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Available at: http://www.pmf.ni.ac.rs/filomat

Matrix transformation and application of Hausdorffmeasure of
non-compactness on newly defined Fibo-Pascal sequence spaces

Muhammet Cihat Dağlıa, Taja Yayingb
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Abstract. In this article, we introduce Fibo-Pascal sequence spaces PF
c and PF

0 by utilizing a newly defined
Fibo-Pascal matrix PF. It is proved that PF

c and PF
0 are BK-spaces that are linearly isomorphic to c and c0,

respectively. Furthermore, the Schauder basis and α-, β-, γ-duals of both the spaces are computed, and
certain classes of matrix mappings are characterized. The final section is devoted to characterize compact
operator on the space PF

0 via Hausdorffmeasure of non-compactness (shortly, HMNC).

1. Introduction

The one of the most interesting number sequence that attracted several mathematicians due to its
fascinating properties is the Fibonacci number sequence. The Fibonacci numbers, whose terms are denoted
by Fn, are defined by the recurrence relation Fn+2 = Fn+1 + Fn with the initial conditions F0 = 0 and
F1 = 1. Thus, 0, 1, 1, 2, 3, 5, 8, 13, 21, . . . are the first few of Fibonacci numbers. Due to its intriguing nature,
some authors developed Fibonacci (or F-) calculus or Golden calculus involving Fibonacci numbers in the
literature. The readers may consult the studies [17, 22, 23] concerning the Golden calculus.

One of interesting notion in the Golden calculus is the development of fibonomial coefficients. For
0 ≤ k ≤ n, the fibonomial coefficient (see [22]) is defined by(

n
k

)
F
=

Fn!
Fk!Fn−k!

,

where Fn! is the F-factorial (or Fibonomial) given as

Fn! = FnFn−1 . . . F1, F0! = 1

with
(n

0
)

F =
(n

n
)

F = 1 and
(n

k
)

F = 0 for n < k.

2020 Mathematics Subject Classification. Primary 46B45, 46A45, 40C05, 47B07.
Keywords. Fibo-Pascal sequence spaces; Schauder basis; Matrix transformation; Duals; Compactness.
Received: 16 April 2023; Accepted: 31 July 2023
Communicated by Eberhard Malkowsky
Email addresses: mcihatdagli@akdeniz.edu.tr (Muhammet Cihat Dağlı), tajayaying20@gmail.com (Taja Yaying)
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The followings are some properties sufficed by fibonomial coefficients:(
n
k

)
F
=

(
n

n − k

)
F
,(

n
k

)
F

(
k
i

)
F
=

(
n
i

)
F

(
n − i
k − i

)
F
,

(
x + y

)n
F =

n∑
k=0

(
n
k

)
F
xkyn−k. (Fibonomial Theorem)

Let the space of all real-valued sequences be denoted by ω and recall that any vector subspace of ω is
known as a sequence space. Some of the examples of classical seqeunce spaces can be given as ℓp, ℓ∞, c, and
c0 defined as the set of all p−absolutely summable sequences, bounded sequences, convergent sequences,
and null sequences, respectively.

Let X be a Banach space. Then, it is called as a BK-space if each map pk : X → R defined by pk(z) = zk
is continuous for all k ∈ N. We recall that the spaces c and c0 are BK-spaces due to the bounded norm
∥x∥c = ∥x∥c0

= supn∈N0
|xk| for x = (xk) ∈ ω.

Let T = (tnk) be an infinite matrix with real entries tnk for all n, k ∈ N0 and Tn be the sequence in the

nth row of T for each n ∈ N. Then, the sequence Tz = ((Tz)n) =
{∑

k
tnkzk

}
is said to be the T−transform of

z = (zk) ∈ ω under the assumption of the convergence of series for each n ∈ N. Besides, we say that T is a
matrix mapping from a sequence space Λ to a sequence space Ξ whenever Tz exists and belongs to Ξ for
all z ∈ Λ. By (Λ,Ξ) , we denote the class of all matrices T such that T : Λ→ Ξ.

