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Abstract.
Let H be a Hilbert space. Assume that f : [0, 00) — R is continuous and A, B > 0. We define the fensorial
perspective for the function f and the pair of operators (A, B) by

Pro(A,B):=(1®B)f(A®B™).
In this paper we show among others that, if f is differentiable convex, then
Pre(AB) 2 [f ) - f wu]1®B)+ f () (A®1),
for A, B > 0 and u > 0. Moreover, if Sp (A) € I, Sp (B) C J and such that0 <y < ﬁ <Tfortelands € ], then
Pro(AB) <[fw) - f (wu]A@B)+ f (W) (A1) + [ () - fL(M]IA®1-u(1®B)
foru e [y,T].

1. Introduction

Let Iy, ..., Iy be intervals from R and let f : I; X ... X Iy = R be an essentially bounded real function defined
on the product of the intervals. Let A = (4;, ..., A;) be a k-tuple of bounded selfadjoint operators on Hilbert
spaces Hi, ..., Hi such that the spectrum of A; is contained in I; for i = 1, ..., k. We say that such a k-tuple is in
the domain of f. If

AiZfAz‘dEi (Ai)
Ii

is the spectral resolution of A; fori = 1, ..., k; by following [1], we define

f(Al,...,Ak) 2:[... If(/\l,...,/\k)dEl (A1) ® ... dEy (Ax) (1)
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as a bounded selfadjoint operator on the tensorial product H; ® ... ® H;.

If the Hilbert spaces are of finite dimension, then the above integrals become finite sums, and we may
consider the functional calculus for arbitrary real functions. This construction [1] extends the definition of
Koranyi [3] for functions of two variables and have the property that

f(Ar, ., A = fi(A1) ® ... ® fi(Ag),

whenever f can be separated as a product f(ti, ..., tx) = fi(t1)...fe(tx) of k functions each depending on only
one variable.
It is know that, if f is super-multiplicative (sub-multiplicative) on [0, c0), namely

f(st) = (<) f(s) f(t) foralls,t e [0, o)
and if f is continuous on [0, ), then [5, p. 173]

f(A®B) > (<) f(A)® f(B) forall A, B > 0. ()
This follows by observing that, if

A= f tdE (t) and B = f sdF (s)
[0,00) [0,00)

are the spectral resolutions of A and B, then
f(A®B) = f f (st)dE (t) ® dF (s) ©)]
[0,00) V[0,00)

for the continuous function f on [0, c0).
Recall the geometric operator mean for the positive operators A, B > 0
A#,B = Al/Z(A‘l/zBA_l/z)tAl/z,
where t € [0,1] and
A#B = Al/z(A_l/zBA_1/2)1/2A1/2.
By the definitions of # and ® we have
A#B = B#A and (A#B) ® (B#A) = (A®B)#(B® A).
In 2007, S. Wada [7] obtained the following Callebaut type inequalities for tensorial product

(A#B) ® (A#B) < % [(A#,B) ® (A#h_oB) + (A#1-B) ® (A#,B)] (4)

1
< E(A®B+B®A)

for A,B>0and a €[0,1].
Assume that f : [0, c0) — Ris continuous and A, B > 0. We define the tensorial perspective for the function
f and the pair of operators (A, B)

Pro(A,B):= (1©B) f(A®B™).

Motivated by the above results, in this paper we show among others that, if f is differentiable convex,
then

Pro(A,B) 2 [f(w) - f Wu]1®B)+ f () (A®1),
for A, B > 0 and u > 0. Moreover, if Sp(A) c I, Sp(B) € J and such that0 <y < é <Tfortelands € ] then
Pre(AB) <[f(w) - f wu](1©B)+ f (W) (A®1)
+[LM-fLM]A®1-u(1®B)
foru e[y, T].
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2. Some Preliminary Facts
Recall the following property of the tensorial product
(AC)® (BD) = (A®B)(C®D)

that holds for any A, B,C,D € B(H).
If we take C = A and D = B, then we get

A?®B*=(A®B)*.
By induction and using (5) we derive that
A"®B" = (A® B)" for natural n > 0.
In particular
A"®1=(A®1)" and1®B" = (1®B)"

foralln > 0.

We also observe that, by (5), the operators A ® 1 and 1 ® B are commutative and

A®1)(1®B)=(1®B)(A®1) =A®B.
Moreover, for two natural numbers m, n we have

A®1)"(1®B)"=(1®B)"(A®1)" = A" ® B".

1501

©)

According with the properties of tensorial products and functional calculus for continuous functions of

selfadjoint operators, we have

Pre(A,B)=(18B)f((A®1)(1®B)™")
=f((Ae1)(1©B)")(18B)
=f(@eB) " (A®1)(18B),

due to the commutativity of A®1and 1 ® B.
In the following, we consider the spectral resolutions of A and B given by

A= f tdE (t) and B = f sdF (s) .
[0,00) [0,00)

We have the following representation result for continuous functions:

Lemma 2.1. Assume that f : [0, 00) — R is continuous and A, B > 0, then

Pf@(A,B):f[ow)j[;m)sf(é)dE(t)®dF(s).

