and references cited therein).

D. Wardowski [13], in 2012, introduced a novel contraction condition called as F-contraction along with
the fixed point result in a complete metric space. However, in 2014, D. Wardowski and N. V. Dung [14]
further generalized the F-contraction condition and initiated the idea of F-weak contraction by using the
maximize condition. Over the period of time, multiple attempts have been made by authors to generalize
F-contraction as well as F-weak contraction ([5, 9, 10, 12]).

M. E. Gordji et al., in 2017 [7] put forward the notion of an orthogonal set and subsequently orthogo-
nal metric space and deduced fixed point results using an analogous form of Banach Contraction Principle
in this setting. Many authors have generalized and extended the results obtained in [7] (see [6, 8, 11, 12, 15]).

In this article, we aim to introduce the notion of an orthogonal F-weak contraction condition and prove
certain fixed point results in an orthogonal complete metric space with an application. The examples
presented in the main result asserts that the outcomes presented in this article are a proper extension of the
results proven in [2, 7, 12].
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2. Preliminaries

In this section, we recall some definitions used in the main results. The symbolR,N,R+ denotes the set
of real numbers, natural numbers and non-negative real numbers respectively.

Definition 2.1. [7] A non-empty set X along with a binary relation ⊥ is called an orthogonal set (denoted by O-set)
if ∃ ρ0 ∈ X such that

[
ρ ⊥ ρ0 ∀ ρ ∈ X

]
or

[
ρ0 ⊥ ρ ∀ ρ ∈ X

]
. The element ρ0 is called an orthogonal element.

Example 2.2. Let X be the set of all n × n real matrices with non-zero determinant. For matrices M,N ∈ X, define
M ⊥ N if and only if MN = NM. Then, (X,⊥) is an O-set.

Example 2.3. Consider the interval [0,+∞) then ∀ ρ, σ ∈ [0,+∞), define ρ ⊥ σ if and only if ρ.σ = 0. Then,
([0,+∞),⊥) is an O-set.

Definition 2.4. [7] Let (X,⊥) be an O-set. A sequence {ρn}n∈N is called an orthogonal sequence (denoted by
O-sequence) if

[
ρn ⊥ ρn+1 ∀ n ∈N

]
or

[
ρn+1 ⊥ ρn ∀ n ∈N

]
.

Example 2.5. Let X = R and define ρ ⊥ σ if and only if ρ.σ ≤ 0 then,
{

(−1)n

n

}
n∈N

is an O-sequence in the O-set
(X,⊥).

Definition 2.6. [7] The non-empty set X endowed with metric d and binary relation⊥ is called an orthogonal metric
space (denoted by (X,⊥, d)) if (X,⊥) is an orthogonal set and (X, d) is a metric space.

Example 2.7. In the Example 2.5, (X,⊥) together with the usual metric space is an orthogonal metric space.

Definition 2.8. [7] For an orthogonal metric space (X,⊥, d), a function f : X → X is said to be orthogonally
continuous (denoted by ⊥-continuous) at ρ ∈ X if for each O-sequence {ρn}n∈N with ρn → ρ as n → +∞ implies
f (ρn)→ f (ρ) as n→ +∞. In addition, f is said to be ⊥-continuous on X if f is ⊥-continuous at each point ρ ∈ X.

Definition 2.9. [7] An orthogonal metric space (X,⊥, d) is said to be orthogonally complete (denoted by O-complete)
if every Cauchy O-sequence in X is convergent in X. Also, a function f : X → X is called ⊥-preserving if
ρ ⊥ σ implies f (ρ) ⊥ f (σ) and f is called weakly ⊥-preserving if ρ ⊥ σ implies f (ρ) ⊥ f (σ) or f (σ) ⊥ f (ρ).

