

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Some properties of tensorial perspective for convex functions of selfadjoint operators in Hilbert spaces

Silvestru Sever Dragomir^{a,b}

^aMathematics, College of Sport, Health and Engineering, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia ^bDST-NRF Centre of Excellence in the Mathematical and Statistical Sciences, School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050, South Africa

Abstract.

Let H be a Hilbert space. Assume that $f:[0,\infty)\to\mathbb{R}$ is continuous and A,B>0. We define the *tensorial perspective* for the function f and the pair of operators (A,B) by

$$\mathcal{P}_{f,\otimes}(A,B) := (1 \otimes B) f(A \otimes B^{-1}).$$

In this paper we show among others that, if f is differentiable convex, then

$$\mathcal{P}_{f,\otimes}(A,B) \ge [f(u) - f'(u)u](1 \otimes B) + f'(u)(A \otimes 1),$$

for A, B > 0 and u > 0. Moreover, if Sp $(A) \subset I$, Sp $(B) \subset J$ and such that $0 < \gamma \le \frac{t}{s} \le \Gamma$ for $t \in I$ and $s \in J$, then

$$\mathcal{P}_{f,\otimes}(A,B) \leq \left[f\left(u\right) - f'\left(u\right)u\right](1\otimes B) + f'\left(u\right)(A\otimes 1) + \left[f'_{-}\left(\Gamma\right) - f'_{+}\left(\gamma\right)\right]|A\otimes 1 - u\left(1\otimes B\right)|$$

for $u \in [\gamma, \Gamma]$.

1. Introduction

Let $I_1, ..., I_k$ be intervals from \mathbb{R} and let $f: I_1 \times ... \times I_k \to \mathbb{R}$ be an essentially bounded real function defined on the product of the intervals. Let $A = (A_1, ..., A_n)$ be a k-tuple of bounded selfadjoint operators on Hilbert spaces $H_1, ..., H_k$ such that the spectrum of A_i is contained in I_i for i = 1, ..., k. We say that such a k-tuple is in the domain of f. If

$$A_{i} = \int_{I_{i}} \lambda_{i} dE_{i} \left(\lambda_{i}\right)$$

is the spectral resolution of A_i for i = 1, ..., k; by following [1], we define

$$f(A_1, ..., A_k) := \int_{I_1} ... \int_{I_k} f(\lambda_1, ..., \lambda_k) dE_1(\lambda_1) \otimes ... \otimes dE_k(\lambda_k)$$

$$\tag{1}$$

2020 Mathematics Subject Classification. Primary 47A63; Secondary 47A99.

Keywords. Tensorial product; Selfadjoint operators; Convex functions; Perspectives.

Received: 11 July 2023; Accepted: 17 August 2023

Communicated by Dragan S. Djordjević

Email address: sever.dragomir@vu.edu.au (Silvestru Sever Dragomir)

as a bounded selfadjoint operator on the tensorial product $H_1 \otimes ... \otimes H_k$.

If the Hilbert spaces are of finite dimension, then the above integrals become finite sums, and we may consider the functional calculus for arbitrary real functions. This construction [1] extends the definition of Korányi [3] for functions of two variables and have the property that

$$f(A_1,...,A_k) = f_1(A_1) \otimes ... \otimes f_k(A_k),$$

whenever f can be separated as a product $f(t_1, ..., t_k) = f_1(t_1)...f_k(t_k)$ of k functions each depending on only one variable.

It is know that, *if* f *is super-multiplicative* (*sub-multiplicative*) on $[0, \infty)$, namely

$$f(st) \ge (\le) f(s) f(t)$$
 for all $s, t \in [0, \infty)$

and if f is continuous on $[0, \infty)$, then [5, p. 173]

$$f(A \otimes B) \ge (\le) f(A) \otimes f(B)$$
 for all $A, B \ge 0$. (2)

This follows by observing that, if

$$A = \int_{[0,\infty)} t dE(t) \text{ and } B = \int_{[0,\infty)} s dF(s)$$

are the spectral resolutions of A and B, then

$$f(A \otimes B) = \int_{[0,\infty)} \int_{[0,\infty)} f(st) dE(t) \otimes dF(s)$$
(3)

for the continuous function f on $[0, \infty)$.

Recall the *geometric operator mean* for the positive operators A, B > 0

$$A\#_t B := A^{1/2} (A^{-1/2} B A^{-1/2})^t A^{1/2},$$

where $t \in [0, 1]$ and

$$A#B := A^{1/2}(A^{-1/2}BA^{-1/2})^{1/2}A^{1/2}.$$

By the definitions of # and \otimes we have

$$A \# B = B \# A \text{ and } (A \# B) \otimes (B \# A) = (A \otimes B) \# (B \otimes A).$$

In 2007, S. Wada [7] obtained the following Callebaut type inequalities for tensorial product

$$(A\#B) \otimes (A\#B) \leq \frac{1}{2} \left[(A\#_{\alpha}B) \otimes (A\#_{1-\alpha}B) + (A\#_{1-\alpha}B) \otimes (A\#_{\alpha}B) \right]$$

$$\leq \frac{1}{2} \left(A \otimes B + B \otimes A \right)$$

$$(4)$$

for A, B > 0 and $\alpha \in [0, 1]$.