In this study,N = {0, 1, 2, ...} and R denotes the set of all real numbers. For simplicity in notation, in the
sequel, the summation without limits runs from 0 to∞.

Recall that the following set is called the domain of the infinite matrix T in the space Λ:

ΛT = {x ∈ ω : Tx ∈ Λ} .

In recent years, creating new sequence spaces by using a special limitation method with the help of matrix
domain and studying their topological structures, algebraic features and matrix transformations have been
intensively studied. One may refer to these nice articles [1–3, 11, 13–16, 19] and the textbook [5] for relevant
studies.

The construction of new sequence spaces by employing Pascal matrix via the matrix summability method
has been considered in [4, 24]. Later on, Yaying et al. [27] introduced q−Pascal sequence spaces and studied
their certain topological properties. Also, Schauder bases and Köthe duals as well as characterization of
certain matrix classes were derived.

By BΛ, we mean a unit sphere in a normed spaceΛ. We use the following notation involving a BK-space
Λ ⊃ ψ and f = ( fk) ∈ ω:

∥ f ∥∗Λ = sup
v∈BΛ

∣∣∣∣∣∣∣∑k

fkvk

∣∣∣∣∣∣∣ .
We note that f ∈ Λβ.

Lemma 1.1. [18, Theorem 1.29 (c)] For Λ ∈ {ℓ∞, c, c0}, we have Λβ = ℓ1 and ∥ f ∥∗
Λ
= ∥ f ∥ℓ1 .

Further, we use the notation B(Λ,Ξ) to denote the family of all bounded (continuous) linear operators
from Λ to Ξ.

Lemma 1.2. [18, Theorem 1.23 (a)] Assume that Λ and Ξ are any two BK-spaces. Then, corresponding to each
H ∈ (Λ,Ξ), there exists a linear operator TH ∈ B(Λ,Ξ) with THu = Hu for all u ∈ Λ.
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Lemma 1.3. [18] Assume that Λ ⊃ ψ is any BK-space and Ξ ∈ {c0, c, ℓ∞}. If H ∈ (Λ,Ξ), then

∥TH∥ = ∥H∥(Λ,Ξ) = sup
n∈N0

∥Hn∥
∗

Λ < ∞.

Choose a bounded subset G of a metric space Λ. Then, the Hausdorff measure of noncompactness
(HMNC) of G is denoted by χ(G) and is defined by

χ(G) = inf{δ > 0 : G ⊂ ∪n
j=0B(u j, a j),u j ∈ Λ, a j < δ, j ∈N0},

where B(u j, a j) is an open ball centred at u j and radius a j. One may consult [18] and references therein for
getting indepth idea about HMNC.

Theorem 1.4. Let Lk : c0 → c0 be an operator defined by

Lk(u) = (u0,u1,u2, ...,uk, 0, 0, ...)

for all u = (uk) ∈ c0 and k ∈N0. Then, for any bounded set G ⊂ c0, we have

χ(G) = lim
k→∞

(
sup
u∈G
∥(I − Lk)(u)∥c0

)
,

where I is the identity operator on c0.

Let Λ and Ξ be any two Banach spaces. Then, a linear operator L : Λ→ Ξ is called a compact operator
if the domain of L is all of Λ and for every bounded sequence u = (uk) ∈ Λ, the sequence (L(uk)) has a
convergent subsequence in Ξ.

It is evident from the relationship

∥L∥χ = χ(L(BΛ)) = 0

that a linear operator is compact iff its HMNC is zero. Thus, HMNC of a linear operator has an important
role in characterizing compact operator between BK spaces. We refer to [7–10, 20, 21] for interesting papers
involving compactness and the applications of HMNC between BK-spaces.

In this paper, we define the Fibo-Pascal matrix PF =
(
pF

nk

)
involving Fibonomial coefficient by

pF
nk =


( n

n−k
)

F, (0 ≤ k ≤ n),
0, (k > n),

and its inverse
[
PF

]−1
=

((
pF

)−1

nk

)
by

(
pF

)−1

nk
=

bn−k+1
( n

n−k
)

F, (0 ≤ k ≤ n),
0, (k > n),

where bn = −
n−1∑
i=1

bi
(n−1

i−1
)

F for n ≥ 2 with b1 = 1.

