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Abstract. In this article, we study the existence and uniqueness of solutions for a boundary value problem
of coupled system of Caputo-Hadamard fractional differential equations in a bounded domain. Banach
contraction mapping principle and Schaefer’s fixed point theorem are the main tools of our study. An
example is presented at the end to support the main result.

1. Introduction

During the last three decades, fractional calculus and its applications become diversified more and
has materialize as a significant tool for the comprehensive applications in mathematical modeling of
nonlinear systems. The nonlocal nature of fractional order operators accounts the hereditary properties
involved in various systems in terms of fractional differential operator. For further reference, see [7, 13,
23, 24] and the references cited therein. The definitions like Riemann-Liouville (1832), Grunwald-Letnikov
(1867), Hadamard (1891,[11]) and Caputo (1997) are used to model problems in applied sciences and
the formulations are used to model the physical systems and has given more accurate results. In 1891,
Hadamard introduced the new derivative. For more details, one can refer [3, 20–22] and the references
cited therein. A new approach called Caputo-Hadamard derivative [15], obtained from the Hadamard
derivative and is applied to solve for physically interpretable initial condition problems. For the recent
results in Caputo-Hadamard derivative, one can cite [1, 2, 4, 6, 9, 12, 14, 25–27] and the references therein.

Recently, nonlinear boundary value problems for coupled systems of hybrid differential equations of
fractional order have many more applications. For more details, one can refer to [5, 16–19]. In 2008,
Benchohra et al.[10] discussed the Caputo fractional derivative of order p

cDpϑ(t) = f1(t, ϑ(t)), for a. e. t ∈ [0,T], 0 < p ≤ 1,

a1ϑ(0) + b1ϑ(T) = c1
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with f1 : [0,T] × R→ R is a given continuous function and a1, b1, c1 ∈ R such that a1 + b1 , 0.
In 2017, Arioua et al. [8] consider the following problem

cDp
1+ϑ(t) + f1(t, ϑ(t)) = 0, for 1 < t < e, 2 < p ≤ 3,

with the fractional boundary conditions:

ϑ(1) = ϑ
′

(1) = 0, (cDp−1
1+ ϑ)(e) = (cDp−2

1+ ϑ)(e) = 0

where cDp denotes the Caputo-Hadamard fractional differential equations of order p and f1 : [1, e]×R→ R.
In 2018, Benhamida et al. [11] investigated the following Caputo-Hadamard fractional differential

equations with the boundary conditions:

c
HDpϑ(t) = f1(t, ϑ(t)), for a. e. t ∈ [1,T], 0 < p ≤ 1,

a1ϑ(1) + b1ϑ(T) = c1,

where c
HDp denotes the Caputo-Hadamard fractional differential equations of order p with f1 : [1,T]×R→ R

and the real constants a1, b1 and c1 such that a1 + b1 , 0.
Motivated by the above mentioned works, we consider the system of hybrid nonlinear Caputo-

Hadamard fractional differential equations:

c
HDγ1 [z(t)] = θ1(t, z(t), ϑ(t)), t ∈ [1,T], 0 < γ1 ≤ 1,
c
HDδ1 [ϑ(t)] = θ2(t, z(t), ϑ(t)), t ∈ [1,T], 0 < δ1 ≤ 1, (1)

supplemented with

a1z(1) + b1z(T) = c1, a2ϑ(1) + b2ϑ(T) = c2 (2)

where c
HDγ1 , c

HDδ1 denote the Caputo-Hadamard fractional derivatives of orders γ1 and δ1, respectively, the
given continuous functions θi : [1,T] × R × R→ R, i = 1, 2 with ai, bi and ci ∈ R, i = 1, 2.

Now, we extend the problem considered in [11] to a boundary value problem of coupled hybrid Caputo-
Hadamard fractional differential equations. For the existence part of the solution, we use Schaefer’s fixed
point theorem and the uniqueness, we apply Banach contraction mapping principle.

Remark 1.1. Problems [10] defined on (1) and (2) are applied for an initial value problem when (ai=1 and bi=0),
boundary value problem when (ai=0 and bi=1) and have antiperiodic solutions (ai = 1 and bi = 1, ci = 0, i = 1, 2).

Section 2 states the preliminary concepts and the discussion of auxiliary lemma related to the problem
at hand. Section 3 dealt with the main proof the existence results of problem (1) and (2) while an illustrative
example for the obtained result is discussed in Section 4.

2. Preliminaries

Definition 2.1. ([20]) If h1 : [1,+∞)→ R, a continuous function then the Hadamard fractional integral of order q1
is defined by

HIq1 h1(t) =
1
Γ(q1)

∫ t

1

(
lo1

t
s

)q1−1 h1(s)
s

ds, q1 > 0, t > 1

provided the integral exists.