Assume that $f : [0, \infty) \to \mathbb{R}$ is continuous and A, B > 0. We define the *tensorial perspective* for the function f and the pair of operators (A, B)

$$\mathcal{P}_{f,\otimes}(A,B) := (1 \otimes B) f(A \otimes B^{-1}).$$

Motivated by the above results, in this paper we show among others that, if f is differentiable convex, then

$$\mathcal{P}_{f,\otimes}(A,B) \ge \left[f(u) - f'(u) u \right] (1 \otimes B) + f'(u) (A \otimes 1),$$

for A, B > 0 and u > 0. Moreover, if $Sp(A) \subset I$, $Sp(B) \subset J$ and such that $0 < \gamma \le \frac{t}{s} \le \Gamma$ for $t \in I$ and $s \in J$, then

$$\mathcal{P}_{f,\otimes}(A,B) \le [f(u) - f'(u)u](1 \otimes B) + f'(u)(A \otimes 1) + [f'_{-}(\Gamma) - f'_{+}(\gamma)]|A \otimes 1 - u(1 \otimes B)|$$

for $u \in [\gamma, \Gamma]$.

2. Some Preliminary Facts

Recall the following property of the tensorial product

$$(AC) \otimes (BD) = (A \otimes B) (C \otimes D) \tag{5}$$

that holds for any $A, B, C, D \in B(H)$.

If we take C = A and D = B, then we get

$$A^2 \otimes B^2 = (A \otimes B)^2$$
.

By induction and using (5) we derive that

$$A^n \otimes B^n = (A \otimes B)^n$$
 for natural $n \ge 0$. (6)

In particular

$$A^n \otimes 1 = (A \otimes 1)^n \text{ and } 1 \otimes B^n = (1 \otimes B)^n$$
 (7)

for all $n \ge 0$.

We also observe that, by (5), the operators $A \otimes 1$ and $1 \otimes B$ are commutative and

$$(A \otimes 1)(1 \otimes B) = (1 \otimes B)(A \otimes 1) = A \otimes B. \tag{8}$$

Moreover, for two natural numbers m, n we have

$$(A \otimes 1)^m (1 \otimes B)^n = (1 \otimes B)^n (A \otimes 1)^m = A^m \otimes B^n.$$

$$(9)$$

According with the properties of tensorial products and functional calculus for continuous functions of selfadjoint operators, we have

$$\mathcal{P}_{f,\otimes}(A,B) = (1 \otimes B) f\left((A \otimes 1) (1 \otimes B)^{-1}\right)$$
$$= f\left((A \otimes 1) (1 \otimes B)^{-1}\right) (1 \otimes B)$$
$$= f\left((1 \otimes B)^{-1} (A \otimes 1)\right) (1 \otimes B),$$

due to the commutativity of $A \otimes 1$ and $1 \otimes B$.

In the following, we consider the spectral resolutions of *A* and *B* given by

$$A = \int_{[0,\infty)} t dE(t) \text{ and } B = \int_{[0,\infty)} s dF(s).$$
 (10)

We have the following representation result for continuous functions:

Lemma 2.1. Assume that $f:[0,\infty)\to\mathbb{R}$ is continuous and A,B>0, then

$$\mathcal{P}_{f,\otimes}(A,B) = \int_{[0,\infty)} \int_{[0,\infty)} sf\left(\frac{t}{s}\right) dE\left(t\right) \otimes dF\left(s\right). \tag{11}$$

Proof. By Stone-Weierstrass theorem, any continuous function can be approximated by a sequence of polynomials, therefore it suffices to prove the equality for the power function $\varphi(t) = t^n$ with n any natural number.

We have that

$$\begin{split} &\int_{[0,\infty)} \int_{[0,\infty)} s\varphi\left(\frac{t}{s}\right) dE\left(t\right) \otimes dF\left(s\right) \\ &= \int_{[0,\infty)} \int_{[0,\infty)} s\left(\frac{t}{s}\right)^n dE\left(t\right) \otimes dF\left(s\right) \\ &= \int_{[0,\infty)} \int_{[0,\infty)} t^n s^{1-n} dE\left(t\right) \otimes dF\left(s\right) \\ &= A^n \otimes B^{1-n} = A^n \otimes BB^{-n} = (1 \otimes B) \left(A^n \otimes B^{-n}\right) \\ &= (1 \otimes B) \left(A \otimes B^{-1}\right)^n = \mathcal{P}_{\varphi,\otimes}\left(A,B\right), \end{split}$$

which shows that (11) holds for the power function.

This proves the lemma. \Box

We assume in the following that A, B > 0.

If we consider the function $\Pi_r(u) = u^r - 1$, $u \ge 0$, r > 0, then we have

$$\mathcal{P}_{\Pi_{r,\otimes}}(A,B) := (1 \otimes B) \,\Pi_r \left(A \otimes B^{-1} \right)$$
$$= (1 \otimes B) \left[\left(A \otimes B^{-1} \right)^r - 1 \right]$$
$$= (A \otimes 1)^r \left(1 \otimes B \right)^{1-r} - 1 \otimes B.$$

If we take $f = -\ln(\cdot)$, then we get

$$\mathcal{P}_{-\ln(\cdot),\otimes}(A,B) := -(1 \otimes B) \ln \left(A \otimes B^{-1} \right)$$
$$= -\ln \left((1 \otimes B)^{-1} (A \otimes 1) \right) (1 \otimes B)$$
$$= (1 \otimes B) \left[\ln (1 \otimes B) - \ln (A \otimes 1) \right].$$