Also, we introduce Fibo-Pascal sequence spaces PF
0 and PF

c by utilizing Fibo-Pascal matrix PF. It is
proved that Fibo-Pascal sequence spaces PF

0 and PF
c are BK-spaces that are linearly isomorphic to c0 and c,

respectively. Besides, after obtaining Schauder basis and α-, β-, and γ-duals, certain matrix transformations
related to the spaces PF

0 and PF
c are established. Moreover, the compactness of certain matrix operators are

characterized helped by the concept of Hausdorffmeasure of non-compactness.
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2. Fibo-Pascal sequence spaces

Let us introduce the Fibo-Pascal sequence spaces PF
0 and PF

c as follows:

PF
0 =

{
x = (xk) ∈ ω : lim

n→∞

∣∣∣∣∣∣ n∑
k=0

(
n

n − k

)
F
xk

∣∣∣∣∣∣ = 0
}
,

PF
c =

{
x = (xk) ∈ ω : lim

n→∞

∣∣∣∣∣∣ n∑
k=0

(
n

n − k

)
F
xk

∣∣∣∣∣∣ < ∞
}
.

That is to say that

PF
0 = (c0)PF and PF

c = cPF . (1)

Let us consider the sequence y = (yn) as the PF-transform of the sequence x = (xk). Namely,

yn =
(
PFx

)
n
=

n∑
k=0

(
n

n − k

)
F
xk. (2)

Equivalently,

xk =
k∑

i=0
bk−i+1

(
k

k − i

)
F
yi. (3)

We are known that the sequence spaces c0 and c are BK-spaces due to the bounded norm and Fibo-Pascal
matrix PF is a triangle. Also, the relation (1) is valid. In the light of these facts and Wilansky [26, Theorem
4.3.2], the Fibo-Pascal sequence spaces PF

0 and PF
c are BK-spaces normed by

∥x∥PF
c
= ∥x∥PF

0
=

∥∥∥PFx
∥∥∥
ℓ∞
= sup

n∈N

∣∣∣∣(PFx
)

n

∣∣∣∣ .
Theorem 2.1. The Fibo-Pascal sequence spaces PF

0 and PF
c are linearly isomorphic to c0 and c, respectively.

Proof. To prove this, we shall establish a linear bijection L : PF
0 → c0. The linearity is clear. The injectiveness

of L is clear from the realization that z = 0 whenever L (z) = 0. Consider a sequence y =
(
yn

)
∈ c0. By using

(2) and (3), we obtain that

lim
n→∞

(
PFx

)
n
= lim

n→∞

n∑
k=0

(
n

n − k

)
F
xk

= lim
n→∞

n∑
k=0

(
n

n − k

)
F

k∑
i=0

bk−i+1

(
k

k − i

)
F
yi

= lim
n→∞

yn = 0.

Thus, x ∈ PF
0 . Also,

∥x∥PF
0
= sup

n∈N

∣∣∣∣∣∣ n∑
k=0

(
n

n − k

)
F

k∑
i=0

bk−i+1

(
k

k − i

)
F
yi

∣∣∣∣∣∣ = sup
n∈N

∣∣∣yn

∣∣∣ = ∥∥∥y
∥∥∥

c0
< ∞,

which yields that L is surjective and norm-preserving. The other case of the theorem can be verified
analogously. Hence, the proof is completed.
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Next, we develop Schauder basis of the spaces PF
0 and PF

C. If a normed space (Λ, ∥.∥) contains a sequence
(δn) such that for every x ∈ Λ, there exists a unique sequence of scalars (τn) for which∥∥∥∥∥∥x −

n∑
k=0
τkδk

∥∥∥∥∥∥→ 0, as n→∞.

Then, we say that (δn) is a Schauder basis for the space Λ, and we write

x =
∞∑

k=0
τkδk.