Definition 2.2. ([20]) For the function h1 : [1,+∞]→ R, the Hadamard fractional derivative of order γ1 is defined
as

(HDq1 h1)(t) =
1

Γ(n − q1)

( d
dt

)n
∫ t

1

(
ln

t
s

)n−q1−1 h1(s)
s

ds, n − 1 < q1 < n,

= δn(HIn−q1 h1)(t),

where n = [q1] + 1 [q1] is the integer part of the real number.
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Definition 2.3. ([15]) The Caputo-Hadamard fractional derivative of order q1 where q1 ≥ 0, n − 1 < q1 < n, with
n=[q1] + 1 and h1 ∈ ACn

δ[1,∞)

(c
HDq1 h1)(t) =

1
Γ(n − q1)

∫ t

1
(lo1

t
s

)n−q1−1δnh1(s)
ds
s
=H In−q1 (δnh1)(t).

Lemma 2.4. ([15]) Let h1 ∈ ACn
δ[1,+∞) and q1 > 0. Then

HIq1 (c
HDq1 h1)(t) = h1(t) −

n−1∑
i=0

δih1(1)
i!

(lo1t)i.

Lemma 2.5. Suppose h1 : [1,+∞)→ R is a continuous function and a solution z is defined by

z(t) =
1
Γ(γ1)

∫ t

1
(lo1

t
s

)γ1−1h1(s)
d
ds
−

b1

Γ(γ1)(a1 + b1)

∫ T

1
(lo1

T
s

)γ1−1h1(s)
d
ds
+

c1

a1 + b1
(3)

if and only if
c
HDγ1 z(t) =h1(t), 0 < γ1 < 1 (4)

and

a1z(1) + b1z(T) = c1. (5)

Proof. Assume z satisfies (4). Then Lemma 2.4 implies

z(t) =H Iγ1 h1(t) + d1 (6)

when we apply the boundary condition (5), we get

z(1) = d1

z(T) =H Iγ1 h1(T) + d1

a1z(1) + b1z(T) = c1

a1d1 + b1[HIγ1 h1(T) + z(1)] = c1

a1z(1) + b1HIγ1 h1(T) + b1z(1) = c1

(a1 + b1)z(1) + b1HIγ1 h1(T) = c1

z(1) =
c1 − b1HIγ1 h1(T)

(a1 + b1)

which leads to the solution (3) that

z(t) =H Iγ1 h1(t) −
b1

(a1 + b1)
=H Iγ1 h1(T) +

c1

a1 + b1
.

Conversely, equations (4)-(5) hold for z.

3. Main results

Let us now consider a Banach space W = {z̃(t) | z̃(t) ∈ C([1,T])} from [1,T] ×R → R endowed with the
norm ∥z̃∥∞ = sup{|z̃(t)| : 1 ≤ t ≤ T}. Let the absolutely continuous function is defined as

ACm
δ ([e1, e2] × R,R) = {h1 : [e1, e2] × R→ R : δn−1h1(t) ∈ AC([e1, e2] × R,R)},

where δ = t d
dt . Then the product space (W × W, ∥(z̃, ϑ̃)∥) endowed with the norm

∥∥∥(z̃, ϑ̃)
∥∥∥ = ∥z̃∥ + ∥∥∥ϑ̃∥∥∥,

(z̃, ϑ̃) ∈ W ×W is a Banach space. Let us now consider the Banach space S of all continuous functions
ξ̃ : [1,T] → R endowed with the norm ∥ξ̃∥∞ = sup{|ξ̃(κ̂)| : 1 ≤ κ̂ ≤ T}. Then the product space (S × S)
endowed with the norm

∥∥∥(ξ̃, ϑ̃)
∥∥∥ = ∥∥∥ξ̃∥∥∥ + ∥∥∥ϑ̃∥∥∥, (ξ̃, ϑ̃) ∈ S ×S is also a Banach space.
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(A1) Let θ1, θ2 : [1,T] × R × R → R and there exists constants mi,ni such that, for all t ∈ [1,T] and
xi, yi ∈ R, i = 1, 2,∣∣∣θ1(t, x1, x2) − θ1(t, y1, y2)

∣∣∣ ≤ m1|x1 − y1| +m2|x2 − y2|,∣∣∣θ2(t, x1, x2) − θ2(t, y1, y2)
∣∣∣ ≤ n1|x1 − y1| + n2|x2 − y2|.