If we take $f = (\cdot) \ln(\cdot)$, then we get

$$\mathcal{P}_{(\cdot)\ln(\cdot),\otimes}(A,B) := (1 \otimes B) \left(A \otimes B^{-1} \right) \ln \left(A \otimes B^{-1} \right)$$
$$= (A \otimes 1) \left[\ln (A \otimes 1) - \ln (1 \otimes B) \right].$$

If we take $f = |\cdot - \alpha|$, $\alpha \in \mathbb{R}$, then

$$\mathcal{P}_{|\cdot - \alpha|, \otimes} (A, B) = \int_{[0, \infty)} \int_{[0, \infty)} s \left| \frac{t}{s} - \alpha \right| dE(t) \otimes dF(s)$$

$$= \int_{[0, \infty)} \int_{[0, \infty)} |t - \alpha s| dE(t) \otimes dF(s)$$

$$= |A \otimes 1 - \alpha 1 \otimes B|,$$

where for the last equality we used the result obtained in [2],

$$\psi(h(A) \otimes 1 + 1 \otimes k(B)) = \int_{I} \int_{J} \psi(h(t) + k(s)) dE(t) \otimes dF(s), \qquad (12)$$

here A and B are selfadjoint operators with $Sp(A) \subset I$ and $Sp(B) \subset J$, h is continuous on I, k is continuous on J and ψ is continuous on an interval U that contains the sum of the intervals h(I) + k(J), while A and B have the spectral resolutions

$$A = \int_{I} t dE(t)$$
 and $B = \int_{J} s dF(s)$.

For $f = |\cdot - 1|$ we get

$$\mathcal{P}_{|-1|,\otimes}(A,B) = |A \otimes 1 - 1 \otimes B|$$
.

Consider the *q*-logarithm defined by

$$\ln_q u = \begin{cases}
\frac{u^{1-q}-1}{1-q} & \text{if } q \neq 1, \\
\ln u & \text{if } q = 1.
\end{cases}$$

For $q \neq 1$ we define

$$\mathcal{P}_{\ln_{q,\otimes}}(A,B) := (1 \otimes B) \ln_q \left((A \otimes 1) (1 \otimes B)^{-1} \right)$$

$$= \frac{(A \otimes 1)^{1-q} (1 \otimes B)^q - 1 \otimes B}{1-q}.$$
(13)

Let f be a continuous function defined on the interval I of real numbers, B a selfadjoint operator on the Hilbert space H and A a positive invertible operator on H. Assume that the spectrum $\operatorname{Sp}\left(A^{-1/2}BA^{-1/2}\right) \subset \mathring{I}$. Then by using the continuous functional calculus, we can define the *perspective* $\mathcal{P}_f(B,A)$ by setting

$$\mathcal{P}_f(B,A) := A^{1/2} f(A^{-1/2} B A^{-1/2}) A^{1/2}.$$

If *A* and *B* are commutative, then

$$\mathcal{P}_f(B,A) = Af(BA^{-1})$$

provided Sp $(BA^{-1}) \subset \mathring{I}$.

It is well known that (see for instance [4]), if f is an operator convex function defined in the positive half-line, then the mapping

$$(B,A) \mapsto \mathcal{P}_f(B,A)$$

defined in pairs of positive definite operators, is operator convex.

The following inequality is also of interest, see [6]:

Theorem 2.2. Assume that f is nonnegative and operator monotone on $[0, \infty)$. If $A \ge C > 0$ and $B \ge D > 0$, then

$$\mathcal{P}_f(A,B) \ge \mathcal{P}_f(C,D)$$
. (14)

We can state the following result for the tensorial perspective:

Theorem 2.3. If f is an operator convex function defined in the positive half-line, then $\mathcal{P}_{f, \otimes}$ is operator convex in pairs of positive definite operators as well. If $A \ge C > 0$ and $B \ge D > 0$, then also

$$\mathcal{P}_{f,\otimes}(A,B) \ge \mathcal{P}_{f,\otimes}(C,D)$$
. (15)

Proof. Assume f is an *operator convex function* in the positive half-line. Since $A \otimes 1$ and $1 \otimes B$ are commutative, hence

$$\mathcal{P}_{f,\otimes}(A,B) = (1 \otimes B) f\left((A \otimes 1) (1 \otimes B)^{-1}\right) = \mathcal{P}_f(A \otimes 1, 1 \otimes B)$$
(16)

for A, B > 0.

If A, B, C, D > 0 and $\lambda \in [0, 1]$, then we have

$$\begin{split} & \mathcal{P}_{f,\otimes}\left(\left(1-\lambda\right)\left(A,B\right)+\lambda\left(C,D\right)\right) \\ & = \mathcal{P}_{f,\otimes}\left(\left(\left(1-\lambda\right)A+\lambda C,\left(1-\lambda\right)B+\lambda D\right)\right) \\ & = \mathcal{P}_{f}\left(\left(\left(1-\lambda\right)A+\lambda C\right)\otimes 1,1\otimes\left(\left(1-\lambda\right)B+\lambda D\right)\right) \\ & = \mathcal{P}_{f}\left(\left(1-\lambda\right)A\otimes 1+\lambda C\otimes 1,\left(1-\lambda\right)1\otimes B+\lambda 1\otimes D\right) \\ & = \mathcal{P}_{f}\left(\left(1-\lambda\right)\left(A\otimes 1,1\otimes B\right)+\lambda\left(C\otimes 1,1\otimes D\right)\right) \\ & \leq \left(1-\lambda\right)\mathcal{P}_{f}\left(A\otimes 1,1\otimes B\right)+\lambda\mathcal{P}_{f}\left(C\otimes 1,1\otimes D\right) \\ & = \left(1-\lambda\right)\mathcal{P}_{f,\otimes}\left(A,B\right)+\lambda\mathcal{P}_{f,\otimes}\left(C,D\right), \end{split}$$

which shows that $\mathcal{P}_{f/\otimes}$ is operator convex in pairs of positive definite operators.