Combining Theorem 2.1 and the fact that the domain ΛT of an infinite matrix T in Λ has a basis iff Λ has a
basis allows us to present the following theorem.

Theorem 2.2. Let ψ(k) =
{
ψ(k)

n

}
n∈N
∈ PF

0 for each k ∈N be defined by

ψ(k)
n =

bn−k+1
( n

n−k
)

F, (0 ≤ k ≤ n),
0, (k > n).

Then,

(1) The set
{
ψ(0), ψ(1), ...

}
is a basis for the space PF

0 and any x in PF
0 is uniquely determined as x =

∑
k

tks(k).

(2) For µ = limk→∞ tk = limk→∞ PFx and e = (1k), the set
{
e, ψ(0), ψ(1), ...

}
is a basis for the space PF

c and any x in
PF

c is uniquely determined as x = µe +
∑
k

(
tk − µ

)
ψ(k).

3. The α-, β-, and γ-duals

We devote this section in determining α−dual, β−dual and γ−dual of the spaces PF
0 and PF

c .
By S (Λ,Ξ) , we denote the multiplier space of Λ and Ξ, defined by

S (Λ,Ξ) = {u ∈ ω : zu ∈ Ξ for all z ∈ Λ} .

Let the sequence spaces of all convergent and bounded series be denoted by cs and bs, respectively. Then,
α-dual, β-dual and γ-dual of a sequence space Λ are given by

Λα = S (Λ, ℓ1) , Λβ = S (Λ, cs) and Λγ = S (Λ, bs) , respectively.

We state the following lemma, which is an effective tool in obtaining α-dual, β-dual and γ-dual of
Fibo-Pascal sequence spaces PF

0 and PF
c . Also, by 𭟋, we denote the family of all finite subsets ofN.

Before this, we list some conditions, needed in our theorems.

sup
K∈𭟋

∑
n

∣∣∣∣∣∣∣∑k∈K

tnk

∣∣∣∣∣∣∣ < ∞, (4)

sup
n∈N

∑
k

|tnk| < ∞, (5)

lim
n→∞

tnk = ςk, for each k ∈N, (6)

lim
n→∞

∑
k

tnk = ς. (7)
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Lemma 3.1. ([25]) Let T = (tnk) be an infinite matrix. Then, each of the following assertions hold:
1) T = (tnk) ∈ (c0, ℓ1) = (c, ℓ1) iff (4) holds.
2) T = (tnk) ∈ (c0, c) iff (5) and (6) hold.
3) T = (tnk) ∈ (c, c) iff (5), (6) and (7) hold.
4) T = (tnk) ∈ (c0, ℓ∞) = (c, ℓ∞) iff (5) holds.

Theorem 3.2. Define the set φF
1 by

φF
1 =

{
q =

(
qn

)
∈ ω : sup

K∈𭟋

∑
n

∣∣∣∣∣∣ ∑k∈K
bn−k+1

(
n

n − k

)
F
qn

∣∣∣∣∣∣ < ∞
}
.

Then
(
PF

0

)α
=

(
PF

c

)α
= φF

1 .

Proof. For any q =
(
qn

)
∈ ω, one can write from (3) that

qnxn =
n∑

k=0
bn−k+1

(
n

n − k

)
F
qnyk =

(
GFy

)
n

for all n ∈ N. So, we have qx =
(
qnxn

)
∈ ℓ1 whenever x = (xk) ∈ PF

0 or x = (xk) ∈ PF
c iff GFy ∈ ℓ1 whenever

y =
(
yk

)
∈ c0 or y =

(
yk

)
∈ c. This implies that q =

(
qn

)
∈

{
PF

0

}α
or q =

(
qn

)
∈

{
PF

c

}α
iffGF

∈ (c0, ℓ1) or GF
∈ (c, ℓ1) .

So, by combining these facts and 1) of Lemma 3.1, we deduce that

q =
(
qn

)
∈

{
PF

0

}α
=

{
PF

c

}α
iff

sup
K∈𭟋

∑
n

∣∣∣∣∣∣ ∑k∈K
bn−k+1

(
n

n − k

)
F
qn

∣∣∣∣∣∣ < ∞.
This completes the proof.