(A2) sup
t∈[1,T]

θ1(t, 0, 0) = N1 < ∞ and sup
t∈[1,T]

θ2(t, 0, 0) = N2 < ∞.

(A3) There exists M1 > 0,M2 > 0 such that

|θ1(t, x(t), y(t))| ≤M1, |θ2(t, x(t), y(t))| ≤M2.

For the ease of computational calculation, we pose

P1 =
[
1 +

|b1|

|a1 + b1|

] (lo1T)γ1

Γ(γ1 + 1)
,

P2 =
[
1 +

|b2|

|a2 + b2|

] (lo1T)δ1

Γ(δ1 + 1)
;

Q1 =
|c1|

|a1 + b1|
< 1 and Q2 =

|c2|

|a2 + b2|
< 1.

(A4) From the assumptions in the above, we also consider P1(m1 +m2) + P2(n1 + n2) < 1.

In view of Lemma 2.5, we define an operator φ :W ×W→W ×W and (1)-(2) becomes

φ(z, ϑ)(t) =
(
φ1(z, ϑ)(t)
φ2(z, ϑ)(t)

)
, (7)

where

φ1(z, ϑ)(t) =
1
Γ(γ1)

∫ t

1

(
lo1

t
s

)γ1−1
θ1(s)

d
ds
−

b1

Γ(γ1)(a1 + b1)

∫ T

1

(
lo1

T
s

)γ1−1
θ1(s)

d
ds
+

c1

a1 + b1

and

φ2(z, ϑ)(t) =
1
Γ(β1)

∫ t

1

(
lo1

t
s

)β1−1
θ2(s)

d
ds
−

b2

Γ(β1)(a2 + b2)

∫ T

1

(
lo1

T
s

)β1−1
θ2(s)

d
ds
+

c2

a2 + b2
.

Theorem 3.1. If (A1) to (A4) hold, then φB̄r ⊂ B̄r,where B̄r = {(z, ϑ) ∈W×W : ∥(z, ϑ)∥∞ ≤ r} is a closed ball with

r = P1(m1 +m1) + P2(n1 + n2) < 1.

Moreover, (1) and (2) have a unique solution on [1,T].

Proof. Let (z, ϑ) ∈ B̄r and t ∈ [1,T], (A1) becomes

|θ1(t, z(t), ϑ(t))| ≤ |θ1(t, z(t), ϑ(t)) − θ1(t, 0, 0)| ≤ m1||z||∞ +m2||ϑ||∞.

Similarly, one can find that
|θ2(t, z(t), ϑ(t))| ≤ n1||z||∞ + n2||ϑ||∞.

Then we have

|φ1(z, ϑ)(t)| ≤ max
t∈[1,T]

[
1
Γ(γ1)

∫ t

1

(
lo1

t
s

)γ1−1∣∣∣∣θ1(s, z(s), ϑ(s)) − θ1(s, 0, 0)) + θ1(s, 0, 0)
∣∣∣∣ d
ds

−
|b1|

Γ(γ1)|a1 + b1|

∫ T

1

(
lo1

T
s

)γ1−1
|θ1(s, z(s), ϑ(s)) − θ1(s, 0, 0) + θ1(s, 0, 0)|

d
ds
+

|c1|

|a1 + b1|

]
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≤
1
Γ(γ1)

∫ t

1

(
lo1

t
s

)γ1−1
(m1|z| +m2|ϑ| +N1)

d
ds

+
|b1|

Γ(γ1)|a1 + b1|

∫ T

1

(
lo1

T
s

)γ1−1
(m1|z| +m2|ϑ| +N1)

d
ds
+Q1

≤
(lo1T)γ1

Γ(γ1 + 1)

(
1 +

|b1|

|a1 + b1|

)
(m1|z| +m2|ϑ| +N1) +Q1.

Thus

∥φ1(z, ϑ)(t)∥∞ ≤
(lo1T)γ1

Γ(γ1 + 1)

(
1 +

|b1|

|a1 + b1|

)
(m1∥z∥∞ +m2∥ϑ∥∞ +N1) +Q1

≤ P1(m1∥z∥∞ +m2∥ϑ∥∞ +N1) +Q1

≤ (P1m1 + P2m2)r + P1N1 +Q1

≤ P1(m1 +m2)r + P1N1 +Q1.

In a similar way, one can derive that

∥φ2(z, ϑ)(t)∥∞ ≤ [P2(n1 + n2)]r + P2N2 +Q2.