If $A \ge C > 0$ and $B \ge D > 0$, then $A \otimes 1 \ge C \otimes 1 > 0$ and $1 \otimes B \ge 1 \otimes D > 0$. By utilizing Theorem 2.2 we derive that

$$\mathcal{P}_f(A \otimes 1, 1 \otimes B) \geq \mathcal{P}_f(C \otimes 1, 1 \otimes D)$$
.

By utilizing the representation (16) we derive the desired result (15). \Box

3. Main Results

Suppose that I is an interval of real numbers with interior \mathring{I} and $f:I\to\mathbb{R}$ is a convex function on I. Then f is continuous on \mathring{I} and has finite left and right derivatives at each point of \mathring{I} . Moreover, if $x,y\in\mathring{I}$ and x< y, then $f'_-(x)\leq f'_+(x)\leq f'_-(y)\leq f'_+(y)$ which shows that both f'_- and f'_+ are nondecreasing function on \mathring{I} . It is also known that a convex function must be differentiable except for at most countably many points.

For a convex function $f: I \to \mathbb{R}$, the subdifferential of f denoted by ∂f is the set of all functions $\varphi: I \to [-\infty, \infty]$ such that $\varphi(\mathring{I}) \subset \mathbb{R}$ and

$$f(x) \ge f(a) + (x - a)\varphi(a) \text{ for any } x, a \in I.$$

$$\tag{17}$$

It is also well known that if f is convex on I, then ∂f is nonempty, $f'_-, f'_+ \in \partial f$ and if $\varphi \in \partial f$, then

$$f'_{-}(x) \le \varphi(x) \le f'_{+}(x)$$
 for any $x \in \mathring{I}$.

In particular, φ is a nondecreasing function.

If f is differentiable and convex on \mathring{l} , then $\partial f = \{f'\}$.

Theorem 3.1. Assume that f is convex on $(0, \infty)$, A, B > 0 and $u \in (0, \infty)$ while $\varphi \in \partial f$, then

$$\mathcal{P}_{f,\otimes}(A,B) \ge [f(u) - \varphi(u)u](1 \otimes B) + \varphi(u)(A \otimes 1). \tag{18}$$

Moreover, if f is differentiable, then

$$\mathcal{P}_{f,\otimes}(A,B) \ge [f(u) - f'(u)u](1 \otimes B) + f'(u)(A \otimes 1), \tag{19}$$

for all A, B > 0 and $u \in (0, \infty)$.

Proof. By the gradient inequality we have

$$f(x) \ge f(u) + (x - u)\varphi(u) \tag{20}$$

for all $x, u \in (0, \infty)$.

If we take $x = \frac{t}{s}$ in (20), then we get

$$f\left(\frac{t}{s}\right) \ge f\left(u\right) + \left(\frac{t}{s} - u\right)\varphi\left(u\right) \tag{21}$$

for all t, s > 0.

If we multiply (21) by s > 0, then we get

$$sf\left(\frac{t}{s}\right) \ge sf\left(u\right) + \varphi\left(u\right)\left(t - us\right) \tag{22}$$

for all t, s > 0.

We consider the spectral resolutions of *A* and *B* given by

$$A = \int_{[0,\infty)} t dE(t) \text{ and } B = \int_{[0,\infty)} s dF(s).$$

If we take in (22) the integral $\int_{[0,\infty)} \int_{[0,\infty)} \text{over } dE(t) \otimes dF(s)$, then we get

$$\int_{[0,\infty)} \int_{[0,\infty)} sf\left(\frac{t}{s}\right) dE\left(t\right) \otimes dF\left(s\right)$$

$$\geq \int_{[0,\infty)} \int_{[0,\infty)} \left[sf\left(u\right) + \varphi\left(u\right) (t - us) \right] dE\left(t\right) \otimes dF\left(s\right)$$

$$= f\left(u\right) \int_{[0,\infty)} \int_{[0,\infty)} sdE\left(t\right) \otimes dF\left(s\right)$$

$$+ \varphi\left(u\right) \left[\int_{[0,\infty)} \int_{[0,\infty)} tdE\left(t\right) \otimes dF\left(s\right) - u \int_{[0,\infty)} \int_{[0,\infty)} sdE\left(t\right) \otimes dF\left(s\right) \right]$$

$$= f\left(u\right) \left(1 \otimes B\right) + \varphi\left(u\right) \left(A \otimes 1 - u1 \otimes B\right)$$

and by the representation (11) we get the desired inequality (18). \Box

Corollary 3.2. With the assumptions of Theorem 3.1 and for $x, y \in H$ with ||x|| = ||y|| = 1, we have

$$\langle \mathcal{P}_{f,\otimes}(A,B)(x\otimes y), x\otimes y\rangle \geq [f(u) - \varphi(u)u]\langle By, y\rangle + \varphi(u)\langle Ax, x\rangle,$$
 (23)

for all u > 0.