Theorem 3.3. Define the sets φF
2 , φ

F
3 and φF

4 by

φF
2 =

{
q =

(
qn

)
∈ ω : sup

n∈N

n∑
k=0

∣∣∣∣∣∣ n∑
i=k

bi−k+1

(
i

i − k

)
F
qi

∣∣∣∣∣∣ < ∞
}
,

φF
3 =

{
q =

(
qn

)
∈ ω :

∞∑
i=k

bi−k+1

(
i

i − k

)
F
qi exists for each k ∈N

}
and

φF
4 =

{
q =

(
qn

)
∈ ω : lim

n→∞

n∑
k=0

n∑
i=k

bi−k+1

(
i

i − k

)
F
qi exists

}
.

Then,
{
PF

0

}β
= φF

2 ∩ φ
F
3 ,

{
PF

c

}β
= φF

2 ∩ φ
F
3 ∩ φ

F
4 and

{
PF

0

}γ
=

{
PF

c

}γ
= φF

2 .

Proof. For any q =
(
qn

)
∈ ω, by (3), one has

n∑
k=0

qkxk =
n∑

k=0

(
k∑

i=0
bk−i+1

(
k

k − i

)
F
yi

)
qk

=
n∑

k=0

(
n∑

i=k
bi−k+1

(
i

i − k

)
F
qi

)
yk

=
(
MFy

)
n
,
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for all n ∈N. Here, MFy =
(
mF

nk

)
is a triangle defined by

mF
nk =


n∑

i=k
bi−k+1

( i
i−k

)
Fqi, (0 ≤ k ≤ n),

0, (k > n),

for all n, k ∈ N. So, qx =
(
qnxn

)
∈ cs whenever x = (xk) ∈ PF

0 iffMFy ∈ c whenever y =
(
yk

)
∈ c0, from which

one concludes that q =
(
qk

)
∈

{
PF

0

}β
iffMF

∈ (c0, c) . Considering these facts and 2) of Lemma 3.1, we obtain
that

sup
n∈N

n∑
k=0

∣∣∣mF
nk

∣∣∣ < ∞ (8)

and

lim
n→∞

mF
nk exists for each k ∈N. (9)

Thus, we have
{
PF

0

}β
= φF

2 ∩ φ
F
3 . By using the similar argument, one readily obtains that q =

(
qk

)
∈

{
PF

c

}β
iff

MF
∈ (c, c) . In this case, by applying 3) of Lemma 3.1, we obtain that (8) and (9) hold and

lim
n→∞

n∑
k=0

mF
nk exists,

which concludes that
{
PF

c

}β
= φF

2 ∩ φ
F
3 ∩ φ

F
4 . Finally, the assertion

{
PF

0

}γ
=

{
PF

c

}γ
= φF

2 can be proved in a
similar way.

4. Matrix transformation

Here, we characterize some classes of matrix transformation related to the spaces PF
c and PF

0 . We state a
theorem that characterizes matrix transformation from PF

c or PF
0 to any arbitrary sequence space Ξ.

Theorem 4.1. Let Ξ ∈ ω. Then T = (tnk) ∈ (PF
0 ,Ξ) (or respectively (PF

c ,Ξ)) iff for each n ∈N0, G(n) = (1(n)
mk) ∈ (c0, c)

(or respectively (c, c)) and G = (1nk) ∈ (c0,Ξ) (or respectively (c,Ξ)) where

1
(n)
mk =


0, (k > m),
m∑

j=k
(−1) j−kb j−k+1

( j
k

)
Ftnj, (0 ≤ k ≤ m),

and

1nk =

∞∑
j=k

(−1) j−kb j−k+1

(
j
k

)
F
tnj (10)

for all k,m ∈N0.

Proof. This being analogous to the proof of Theorem 4.1 of [16], is left out.