Definition 2.10. [13] Let F be a family of all mappings F : (0,+∞)→ (−∞,+∞) such that

(F1) for ρ, σ ∈ (0,+∞) if ρ < σ implies F(ρ) < F(σ);

(F2) for each sequence {ρn}n∈N of positive number such that

lim
n→+∞

ρn = 0 if and only if lim
n→+∞

F(ρn) = −∞;

(F3) ∃ r ∈ (0, 1) such that lim
ζ→0+

ζrF(ζ) = 0.

A self-map f : X → X on a metric space (X, d) is said to be F-contraction if ∃ F ∈ F and τ > 0 such that ∀ ρ, σ ∈ X
with d( fρ, fσ) > 0 implies

τ + F
(
d( fρ, fσ)

)
≤ F

(
d(ρ, σ)

)
.

Definition 2.11. [14] A map f : X → X on a metric space (X, d) is said to be F-weak contraction if ∃ F ∈ F and
τ > 0 such that ∀ ρ, σ ∈ X with d( fρ, fσ) > 0 implies

τ + F(d( fρ, fσ)) ≤ F
(

max
{
d(ρ, σ), d(ρ, fρ), d(σ, fσ),

d(ρ, fσ) + d(σ, fρ)
2

})
.

Definition 2.12. [2, 12] For an orthogonal metric space (X,⊥, d) with F ∈ F, a map f : X→ X is called an orthogonal
F-contraction map (denoted by ⊥F-contraction) if ∃ τ > 0 such that ∀ ρ, σ ∈ X with ρ ⊥ σ and d( fρ, fσ) > 0 implies

τ + F
(
d( fρ, fσ)

)
≤ F(d(ρ, σ)).
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3. Main Results

Inspired by the work done in [2, 12], in this section, we put forward the notion of orthogonal F-weak
contraction and prove some fixed point theorem with orthogonal F-weak contraction in an O-complete
metric space.

Definition 3.1. A map f : X→ X, where (X,⊥, d) is an orthogonal metric space and F ∈ F, is called an orthogonal
F-weak contraction (denoted by ⊥F-weak contraction) if ∃ τ > 0 such that ∀ ρ, σ ∈ X with ρ ⊥ σ and d( fρ, fσ) > 0
implies

τ + F(d( fρ, fσ)) ≤ F
(
max

{
d(ρ, σ), d(ρ, fρ), d(σ, fσ),

d(ρ, fσ) + d(σ, fρ)
2

})
. (1)

Remark 3.2. From (1), one can infer that every⊥F-contraction is⊥F-weak contraction. However, following example
shows that the converse need not be true.

Example 3.3. Let X = {0, 1, 2, 3, 4} endowed with usual metric. Let R = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (4, 0), (4, 1),
(4, 2), (4, 3), (4, 4)}. Define ρ ⊥ σ if and only if (ρ, σ) ∈ R. Clearly, (X,⊥) is an orthogonal set (with 0 and 4 as
orthogonal elements). Define f : X → X as f (0) = 0 = f (1) = f (4), f (2) = 1, f (3) = 2. Let F(β) = ln(β).
It can be verified that f is ⊥F-weak contraction however, f is not ⊥F-contraction since for ρ = 4 and σ = 3,
τ + F(d( fρ, fσ)) ≤ F(d(ρ, σ)) does not hold for any τ > 0.

Theorem 3.4. Let (X,⊥, d) be an O-complete metric space and F ∈ F. If a map f : X→ X be⊥-continuous,⊥F-weak
contraction and ⊥-preserving. Then, f has a unique fixed point in X.

Proof. As (X,⊥) is an orthogonal set, therefore ∃ an orthogonal element ρ0 ∈ X such that

[ρ ⊥ ρ0 ∀ ρ ∈ X] or [ρ0 ⊥ ρ ∀ ρ ∈ X]. (2)

As ρ0, fρ0 ∈ X then by (2), we have

[ fρ0 ⊥ ρ0] or [ρ0 ⊥ fρ0].