If f is differentiable, then

$$\langle \mathcal{P}_{f,\otimes}(A,B)(x\otimes y), x\otimes y\rangle \geq [f(u)-f'(u)u]\langle By,y\rangle + f'(u)\langle Ax,x\rangle.$$
 (24)

In particular, if we take $u = \frac{\langle Ax, x \rangle}{\langle By, y \rangle}$ in (23) then we get the Jensen's type inequality of interest

$$\frac{\left\langle \mathcal{P}_{f,\otimes}\left(A,B\right)\left(x\otimes y\right),x\otimes y\right\rangle}{\left\langle By,y\right\rangle}\geq f\left(\frac{\left\langle Ax,x\right\rangle}{\left\langle By,y\right\rangle}\right).\tag{25}$$

Proof. If we take the tensorial inner product over $x \otimes y$ in (18), then we get

$$\langle \mathcal{P}_{f,\otimes}(A,B)(x\otimes y), x\otimes y\rangle$$

$$\geq f(u)\langle (1\otimes B)(x\otimes y), x\otimes y\rangle$$

$$+\varphi(u)\langle (A\otimes 1-u1\otimes B)(x\otimes y), x\otimes y\rangle$$

$$=f(u)\langle (1\otimes B)(x\otimes y), x\otimes y\rangle$$

$$+\varphi(u)[\langle (A\otimes 1)(x\otimes y), x\otimes y\rangle - u\langle 1\otimes B(x\otimes y), x\otimes y\rangle].$$
(26)

Observe that for $x, y \in H$ with ||x|| = ||y|| = 1, we have

$$\langle (1 \otimes B) (x \otimes y), x \otimes y \rangle = \langle (1x \otimes By), x \otimes y \rangle$$
$$= \langle 1x, x \rangle \langle By, y \rangle = ||x||^2 \langle By, y \rangle = \langle By, y \rangle$$

and

$$\langle (A \otimes 1) (x \otimes y), x \otimes y \rangle = \langle Ax \otimes 1y, x \otimes y \rangle$$

= $\langle Ax, x \rangle \langle 1y, y \rangle = \langle Ax, x \rangle ||y||^2 = \langle Ax, x \rangle$

and by (26) we deduce (23).

If we take $u = \frac{\langle Ax, x \rangle}{\langle By, y \rangle}$ in (23), then we get

$$\begin{split} &\left\langle \mathcal{P}_{f, \otimes} \left(A, B \right) \left(x \otimes y \right), x \otimes y \right\rangle \\ &\geq \left[f \left(\frac{\langle Ax, x \rangle}{\langle By, y \rangle} \right) - \varphi \left(\frac{\langle Ax, x \rangle}{\langle By, y \rangle} \right) \frac{\langle Ax, x \rangle}{\langle By, y \rangle} \right] \langle By, y \rangle \\ &+ \varphi \left(\frac{\langle Ax, x \rangle}{\langle By, y \rangle} \right) \langle Ax, x \rangle \\ &= f \left(\frac{\langle Ax, x \rangle}{\langle By, y \rangle} \right) \langle By, y \rangle \,, \end{split}$$

which gives (25). \Box

Corollary 3.3. Assume that f is convex on $(0, \infty)$, $0 < m \le A$, $B \le M$ for some constants m, M and $\phi \in \partial f$, then

$$\mathcal{P}_{f,\otimes}(A,B) \ge \left[f\left(\frac{m+M}{2}\right) - \varphi\left(\frac{m+M}{2}\right) \frac{m+M}{2} \right] (1 \otimes B) + \varphi\left(\frac{m+M}{2}\right) (A \otimes 1)$$
(27)

and, if f is differentiable,

$$\mathcal{P}_{f,\otimes}(A,B) \ge \left[f\left(\frac{m+M}{2}\right) - f'\left(\frac{m+M}{2}\right) \frac{m+M}{2} \right] (1 \otimes B) + f'\left(\frac{m+M}{2}\right) (A \otimes 1).$$
(28)

Also

$$\mathcal{P}_{f,\otimes}(A,B) \ge \left(\frac{f(M) - f(m)}{M - m}\right)(A \otimes 1) + \left(\frac{2}{M - m}\int_{w}^{M} f(u) du - \frac{Mf(M) - mf(m)}{M - m}\right)(1 \otimes B).$$

$$(29)$$

Proof. If we take the integral mean in (18), then we get

$$\mathcal{P}_{f,\otimes}(A,B) \ge \left(\frac{1}{M-m} \int_{m}^{M} f(u) \, du\right) (1 \otimes B)$$

$$+ \left(\frac{1}{M-m} \int_{m}^{M} \varphi(u) \, du\right) (A \otimes 1)$$

$$- \left(\frac{1}{M-m} \int_{m}^{M} \varphi(u) \, u du\right) (1 \otimes B) .$$

$$(30)$$

Observe that, since $\varphi \in \partial \Phi$, hence

$$\frac{1}{M-m} \int_{m}^{M} \varphi(u) du = \frac{f(M) - f(m)}{M-m}$$

and

$$\begin{split} \frac{1}{M-m} \int_{m}^{M} u \varphi\left(u\right) du &= \frac{1}{M-m} \left[\left. u f\left(u\right) \right|_{m}^{M} - \int_{m}^{M} f\left(u\right) du \right] \\ &= \frac{M f\left(M\right) - m f\left(m\right)}{M-m} - \frac{1}{M-m} \int_{m}^{M} f\left(u\right) du. \end{split}$$