Each of the following conditions for each n, k ∈N0 are necessary for the next result:

lim
m→∞

1
(n)
mk exists; (11)

sup
m∈N0

∞∑
k=0

∣∣∣1(n)
mk

∣∣∣ < ∞; (12)

lim
m→∞

∞∑
k=0

1
(n)
mk exists. (13)
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As a consequence of Theorem 4.1 and by using Lemma 3.1, we give the following corollaries:

Corollary 4.2. Each of the following statements hold true:

1. T ∈ (PF
0 , ℓ∞) iff (11) and (12) hold, and (5) also holds by substituting 1nk instead of tnk.

2. T ∈ (PF
0 , c) iff (11) and (12) hold, and (5) and (6) also hold by substituting 1nk instead of tnk.

3. T ∈ (PF
0 , c0) iff (11) and (12) hold, and (5) and (6) with ςk = 0 hold by substituting 1nk instead of tnk.

4. T ∈ (PF
0 , ℓ1) iff (11) and (12) hold, and (4) also holds by substituting 1nk instead of tnk.

Corollary 4.3. Each of the following statements hold true:

1. T ∈ (PF
c , ℓ∞) iff (11), (12) and (13) hold, and (5) also holds by substituting 1nk instead of tnk.

2. T ∈ (PF
c , c) iff (11), (12) and (13) hold, and (5), (6) and (7) also hold by substituting 1nk instead of tnk.

3. T ∈ (PF
c , c0) iff (11), (12) and (13) hold, and (5), (6) with ςk = 0 and (7) with ς = 0 also hold by substituting

1nk instead of tnk.
4. T ∈ (PF

c , ℓ1) iff (11), (12) and (13) hold, and (4) also holds by substituting 1nk instead of tnk.

Lemma 4.4. [6] Let Λ,Ξ ⊂ ω, T be an infinite matrix and G be a triangle. Then, T ∈ (Λ,ΞG) iff GT ∈ (Λ,Ξ).

Let T = (tnk) be an infinite matrix. Then, as a consequence of Lemma 4.4 with Corollaries 4.2 and 4.3,
one obtains the following results:

Corollary 4.5. Choose the matrix Σ = (snk) defined by

snk =

n∑
j=0

t jk

for all n, k ∈N0.Then, the necessary and sufficient conditions that T ∈ (Λ,Ξ),whereΛ ∈ {PF
0 ,P

F
c } andΞ ∈ {cs0, cs, bs}

are obtained from Corollaries 4.2 and 4.3, by replacing the elements of T by those of Σ.

Corollary 4.6. Choose the matrix C(q) = (cq
nk) defined by

cq
nk =

n∑
j=0

q j c j(q)cn− j(q)
cn+1(q)

t jk, (0 < q < 1)

for all n, k ∈N0, where (ck(q)) is a sequence of q-Catalan numbers. Then, the necessary and sufficient conditions that
T ∈ (Λ,Ξ), where Λ ∈ {PF

0 ,P
F
c } and Ξ ∈ {c0(C(q)), c(C(q))} are obtained from Corollaries 4.2 and 4.3, by replacing the

elements of T by those C(q), where c0(C(q)) and c(C(q)) are q-Catalan sequence spaces developed by Yaying et al. [28].

Corollary 4.7. Choose the matrix F (r, s) = ( fnk(r, s)) defined by

fnk(r, s) =
n∑

j=0

1
(r + s)n

F

(
n
j

)
F
r jsn− jt jk

for all n, k ∈N0.Then, the necessary and sufficient conditions that T ∈ (Λ,Ξ),whereΛ ∈ {PF
0 ,P

F
c } andΞ ∈ {br,s,F

0 , br,s,F
c }

are obtained from Corollaries 4.2 and 4.3, by replacing the elements of T by those of F (r, s), where br,s,F
0 and br,s,F

c are
Fibonomial sequence spaces developed by Dağlı and Yaying [12].
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5. Compactness on PF
0

Consider a sequence 1 = (1k) defined via the sequence f = ( fk) by

1k =

∞∑
j=k

(−1) j−kb j−k+1

(
j
k

)
F

f j

for all k ∈N0.