Define a sequence{ρn}n∈N in X, where ρn+1 = fρn ∀ n ∈ N. Since f is ⊥-preserving. Therefore, {ρn}n∈N is an
orthogonal sequence. Let us consider ϑn = d(ρn, ρn+1) for n = 0, 1, 2, . . . . If for some n0 ∈N, ϑn0 = 0

then, d(ρn0 , ρn0+1 ) = 0
implies ρn0 = ρn0+1 = fρn0 ,

which gives that f possesses a fixed point. On the contrary, suppose that ϑn , 0 ∀ n ∈N. Since f is⊥F-weak
contraction so ∀ n ∈N, we have

F(ϑn) = F(d(ρn, ρn+1) =F(d( fρn−1, fρn))

≤F
(
max

{
d(ρn−1, ρn), d(ρn−1, fρn−1), d(ρn, fρn),

d(ρn−1, fρn) + d(ρn, fρn−1)
2

})
− τ

=F
(
max

{
d(ρn−1, ρn), d(ρn−1, ρn), d(ρn, ρn+1),

d(ρn−1, ρn+1) + d(ρn, ρn)
2

})
− τ

≤F
(
max

{
d(ρn−1, ρn), d(ρn, ρn+1),

d(ρn−1, ρn) + d(ρn, ρn+1)
2

})
− τ

=F
(
max

{
d(ρn−1, ρn), d(ρn, ρn+1)

})
− τ.

If max {d(ρn−1, ρn), d(ρn, ρn+1)} = d(ρn, ρn+1) then from above, we have

F(ϑn) ≤ F(ϑn) − τ,
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which is a contradiction (for τ > 0). Therefore,

max
{
d(ρn−1, ρn), d(ρn, ρn+1)

}
= d(ρn−1, ρn) ∀ n ∈N,

and, F(ϑn) ≤ F(ϑn−1) − τ ≤ F(ϑn−2) − 2τ ≤ · · · ≤ F(ϑ0) − nτ. (3)

Letting n→ +∞ in (3), we obtain

lim
n→+∞

F(ϑn) = −∞.

Using (F2), we obtain

lim
n→+∞

ϑn = 0. (4)

By (F3) property ∃ r ∈ (0, 1) such that

lim
n→+∞

ϑr
nF(ϑn) = 0. (5)

From (3), we have

ϑr
nF(ϑn) − ϑr

nF(ϑ0) ≤ −ϑr
nnτ.

Taking n→ +∞ and using (4) and (5), we get

lim
n→+∞

nϑr
n = 0. (6)

On observing (6), we get that ∃ n1 ∈N such that nϑr
n ≤ 1 ∀ n > n1. Therefore,

ϑn ≤
1

n
1
r

∀ n > n1. (7)

Next, we claim that the sequence {ρn}n∈N is a Cauchy O-sequence. Consider m,n ∈N such that m > n > n1,
using (7) and triangle inequality of metric space d, we get

d(ρm, ρn) ≤ d(ρm, ρm−1) + · · · + d(ρn+2, ρn+1) + d(ρn+1, ρn)
= ϑm−1 + · · · + ϑn+1 + ϑn

<
+∞∑
i=1

ϑi ≤

+∞∑
i=1

1/i1/r.

Using convergence of
+∞∑
n=1

1/n1/r (for r ∈ (0, 1)), we get {ρn}n∈N is Cauchy O-sequence and by O-completeness

of X, {ρn}n∈N is convergent, that is, ∃ ρ ∈ X such that

lim
n→+∞

ρn = ρ.

Using ⊥-continuity of f , we get

lim
n→+∞

ρn+1 = lim
n→+∞

fρn = fρ.

Thus, ρ = fρ. Hence, ρ is a fixed point of f . Now, we show the uniqueness of the fixed point. Let ρ∗ be
another fixed point of f which implies, f n(ρ∗) = ρ∗ ∀ n ∈N. By (2), we have

[ρ0 ⊥ ρ
∗] or [ρ∗ ⊥ ρ0].
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Since f is ⊥-preserving, therefore

[ f n(ρ0) ⊥ f (ρ∗)] or [ f (ρ∗) ⊥ f n(ρ0)].