Therefore

$$\left(\frac{1}{M-m} \int_{m}^{M} f(u) du\right) (1 \otimes B) + \left(\frac{1}{M-m} \int_{m}^{M} \varphi(u) du\right) (A \otimes 1)$$

$$-\left(\frac{1}{M-m} \int_{m}^{M} \varphi(u) u du\right) (1 \otimes B).$$

$$= \left(\frac{f(M) - f(m)}{M-m}\right) (A \otimes 1)$$

$$+ \left(\frac{2}{M-m} \int_{m}^{M} f(u) du - \frac{Mf(M) - mf(m)}{M-m}\right) (1 \otimes B)$$

and by (30) we obtain (29). \Box

Theorem 3.4. Assume that f is continuously differentiable convex on $(0, \infty)$, A, B > 0 and $u \in (0, \infty)$, then

$$\mathcal{P}_{f,\otimes}(A,B) \le f(u)(1 \otimes B) + \mathcal{P}_{f',\otimes}^{\dagger}(A,B) - u\mathcal{P}_{f',\otimes}(A,B), \tag{31}$$

where for a continuous function g on $(0, \infty)$,

$$\mathcal{P}_{g^{\prime}\otimes}^{\dagger}(A,B) := \int_{[0,\infty)} \int_{[0,\infty)} tg\left(\frac{t}{s}\right) dE\left(t\right) \otimes dF\left(s\right)$$

$$= (A \otimes 1) g\left(A \otimes B^{-1}\right)$$

$$= (A \otimes 1) g\left((A \otimes 1) (1 \otimes B)^{-1}\right).$$
(32)

Proof. By the gradient inequality we have

$$f(x) \le f(u) + (x - u)f'(x)$$
 (33)

for all $x, u \in (0, \infty)$.

If we take $x = \frac{t}{s}$ in (33) and multiply with s, then we get

$$sf\left(\frac{t}{s}\right) \le sf\left(u\right) + tf'\left(\frac{t}{s}\right) - usf'\left(\frac{t}{s}\right) \tag{34}$$

for all $t, s \in (0, \infty)$.

We consider the spectral resolutions of *A* and *B* given by

$$A = \int_{[0,\infty)} t dE(t) \text{ and } B = \int_{[0,\infty)} s dF(s).$$

If we take in (34) the integral $\int_{[0,\infty)}\int_{[0,\infty)}$ over $dE\left(t\right)\otimes dF\left(s\right)$, then we get

$$\int_{[0,\infty)} \int_{[0,\infty)} sf\left(\frac{t}{s}\right) dE(t) \otimes dF(s)
\leq f(u) \int_{[0,\infty)} \int_{[0,\infty)} sdE(t) \otimes dF(s)
+ \int_{[0,\infty)} \int_{[0,\infty)} tf'\left(\frac{t}{s}\right) dE(t) \otimes dF(s)
- u \int_{[0,\infty)} \int_{[0,\infty)} sf'\left(\frac{t}{s}\right) dE(t) \otimes dF(s),$$
(35)

which gives the desired inequality (31). \Box

Corollary 3.5. With the assumptions of Theorem 3.4 and for $x, y \in H$ with ||x|| = ||y|| = 1, we have

$$\langle \mathcal{P}_{f,\otimes}(A,B)(x\otimes y), x\otimes y \rangle$$

$$\leq f(u)\langle By, y \rangle + \langle \mathcal{P}_{f',\otimes}^{\dagger}(A,B)(x\otimes y), x\otimes y \rangle$$

$$-u\langle \mathcal{P}_{f',\otimes}(A,B)(x\otimes y), x\otimes y \rangle,$$
(36)

for all u > 0.

In particular, if we take $u = \frac{\langle Ax, x \rangle}{\langle By, y \rangle}$ in (23) then we get the Jensen's type inequality of interest

$$0 \leq \frac{\left\langle \mathcal{P}_{f,\otimes}\left(A,B\right)\left(x\otimes y\right), x\otimes y\right\rangle}{\left\langle By,y\right\rangle} - f\left(\frac{\left\langle Ax,x\right\rangle}{\left\langle By,y\right\rangle}\right)$$

$$\leq \frac{\left\langle \mathcal{P}_{f',\otimes}^{+}\left(A,B\right)\left(x\otimes y\right), x\otimes y\right\rangle}{\left\langle By,y\right\rangle}$$

$$-\frac{\left\langle Ax,x\right\rangle}{\left\langle By,y\right\rangle^{2}} \left\langle \mathcal{P}_{f',\otimes}\left(A,B\right)\left(x\otimes y\right), x\otimes y\right\rangle.$$
(37)

Corollary 3.6. With the assumptions of Theorem 3.4 and if $0 < m \le A$, $B \le M$ for some constants m, M, then

$$\mathcal{P}_{f,\otimes}(A,B) \le f\left(\frac{m+M}{2}\right)(1\otimes B) + \mathcal{P}_{f',\otimes}^{\dagger}(A,B) - \frac{m+M}{2}\mathcal{P}_{f',\otimes}(A,B)$$
(38)

and

$$\mathcal{P}_{f,\otimes}(A,B) \le \left(\frac{1}{M-m} \int_{m}^{M} f(u) du\right) (1 \otimes B) + \mathcal{P}_{f',\otimes}^{\dagger}(A,B) - \frac{m+M}{2} \mathcal{P}_{f',\otimes}(A,B).$$
(39)