Lemma 5.1. If f = ( fk) ∈
(
PF

0

)β
, then 1 = (1k) ∈ ℓ1 and∑

k

fkxk =
∑

k

1kyk (14)

for all x = (xk) ∈ PF
0 .

Lemma 5.2. ∥ f ∥∗
PF

0
=

∑
k
|1k| < ∞ for all f = ( fk) ∈

(
PF

0

)β
.

Proof. Consider f = ( fk) ∈
[
PF

0

]β
. Then, 1 = (1k) ∈ ℓ1 by Lemma 5.1, and the equality (14) holds. Further

∥x∥PF
0
= ∥y∥c0 holds true which implies that x ∈ BPF

0
iff y ∈ Bc0 . Thus, we obtain that ∥ f ∥∗

PF
0
= sup

x∈BPF
0

|
∑
k

fkxk| =

sup
y∈Bc0

|
∑
k
1kyk| = ∥1∥

∗
c0

. Consequently, by using Lemma 1.1, we get that ∥ f ∥∗
PF

0
= ∥1∥∗c0

= ∥1∥ℓ1 =
∑
k
|1k|.

Let us define a matrix T̃ = (t̃nk) via an infinite matrix T = (tnk) by

t̃nk =

∞∑
j=k

(−1) j−kb j−k+1

(
j
k

)
F
tnj

for all n, k ∈N0, where we assume that the infinite sum converges.

Lemma 5.3. Let Λ ⊂ ω and T = (tnk) be an infinite matrix. If T ∈ (PF
0 ,Λ), then T̃ ∈ (c0,Λ) and Tx = T̃y for all

x ∈ PF
0 .

Proof. This is obtained easily from Lemma 5.1.

Lemma 5.4. The expression

∥TT∥ = ∥T∥(PF
0 ,Ξ) = sup

n∈N0

∑
k

|t̃nk|

 < ∞
holds true for any T ∈ (PF

0 ,Ξ) and Ξ ∈ {c0, c, ℓ∞}.

Lemma 5.5. [20, Theorem 3.7] Assume that Λ ⊃ ψ is any BK-space. Then, each of the following expressions hold
true:

(1) If T ∈ (Λ, ℓ∞), then 0 ≤ ∥TT∥χ ≤ lim supn ∥Tn∥
∗

Λ
.

(2) T ∈ (Λ, c0), then ∥TT∥χ = lim supn ∥Tn∥
∗

Λ
.

(3) If Λ has AK or Λ = ℓ∞ and T ∈ (Λ, c), then

1
2

lim sup
n
∥Tn − t∥∗Λ ≤ ∥TT∥χ ≤ lim sup

n
∥Tn − t∥∗Λ,

where t = (tk) and tk = lim
n

tnk for each k ∈N0.
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Lemma 5.6. [20, Theorem 3.11] Assume that Λ ⊃ ψ is any BK-space. If T ∈ (Λ, ℓ1), then

lim
r

sup
N∈𭟋r

∥∥∥∥∥∥∥∑n∈N

Tn

∥∥∥∥∥∥∥
∗

Λ

 ≤ ∥TT∥χ ≤ 4 lim
r

sup
N∈𭟋r

∥∥∥∥∥∥∥∑n∈N

Tn

∥∥∥∥∥∥∥
∗

Λ

 .
In addition, TT is compact iff lim

r

(
supN∈𭟋r

∥∥∥∑n∈N Tn

∥∥∥∗
Λ

)
= 0, where 𭟋r is a sub-family of 𭟋 consisting of subsets of

N0 with elements that are greater than r.

Theorem 5.7.

1. If T ∈ (PF
0 , ℓ∞), then 0 ≤ ∥TT∥χ ≤ lim supn

∑
k |t̃nk| holds.

2. If T ∈ (PF
0 , c), then

1
2

lim sup
n

∑
k

|t̃nk − t̃k| ≤ ∥TT∥χ ≤ lim sup
n

∑
k

|t̃nk − t̃k|

holds.

3. If T ∈ (PF
0 , c0), then ∥TT∥χ = lim supn

∑
k |t̃nk| holds.