Also, f is ⊥F-weak contraction, thus

F(d(ρn, ρ
∗)) = F(d( f nρ0, ρ

∗))
= F(d( fρn−1, fρ∗)),

≤ F
(
max

{
d(ρn−1, ρ

∗), d(ρn−1, fρn−1), d(ρ∗, fρ∗),
d(ρn−1, fρ∗) + d(ρ∗, fρn−1)

2

})
− τ

= F
(
max

{
d(ρn−1, ρ

∗), d(ρn−1, ρn), d(ρ∗, ρ∗),
d(ρn−1, ρ∗) + d(ρ∗, ρn)

2

})
− τ

= F
(
max

{
d(ρn−1, ρ

∗), d(ρn−1, ρn), d(ρn, ρ
∗)
})
− τ.

We have following cases:

Case (i) : If max{d(ρn−1, ρ∗), d(ρn−1, ρn), d(ρn, ρ∗)} = d(ρn, ρ∗) then ∀ n ∈N, we have

F(d(ρn, ρ
∗)) ≤ F(d(ρn, ρ

∗)) − τ,

which is a contradiction for any τ > 0.

Case (ii) : If max{d(ρn−1, ρ∗), d(ρn−1, ρn), d(ρn, ρ∗)} = d(ρn−1, ρn) then ∀ n ∈N, we have

F(d(ρn, ρ
∗)) ≤ F(d(ρn−1, ρn)) − τ = F(ϑn−1) − τ.

Using (3), we get

F(d(ρn, ρ
∗)) ≤ F(ϑn−1) − τ ≤ · · · ≤ F(ϑ0) − nτ.

Taking n→ +∞, we get

lim
n→+∞

F(d(ρn, ρ
∗)) = −∞.

By (F2) property, lim
n→+∞

d(ρn, ρ
∗) = 0 implies ρ = ρ∗.

Case (iii) : If max{d(ρn−1, ρ∗), d(ρn−1, ρn), d(ρn, ρ∗)} = d(ρn−1, ρ∗) then ∀ n ∈N, we have

F(d(ρn, ρ
∗)) ≤ F(d(ρn−1, ρ

∗)) − τ
≤ F(d(ρn−2, ρ

∗)) − 2τ ≤ · · · ≤ F(d(ρ0, ρ
∗)) − nτ.

Taking n → +∞ and using (F2) property, we obtain ρ = ρ∗. Thus, we conclude that f has a unique fixed
point in X.

Remark 3.5. Theorem 3.4 proved above provides a proper extension of Theorem 3.10 and Theorem 3.3 of [2] and [12]
respectively. The following example further substantiates the claim.

Example 3.6. Consider the orthogonal metric space discussed in Example 3.3. Then, the function defined in it can
be verified for ⊥-continuous and ⊥-preserving. Also, X is an O-complete metric space since for any arbitrary Cauchy
O-sequence {ρn}n∈N in X, ∃ a subsequence {ρnk }nk∈N of {ρn}n∈N such that ρnk = 0 ∀ k ≥ k1 or ρnk = 4 ∀ k ≥ k2 for
some k1, k2 ∈ N. Thus, {ρnk }nk∈N converges to 0 or 4. Therefore, {ρn}n∈N is convergent. Since all the conditions of
Theorem 3.4 hold. Thus, f has a unique fixed point which is ρ = 0 even though f is not ⊥F-contraction.
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Example 3.7. Let X = R+ ∪ {0} along with metric d on X defined as d(ρ, σ) = max{ρ, σ}. Define a map f : X→ X
as

f (ρ) =
{

0 f or ρ ∈ [0, 1);
9/10 otherwise.