We also have:

Theorem 3.7. Assume that f is convex on $(0, \infty)$, A, B > 0 with spectra $Sp(A) \subset I$, $Sp(B) \subset J$ and such that $0 < \gamma \le \frac{t}{s} \le \Gamma$ for $t \in I$ and $s \in J$, then

$$\mathcal{P}_{f,\otimes}(A,B) \le [f(u) - u\varphi(u)](1 \otimes B) + \varphi(u)(A \otimes 1)$$

$$+ [f'_{-}(\Gamma) - f'_{+}(\gamma)]|A \otimes 1 - u(1 \otimes B)|$$

$$(40)$$

for $u \in [\gamma, \Gamma]$ and $\varphi \in \partial f$.

Proof. Observe that, by the gradient inequality we have

$$f(x) \le f(u) + (x - u) \varphi(x)$$

$$= f(u) + (x - u) \varphi(u) + (x - u) [\varphi(x) - \varphi(u)]$$
(41)

for x, u > 0 and $\varphi \in \partial f$.

Since φ is monotonic nondrecreasing, then

$$0 \le (f'(x) - f'(u))(x - u) = |(f'(x) - f'(u))(x - u)|$$

= $|f'(x) - f'(u)||x - u| \le [f'_{-}(\Gamma) - f'_{+}(\gamma)]|x - u|$,

for $x, u \in [\gamma, \Gamma]$ and by (41)

$$f(x) \le f(u) + (x - u)\varphi(u) + [f'_{-}(\Gamma) - f'_{+}(\gamma)]|x - u|$$
(42)

for $x, u \in [\gamma, \Gamma]$.

If we take in (42) $x = \frac{t}{s}$ and multiply with s, then we get

$$sf\left(\frac{t}{s}\right) \le sf\left(u\right) + (t - us)\,\varphi\left(u\right) + \left[f'_{-}\left(\Gamma\right) - f'_{+}\left(\gamma\right)\right]|t - us|\tag{43}$$

for t, s > 0 with $\frac{t}{s}$, $u \in [\gamma, \Gamma]$.

We consider the spectral resolutions of A and B given by

$$A = \int_{I} t dE(t)$$
 and $B = \int_{I} s dF(s)$.

If we take in (34) the integral $\int_{I} \int_{I} \text{over } dE(t) \otimes dF(s)$, then we get

$$\begin{split} &\int_{I} \int_{J} sf\left(\frac{t}{s}\right) dE\left(t\right) \otimes dF\left(s\right) \\ &\leq f\left(u\right) \int_{I} \int_{J} sdE\left(t\right) \otimes dF\left(s\right) + \varphi\left(u\right) \int_{I} \int_{J} \left(t - us\right) dE\left(t\right) \otimes dF\left(s\right) \\ &+ \left[f'_{-}\left(\Gamma\right) - f'_{+}\left(\gamma\right)\right] \int_{I} \int_{J} \left|t - us\right| dE\left(t\right) \otimes dF\left(s\right), \end{split}$$

which, as above, gives the desired result (40). \Box

Corollary 3.8. With the assumptions of Theorem 3.7 and for $x, y \in H$ with ||x|| = ||y|| = 1, we have

$$\langle \mathcal{P}_{f,\otimes}(A,B)(x\otimes y), x\otimes y \rangle$$

$$\leq [f(u) - u\varphi(u)] \langle By, y \rangle + \langle Ax, x \rangle \varphi(u)$$

$$+ [f'_{-}(\Gamma) - f'_{+}(\gamma)] \langle |A\otimes 1 - u(1\otimes B)|(x\otimes y), x\otimes y \rangle$$

$$(44)$$

for all $u \in [\gamma, \Gamma]$.

In particular, if we take $u = \frac{\langle Ax, x \rangle}{\langle By, y \rangle} \in [\gamma, \Gamma]$ in (44) then we get the reverse of Jensen's inequality

$$0 \leq \frac{\left\langle \mathcal{P}_{f,\otimes}\left(A,B\right)\left(x\otimes y\right), x\otimes y\right\rangle}{\left\langle By,y\right\rangle} - f\left(\frac{\left\langle Ax,x\right\rangle}{\left\langle By,y\right\rangle}\right)$$

$$\leq \left[f'_{-}\left(\Gamma\right) - f'_{+}\left(\gamma\right)\right]$$

$$\times \left(\frac{1}{\left\langle By,y\right\rangle} \left|A\otimes 1 - \frac{\left\langle Ax,x\right\rangle}{\left\langle By,y\right\rangle}\left(1\otimes B\right)\right| \left(x\otimes y\right), x\otimes y\right).$$

$$(45)$$

4. Some Examples

Consider the function $\Pi_r(u) = u^r - 1$, $u \ge 0$, $r \ge 1$, then by (19) we get

$$\mathcal{P}_{\Pi_{r/\otimes}}(A,B) \ge ru^{r-1}(A\otimes 1) - [(r-1)u^r + 1](1\otimes B),$$
 (46)

for A, B > 0 and u > 0.