4. If T ∈ (PF
0 , ℓ1), then limr ∥T∥

(r)
(PF

0 ,ℓ1)
≤ ∥TT∥χ ≤ 4 limr ∥T∥

(r)
(PF

0 ,ℓ1)
holds, where

∥T∥(r)
(PF

0 ,ℓ1)
= sup

N∈𭟋r

∑
k

|

∑
n∈N

t̃nk|

 (r ∈N0).

Proof. (1) Let T ∈ (PF
0 , ℓ∞). Clearly, the infinite sum

∞∑
k=0

tnkxk converges for each n ∈ N0 which implies that

Tn ∈
(
PF

0

)β
. As a result of Lemma 5.2, it follows that

∥Tn∥
∗

PF
0
= ∥T̃n∥

∗

c0
= ∥T̃n∥ℓ1 =

∑
k

|t̃nk|


for each n ∈N0. Thus by utilizing Lemma 5.5 (a), we conclude that

0 ≤ ∥TT∥χ ≤ lim sup
n

∑
k

|t̃nk|

 .
(2) Let T ∈ (PF

0 , c). One obtains from Lemma 5.3 that T̃ ∈ (c0, c). Thus, it follows from Lemma 5.5 (c) that

1
2

lim sup
n
∥T̃n − t̃∥∗c0

≤ ∥TT∥χ ≤ lim sup
n
∥T̃n − t̃∥∗c0

,

with t̃ = (t̃k) and t̃k = limn t̃nk for each k ∈N0. Consequently, by using Lemma 1.1, one obtains that

∥T̃n − t̃∥∗c0
= ∥T̃n − t̃∥ℓ1 =

∑
k

|t̃nk − t̃k|


for each n ∈N0.
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(3) Let T ∈ (PF
0 , c0). Since ∥Tn∥

∗

PF
0
= ∥T̃n∥

∗
c0
= ∥T̃n∥ℓ1 =

(∑
k
|t̃nk|

)
for each n ∈ N0, we conclude from Lemma

5.5 (b) that

∥TT∥χ = lim sup
n

∑
k

|t̃nk|

 .
(4) Let T ∈ (PF

0 , ℓ1). Then, T̃ ∈ (c0, ℓ1) from Lemma 5.3. Again by using Lemma 5.6, we get that

lim
r

sup
N∈𭟋r

∥∥∥∥∥∥∥∑n∈N

T̃n

∥∥∥∥∥∥∥
∗

c0

 ≤ ∥TT∥χ ≤ 4 lim
r

sup
N∈𭟋r

∥∥∥∥∥∥∥∑n∈N

T̃n

∥∥∥∥∥∥∥
∗

c0

 .
Moreover, it follows from Lemma 1.1 that ∥

∑
n∈N

T̃n∥
∗
c0
= ∥

∑
n∈N

T̃n∥ℓ1 =

(∑
k
|
∑

n∈N
t̃nk|

)
. So, the proofs of the

assertions in the theorem are complete.

The following Corollary is an immediate consequence of the theorem above.

Corollary 5.8.

1 For T ∈ (PF
0 , ℓ∞), TT is compact if limn

∑
k |t̃nk| = 0.

2 For T ∈ (PF
0 , c), TT is compact iff limn

∑
k |t̃nk − t̃k| = 0.

3 For T ∈ (PF
0 , c0), TT is compact iff limn

∑
k |t̃nk| = 0.

4 For T ∈ (PF
0 , ℓ1), TT is compact iff limr ∥T∥

(r)
(PF

0 ,ℓ1)
= 0, where ∥T∥(r)

(PF
0 ,ℓ1)
= sup

N∈𭟋r

(∑
k
|
∑

n∈N
t̃nk|

)
.
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[1] B. Altay, F. Başar, Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space, J. Math.
Anal. Appl. 336 (2007) 632–645.
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[5] F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, İstanbul, 2012.
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[10] M. Başarır, E.E. Kara, On compact operators on the Riesz Bm-difference sequence spaces–II, Iranian Journal of Science and

Technology Transaction A-Science, 36 (A3) (Special issue-Math.) (2012) 371–376.
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