Consider F(α) = ln(α) and let ρ ⊥ σ if and only if either ρ = 0 or σ = 0. For d( fρ, fσ) > 0 where ρ ⊥ σ we must
have either ρ = 0 and σ ∈ [1,+∞) or ρ ∈ [1,+∞) and σ = 0. Let ρ = 0 and σ ∈ [1,+∞) then, fρ = 0 and fσ = 9/10
so that

τ + F(d( fρ, fσ)) = τ + F(d(0, 9/10)) = τ + ln(9/10), (8)

and,

F
(
max

{
d(ρ, σ), d(ρ, fρ), d(σ, fσ),

d(ρ, fσ) + d(σ, fρ)
2

})
= ln

(
max

{
σ,

9/10 + σ
2

})
= ln

(
σ
)
. (9)

From (8), (9) and for any value of τ where 0 < τ ⩽ − ln(9/10), f satisfies ⊥F-weak contraction condition. For σ = 0
and ρ ∈ [1,+∞), the contraction condition holds on similar lines as above. Also, f is⊥-preserving and⊥-continuous,
thus satisfying conditions of Theorem 3.4 and hence f possesses a unique fixed point viz. ρ = 0.

Theorem 3.8. Let (X,⊥, d) be an O-complete metric space and F ∈ F. If a map f : X → X is ⊥F-weak contraction
and ⊥-preserving such that

(I) F is continuous;

(II) If ∃ an O-sequence {ρn}n∈N in X is such that for ρn → ρ as n → +∞ we have ρn ⊥ ρ ∀ n ∈ N or
ρ ⊥ ρn ∀ n ∈N.

Then, f has a unique fixed point in X.

Proof. Working on the lines of Theorem 3.4, it can be shown that ∃ an O-sequence {ρn}n∈N such that ρn → ρ
as n → +∞. We claim that ρ is the desired fixed point. However, once the existence of fixed point is
established then the uniqueness follows similar to Theorem 3.4. Suppose on the contrary that d(ρ, fρ) > 0.

Case(i) : If {n ∈N : fρn = fρ} is infinite. Then, ∃ subsequence {ρni }ni∈N of {ρn}n∈N such that

fρni = fρ implies ρni+1 = fρ.

Taking limit n→ +∞, we get ρ = fρ, which is a contradiction.

Case(ii) : If {n ∈N : fρn = fρ} is finite, that is, for some n0 ∈N, d( fρn, fρ) > 0 ∀ n > n0. By given condition
we have [ρn ⊥ ρ ∀ n ∈N] or [ρ ⊥ ρn ∀ n ∈N]. Since f is ⊥-preserving, therefore

[ fρn ⊥ fρ ∀ n ∈N] or [ fρ ⊥ fρn ∀ n ∈N].

As f is ⊥F-weak contraction, we have

τ + F(d( fρn, fρ)) ≤ F
(
max

{
d(ρn, ρ), d(ρn, fρn), d(ρ, fρ),

d(ρn, fρ) + d(ρ, fρn)
2

})
≤ F

(
max

{
d(ρn, ρ), d(ρn, ρn+1), d(ρ, fρ),

d(ρn, ρ) + d(ρ, fρ) + d(ρ, ρn+1)
2

})
.

Since ρn → ρ as n→ +∞. Therefore, ∃ n1 ∈N, such that

d(ρn, ρ) = 0 ∀ n > n1.
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Hence, ∀ n > max{n0,n1}, we obtain

max
{

d(ρn, ρ), d(ρn, ρn+1), d(ρ, fρ),
d(ρn, ρ) + d(ρ, fρ) + d(ρ, ρn+1)

2

}
= d(ρ, fρ).

Since F is continuous, on taking limit n→ +∞ in (10), we get

τ + F(d( fρ, fρ)) ≤ F(d( fρ, fρ)),

which is again a contradiction. Thus, we conclude that f has a fixed point ρ in X.

Remark 3.9. In Theorem 3.8, we have dropped the condition of ⊥-continuity of f and instead we consider F to be
continuous function along with orthogonal F-weak contraction of f , which gives a more generalized result in this
setting.