From the foregoing estimates forφ1 andφ2, it follows that ||φ(z, ϑ)(t)||∞ ≤ r. Next, for (z1, ϑ1), (z2, ϑ2) ∈W×W
and t ∈ [1,T], we get∣∣∣φ1(z2, ϑ2)(t) − φ1(z1, ϑ1)(t)

∣∣∣ ≤ 1
Γ(γ1)

∫ t

1
(lo1

t
s

)γ1−1
|θ1(s, z2(s), ϑ2(s)) − θ1(s, z1(s), ϑ1(s))|

d
ds

+
|b1|

Γ(γ1)|a1 + b1|

∫ T

1
(lo1

T
s

)γ1−1
|θ1(s, z2(s), ϑ2(s)) − θ1(s, z1(s), ϑ1(s))|

d
ds

≤

[
1 +

b1

a1 + b1

(lo1T)γ1

Γ(γ1 + 1)

][
m1∥z2 − z1∥∞ +m2∥ϑ2 − ϑ1∥∞

]
= P1m1∥z2 − z1∥∞ + P1m2∥ϑ2 − ϑ1∥∞

which implies that∥∥∥φ1(z2, ϑ2)(t) − φ1(z1, ϑ1)(t)
∥∥∥
∞
≤ P1(m1 +m2)

[
∥z2 − z1∥∞ + ∥ϑ2 − ϑ1∥∞

]
(8)

In a similar way,∥∥∥φ2(z2, ϑ2)(t) − φ2(z1, ϑ1)(t)
∥∥∥
∞
≤ P2(n1 + n2)

[
∥z2 − z1∥∞ + ∥ϑ2 − ϑ1∥∞

]
. (9)

From (8) and (9), we deduce that∥∥∥φ(z2, ϑ2)(t) − φ(z1, ϑ1)(t)
∥∥∥
∞
≤ [P1(m1 +m2) + P2(n1 + n2)] (||z2 − z1||∞ + ||ϑ2 − ϑ1||∞) .

In view of condition P1(m1 + m1) + P2(n1 + n2) < 1, it follows that the operator φ possesses a unique fixed
point. This leads to the conclusion that the problems (1)-(2) have a unique solution on [1,T]. This completes
the proof.

Theorem 3.2. Let the hypothesis (A1) and (A2) hold. Then (1)-(2) has at least one solution on [1,T].

Proof. The proof will be given in several steps.

Step I: The operator φ :W ×W→W ×W is continuous.
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By the definition of θ1 and θ2, the operator φ ⊂ W ×W is bounded. Let (zn, ϑn) be a sequence of points in
W ×W converging to a point (z, ϑ) ∈W ×W. By Lebesgue Dominated Convergence Theorem,

|φ1(zn, ϑn)(t) − φ1(z, ϑ)(t)| ≤
1
Γ(γ1)

∫ t

1

(
lo1

t
s

)γ1−1
|θ1(s, zn(s), ϑn(s)) − θ1(s, z(s), ϑ(s))|

d
ds

−
|b1|

Γ(γ1)|a1 + b1|

∫ T

1

(
lo1

T
s

)γ1−1
|θ1(s, zn(s), ϑn(s)) − θ1(s, z(s), ϑ(s))|

d
ds

≤

[
1 +

|b1|

|a1 + b1|

] (lo1T)γ1

Γ(γ1 + 1)
∥θ1(., zn(.), ϑn(.)) − θ1(., z(.), ϑ(.))∥∞.

For all t ∈ [1,T], θ1 is continuous, we have ∥φ1(zn, ϑn) − φ1(z, ϑ)∥∞ → 0 as n→∞.

Similarly, we can prove ∥φ2(zn, ϑn) − φ2(z, ϑ)∥∞ → 0 as n → ∞ for all t ∈ [1,T]. Hence, it follows
from the foregoing inequalities satisfied by φ1 and φ2 that the operator φ is continuous.

Step II : Let φ: C([1,T] × R × R→ R), there exist positive constants L1 and L2 such that for each

(z, ϑ) ∈ Bν∗1 := {(z, ϑ) ∈ C([1,T] × R × R,R) : ∥z∥∞ ≤ ν∗1},

certainly for any ν∗1 > 0, we have

∣∣∣φ1(z, ϑ)(t)
∣∣∣ ≤ 1
Γ(γ1)

∫ t

1

(
lo1

t
s

)γ1−1
|θ1(s, z(s), ϑ(s))|

d
ds

+
|b1|

Γ(γ1)|a1 + b1|

∫ T

1

(
lo1

T
s

)γ1−1
|θ1(s, z(s), ϑ(s))|

d
ds
+

c1

a1 + b1

and

∥φ1(z, ϑ)(t)∥∞ ≤
[
1 +

|b1|

|a1 + b1|

] (lo1T)γ1

Γ(γ1 + 1)
M1 +

|c1|

|a1 + b1|
:= L1.