If there exist the constants m_1 , M_1 , m_2 and M_2 with

$$0 < m_1 \le A \le M_1, m_2 \le B \le M_2, \tag{47}$$

then we can take in Theorem 3.7 $\gamma=\frac{m_1}{M_2}$ and $\Gamma=\frac{M_1}{m_2}$ and from (40) we derive

$$\mathcal{P}_{\Pi_{r},\otimes}(A,B) \le A \otimes 1 - [(r-1)u^{r} + 1](1 \otimes B) + r\left(\left(\frac{M_{1}}{m_{2}}\right)^{r-1} - \left(\frac{m_{1}}{M_{2}}\right)^{r-1}\right)|A \otimes 1 - u(1 \otimes B)|.$$
(48)

For $x, y \in H$ with ||x|| = ||y|| = 1, we have by (25) that

$$\frac{\langle \mathcal{P}_{\Pi_r, \otimes} (A, B) (x \otimes y), x \otimes y \rangle}{\langle By, y \rangle} \ge \left(\frac{\langle Ax, x \rangle}{\langle By, y \rangle} \right)^r - 1 \tag{49}$$

for *A*, B > 0.

If the condition (47) is satisfied, then by (45) we get

$$0 \leq \frac{\left\langle \mathcal{P}_{f,\otimes}\left(A,B\right)\left(x\otimes y\right), x\otimes y\right\rangle}{\left\langle By,y\right\rangle} - \left(\frac{\left\langle Ax,x\right\rangle}{\left\langle By,y\right\rangle}\right)^{r} + 1$$

$$\leq r\left(\left(\frac{M_{1}}{m_{2}}\right)^{r-1} - \left(\frac{m_{1}}{M_{2}}\right)^{r-1}\right)$$

$$\times \left(\frac{1}{\left\langle By,y\right\rangle} \left|A\otimes 1 - \frac{\left\langle Ax,x\right\rangle}{\left\langle By,y\right\rangle}\left(1\otimes B\right)\right| \left(x\otimes y\right), x\otimes y\right)$$

$$(50)$$

for $x, y \in H$ with ||x|| = ||y|| = 1. If we take the convex function $f = (\cdot) \ln(\cdot)$, then we get by (19) that

$$\mathcal{P}_{(\cdot)\ln(\cdot)\otimes}(A,B) \ge (\ln u + 1)(A \otimes 1) - u(1 \otimes B), \tag{51}$$

for A, B > 0 and u > 0.

By (25) we obtain

$$\frac{\left\langle \mathcal{P}_{(\cdot)\ln(\cdot),\otimes}\left(A,B\right)\left(x\otimes y\right),x\otimes y\right\rangle}{\left\langle Ax,x\right\rangle}\geq\ln\left(\frac{\left\langle Ax,x\right\rangle}{\left\langle By,y\right\rangle}\right)\tag{52}$$

for $x, y \in H$ with ||x|| = ||y|| = 1.

If the condition (47) is satisfied, then by (40) we obtain

$$\mathcal{P}_{(\cdot)\ln(\cdot)}(A,B) \le (\ln u + 1) (A \otimes 1) - u (1 \otimes B)$$

$$+ \ln\left(\frac{M_1 M_2}{m_2 m_1}\right) |A \otimes 1 - u (1 \otimes B)|$$

$$(53)$$

for $u \in \left[\frac{m_1}{M_2}, \frac{M_1}{m_2}\right]$.

From (45) we also derive

$$0 \leq \frac{\left\langle \mathcal{P}_{(\cdot)\ln(\cdot),\otimes}\left(A,B\right)\left(x\otimes y\right), x\otimes y\right\rangle}{\left\langle Ax,x\right\rangle} - \ln\left(\frac{\left\langle Ax,x\right\rangle}{\left\langle By,y\right\rangle}\right)$$

$$\leq \ln\left(\frac{M_{1}M_{2}}{m_{2}m_{1}}\right)$$

$$\times \left\langle \frac{1}{\left\langle Ax,x\right\rangle} \left| A\otimes 1 - \frac{\left\langle Ax,x\right\rangle}{\left\langle By,y\right\rangle}\left(1\otimes B\right) \right| \left(x\otimes y\right), x\otimes y\right\rangle$$

$$(54)$$

for $x, y \in H$ with ||x|| = ||y|| = 1.

By choosing other convex functions, one can derive several similar inequalities. The details are omitted.

References

- [1] H. Araki and F. Hansen, Jensen's operator inequality for functions of several variables, Proc. Amer. Math. Soc. 128 (2000), No. 7, 2075-2084.
- [2] S. S. Dragomir, Some tensorial Hermite-Hadamard type inequalities for convex functions of selfadjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll. 25 (2022), Art. 90, 14 pp. [Online https://rgmia.org/papers/v25/v25a90.pdf]
- [3] A. Korányi. On some classes of analytic functions of several variables. Trans. Amer. Math. Soc., 101 (1961), 520–554.
- [4] A. Ebadian, I. Nikoufar and M. E. Gordji, Perspectives of matrix convex functions, Proc. Natl. Acad. Sci. USA, 108 (2011), no. 18, 7313–7314.
- [5] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
- [6] I. Nikoufar and M. Shamohammadi, The converse of the Loewner-Heinz inequality via perspective, Lin. & Multilin. Alg., 66 (2018), No. 2, 243–249.
- [7] S. Wada, On some refinement of the Cauchy-Schwarz Inequality, Lin. Alg. & Appl. 420 (2007), 433-440.