Corollary 3.10. Let (X,⊥, d) be an O-complete metric space and F ∈ F. If a map f : X→ X is ⊥F-weak contraction
and ⊥-preserving such that

(I) F is continuous;

(II) If ∃ an O-sequence {ρn}n∈N in X is such that for ρn → ρ as n → +∞ we have ρn ⊥ ρ ∀ n ∈ N or
ρ ⊥ ρn ∀ n ∈N.

Then, f in X has a unique fixed point. Further, for each ρ∗ ∈ X the Picard sequence { f n(ρ∗)}n∈N converges to fixed
point ρ of f .

Proof. The existence and uniqueness of fixed point can be proved on the steps of Theorem 3.8. We show
that Picard sequence { f n(ρ∗)}n∈N converges to fixed point ρ, that is

lim
n→+∞

f n(ρ∗) = ρ.

Since ρ∗ ∈ X is any arbitrary point and X is an orthogonal set, therefore

[ρ∗ ⊥ ρ0] or [ρ0 ⊥ ρ
∗],

and as f is ⊥-preserving, thus

[ f n(ρ∗) ⊥ f n(ρ0) ∀ n ∈N] or [ f n(ρ0) ⊥ f n(ρ∗) ∀ n ∈N].

Using ⊥F-weak contraction of f , we obtain

τ + F(d( f n(ρ∗), ρn)) = τ + F(d( f n(ρ∗), f n(ρ0))

= τ + F(d( f ( f n−1(ρ∗)), f ( f n−1(ρ0)))

≤ F
(
max

{
d( f n−1(ρ∗), ρn−1), d( f n−1(ρ∗), f n(ρ∗)), d(ρn−1, ρn),

d( f n−1(ρ∗), ρn) + d(ρn−1, f n(ρ∗))
2

})
. (10)

Now, as n→ +∞, ρn → ρ. Therefore, we have

max
{
d( f n−1(ρ∗), ρn−1), d( f n−1(ρ∗), ρn) + d(ρn, f n(ρ∗)), d(ρn−1, ρn),

d( f n−1(ρ∗), ρn) + d(ρn−1, f n(ρ∗))
2

}
= d( lim

n→+∞
f nρ∗, ρ).

Taking limit as n→ +∞ in (10) and using continuity of F, we get

τ + F(d( lim
n→+∞

f nρ∗, ρ)) ≤ F(d( lim
n→+∞

f nρ∗, ρ)),

which holds if and only if

lim
n→+∞

f n(ρ∗) = ρ.

Thus, f is a Picard operator.
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4. Application

The existence of solution to an ordinary differential equation arising in a mathematical model occurring
from real world problem can be verified using a suitable fixed point technique. The purpose of this section
is to apply the result obtained in Theorem 3.4 and to prove existence and uniqueness of the solution of an
ordinary differential equation:

θ
′

(u) − f (u, θ(u)) = 0 a.e u ∈ I = [0,T];
θ(0) = a for a ≥ 1,

(11)

where f : I ×R→ R is an integrable function which satisfies the following:

(I) f (u, v) ≥ 0 ∀ u ∈ I and v ≥ 0;

(II) ∃ α(u) ∈ L1(I) and τ > 0 such that

| f (u, p(u)) − f (u, q(u))| ≤
α(u)

eτ
|p(u) − q(u)|,

∀ p, q ∈ L1(I) such that p(u)q(u) ≥ p(u) or p(u)q(u) ≥ q(u).

Theorem 4.1. The differential equation given in (11) along with condition (I) and (II) has a unique solution.

Proof. Let X = {p ∈ C(I,R) : p(u) > 0 ∀ u ∈ I} and define a binary relation on X as

p ⊥ q implies p(u)q(u) ≥ p(u) or p(u)q(u) ≥ q(u) ∀ u ∈ I.

Then (X,⊥) is an orthogonal set. Let A(u) =
∫ u

0 |α(u)|du. Then we have A′

= |α(u)| a.e u ∈ I. Define a
mapping d : X × X→ R+ by

d(p, q) = ∥p − q∥ = sup
u∈I

e−A(u)
| p(u) − q(u) | ∀ p, q ∈ X.