Thus we deduce that ∥φ1(z, ϑ)(t)∥∞ ≤ L1. In a similar fashion, it can be found that ∥φ2(z, ϑ)(t)∥∞ ≤ L2.
Hence it follows from the foregoing inequalities that φ1 and φ2 are uniformly bounded and hence φ is
uniformly bounded.

Step III : Next we prove that φ: C([1,T] × R × R→ R) is equicontinuous. Let r1, r2 ∈ [1,T] with r1 < r2.

∣∣∣φ1(z(r2), ϑ(r2) − φ1(z(r1), ϑ(r1))
∣∣∣ ≤ 1
Γ(γ1)

∫ r1

1

[
(lo1

r2

s
)γ1−1

− (lo1
r1

s
)γ1−1

]
|θ1(s, z(s), ϑ(s))|

d
ds

+
1
Γ(γ1)

∫ r2

r1

(lo1
r2

s
)γ1−1

|θ1(s, z(s), ϑ(s))|
d
ds

≤
M1

Γ(γ1 + 1)

[
(lo1r2)γ1 − (lo1r1)γ1

]
→ 0 as r1 → r2.

Analogously, we can obtain that∣∣∣φ2(z(r2), ϑ(r2) − φ2(z(r1), ϑ(r1))
∣∣∣ ≤ M2

Γ(δ1 + 1)

[
(lo1r2)δ1 − (lo1r1)δ1

]
.

Therefore the operator φ is equicontinuous and hence the operator φ(z, ϑ) is completely continuous.
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Step IV : We show that the set

P = {(z, ϑ) ∈W ×W : (z, ϑ) = λ1φ(z, ϑ), 0 < λ1 < 1}

is bounded. Let (z, ϑ) ∈ P and t ∈ [1,T]. Then it follows from z(t) = λ1φ1(z, ϑ)(t) that ϑ(t) = λ1φ2(z, ϑ)(t) that

|z(t)| ≤
1
Γ(γ1)

∫ t

1

(
lo1

t
s

)γ1−1
|θ1(s, z(s), ϑ(s))|

d
ds
−

|b1|

Γ(γ1)|a1 + b1|

∫ T

1

(
lo1

T
s

)γ1−1
|θ1(s, z(s), ϑ(s))|

d
ds
+

c1

a1 + b1

≤

[
1 +

|b1|

|a1 + b1|

] (lo1T)γ1

Γ(γ1 + 1)
M1 +

|c1|

|a1 + b1|
:= R,

∥z(t)∥∞ ≤ R (10)

and

∥ϑ(t)∥∞ ≤
[
1 +

|b2|

|a2 + b2|

] (lo1T)δ1

Γ(δ1 + 1)
M1 +

|c2|

|a2 + b2|
:= R. (11)

Hence, from (10) and (11), we obtain
∥z∥∞ + ∥ϑ∥∞ ≤ R

which implies that
∥(z, ϑ)∥∞ ≤ R.

HenceP is bounded and therefore by Theorem 3.2, φ has a fixed point. Then the problem (1)-(2) has at least
one solution on [0,T]. Thus the proof is completed.

4. An example

Example 4.1. Consider the system of coupled fractional differential equations:

c
HD1/2(z(t)) =

2
53

z(t) +
2
9

ϑ(t)
1 + ϑ(t)

+
2
7
,

c
HD1/2(ϑ(t)) =

3
40

| cos z(t)|
1 + | cos z(t)|

+
1

26
sinϑ(t) +

5
7
, (12)

z(1) + z(e) = 0,
ϑ(1) + ϑ(e) = 0, (13)

Here γ1 = δ1 =
1
2 , T=e,a1 = b1 = a2 = b2 = 1, c1 = c2 = 0, and

θ1(t, z(t).ϑ(t)) =
2
53

z(t) +
2
9

ϑ(t)
1 + ϑ(t)

+
2
7
,

θ2(t, z(t), ϑ(t)) =
3

40
| cos z(t)|

1 + | cos z(t)|
+

1
26

sinϑ(t) +
5
7
,

m1 =
2

53
, m2 =

2
9
, n1 =

3
40
, n2 =

1
26
.

From the given data, we find that P1 = P2 = 1.6930. Therefore P1(m1 +m2) + P2(n1 + n2) = 0.632157735 < 1. By
Theorem 3.1, the problem (12)-(13) with the given θ1(t, z, ϑ) and θ2(t, z, ϑ) has at least one solution on [1,T].
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