Now, we claim that (X,⊥, d) is an O-complete metric space. Let {pn}n∈N be a Cauchy O-sequence in X then,
{pn}n∈N converges to a point p in C(I). It is enough to show that p ∈ X. Let u ∈ I then

pn(u)pn+1(u) ≥ pn(u) or pn(u)pn+1(u) ≥ pn+1(u).

As pn(u) > 0 ∀ n ∈ N, then ∃ a subsequence {pnk }nk∈N of {pn}n∈N for which pnk ≥ 1 and since pn → p as
n→ +∞ so pnk → p as nk → +∞ implies p(u) ≥ 1. Thus p ∈ X. Define a mapY : X→ X as:

(Yp)(u) = β +
∫ u

0
f (t, p(t))dt.

Then:

(1)Y is ⊥-preserving: Let p ⊥ q, then

(Yp)(u) = β +
∫ u

0
f (t, p(t))dt ≥ 1,

which shows that (Yp)(u)(Yq)(u) ≥ (Yq)(u) or (Yp)(u)(Yq)(u) ≥ (Yp)(u). Therefore,Yp ⊥ Yq.

(2)Y is ⊥-continuous: Let {pn}n∈N be an O-sequence in X which converges to p ∈ X. Then it is well evident
from previous working that p(u) ≥ 1 implies pn(u) ⊥ p(u) ∀ n ∈N and u ∈ I. Also,

e−A(u)
|(Ypn)(u) − (Yp)(u)| ≤ e−A(u)

∫ u

0
| f (t, pn(t)) − f (t, p(t))|dt

≤ e−A(u)
∫ u

0
|pn(t)) − p(t))|

|α(t)|
eτ

e−A(t)eA(t)dt

≤ e−A(u)e−τd(pn, p)
∫ u

0
|α(t)|eA(t)dt

≤ e−A(u)e−τd(pn, p)(eA(u)−1).
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Since above inequality hold for any arbitrary u ∈ I and n ∈N. So, we have

d(Ypn,Yp) ≤ e−τ(1 − e−∥α∥1 )d(pn, p) ∀ n ∈N.

ThusYpn → Yp as n→ +∞.

(3)Y is ⊥F-weak contraction: Let p, q ∈ X such that p ⊥ q and d(Yp,Yq) > 0, then for each u ∈ I, we obtain

|(Yp)(u) − (Yq)(u)| ≤
∫ u

0
| f (t, p(t)), f (t, q(t))|dt

≤

∫ u

0
e−τ|α(t)||p(t) − q(t)|e−A(t)eA(t)dt

≤ e−τd(p, q)
∫ u

0
|α(t)|eA(t)

≤ e−τd(p, q)(eA(u)
− 1),

and, e−A(u)
|(Yp)(u) − (Yq)(u)| ≤ e−A(u)(eA(u)

− 1)e−τd(p, q)
≤ (1 − e−A(u))e−τd(p, q)
≤ (1 − e−∥α∥1 )e−τd(p, q).

Thus, it follows that

d(Yp,Yq) ≤ e−τd(p, q).

Taking logarithm, we get

τ + ln(d(Yp,Yq)) ≤ ln
(
max

{
d(p, q), d(p,Yp), d(q,Yq),

d(p,Yq) + d(q,Yp)
2

})
.

On defining F : R+ → R by F(β) = ln(β) we conclude that Y is an ⊥F-weak contraction. Therefore, using
Theorem 3.4,Y has a unique fixed point and hence differential equation has a unique positive solution.

Conclusion

In the main result of this paper we have introduced an orthogonal F-weak contractive condition in two
settings when (i) f is ⊥-continuous, and (ii) F is continuous, to establish some fixed point results in an
O-complete metric space. The application of this theory plays a crucial role in finding the solution of an
ordinary differential equation.
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