(10)

(11)

Proof. By Stone-Weierstrass theorem, any continuous function can be approximated by a sequence of
polynomials, therefore it suffices to prove the equality for the power function ¢ (t) = " with n any natural

number.
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We have that

f f sgo f dE(t)®dP(s)
[0,00) J[0,00)
f f dE (H) ® dF ()
[0,00) J[0,00) S
=f f t"s1™"dE (t) ® dF (s)
[0,09) J[0,00

=A"®B"™" =A"®BB™" = (1®B)(A"®B™)
=(18B)(A®B!) =Pys(A,B),

which shows that (11) holds for the power function.
This proves the lemma. [

We assume in the following that A, B > 0.
If we consider the function IT, (1) = u" =1, u > 0, r > 0, then we have

Pr,. (A,B):= (18 B)IT, (A®B™")
=(1eB)[(AeBT) 1]
=(A®1)(1®B)"" -1®B.

If we take f = —In(-), then we get
P_nye (A,B) = —(1®B)In(A®B™")
=-In(1®B)" (A®1)(1®B)
=(1®B)[In(1®B)-In(A®1)].
If we take f = (-)In(-), then we get

Poin0e (A,B) = (18B)(A®B™)In(AeB™)

=(A®1)[In(A®1)-In(1®B)].

If we take f = |- —a|, a € R, then
t
- -«

Pl—ale (A, B) = f f s
[0,00) J[0,00) IS
= f f |t — as|dE (t) @ dF (s)
[0,00) J[0,00)

=|A®1-al®B|,

dE (t) ® dF (s)

where for the last equality we used the result obtained in [2],

¢(h(A)®1+1®k(B))=flf]gb(h(t)+k(s))dE(t)®dF(s),

1502

(12)

here A and B are selfadjoint operators with Sp (A) ¢ I and Sp (B) C J, h is continuous on I, k is continuous
on J and v is continuous on an interval U that contains the sum of the intervals / (I) + k (J), while A and B

have the spectral resolutions

= ItdE(t) and B = ]]‘SdF(S).
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For f = | — 1| we get
Pi-10(A,B)=1A®1-1®B|.
Consider the g-logarithm defined by

1-q_q .
%ﬁq#l,
Inju =

Inuifg=1.

For q # 1 we define

Pin,e (A, B) :== (1®B)In, ((A e1)(1® B)—l) .
_ A1) "(1®B)'-1®B
= = .

Let f be a continuous function defined on the interval I of real numbers, B a selfadjoint operator on the
Hilbert space H and A a positive invertible operator on H. Assume that the spectrum Sp (A‘l/ 2BA7Y 2) cl.
Then by using the continuous functional calculus, we can define the perspective P (B, A) by setting

Pr(B,A) = AV2f(A2BATI2) A1,
If A and B are commutative, then

Pr(B,A) = Af (BA™")

provided Sp (BA‘l) cl
It is well known that (see for instance [4]), if f is an operator convex function defined in the positive
half-line, then the mapping
(B, A) = P (B, A)

defined in pairs of positive definite operators, is operator convex.
The following inequality is also of interest, see [6]:

Theorem 2.2. Assume that f is nonnegative and operator monotone on [0,00). f A > C > 0and B > D > 0, then
Pr (A B) 2 Pr(CD). (14)
We can state the following result for the tensorial perspective:

Theorem 2.3. If f is an operator convex function defined in the positive half-line, then P, is operator convex in
pairs of positive definite operators as well. If A > C > 0and B > D > 0, then also

Pf,@ (A, B) 2 ?f,@ (C, D) . (15)

Proof. Assume f is an operator convex function in the positive half-line. Since A®1 and 1®B are commutative,
hence

Pre(AB) =(10B) f(A®1)(18B)")=P;(A®1,18B) (16)

for A,B > 0.
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IfA,B,C,D>0and A € [0,1], then we have

Pre((1=2A)(A,B)+A(C D))

=Pre(1-A)A+AC,(1-A1)B+AD))

=Pr(1-AM)A+AC)®1,1®((1-A)B+ AD))

=Pr(1-N)A®1+AC®1,(1-1)1®B+A1®D)

=Pr(1-1)(A®1,1®B)+A(C®1,1®D))

SA-MPr(A®1,1®B)+ AP (C®1,1®D)

=(1-MN)Psre (A B)+APse (C D),
which shows that $,¢ is operator convex in pairs of positive definite operators.

IfA>C>0andB>D >0,thenA®1>C®1>0and 1®B >1®D > 0. By utilizing Theorem 2.2 we

derive that

Pf(A®1,1®B) ZPf(C@l,l@D).

By utilizing the representation (16) we derive the desired result (15). [

3. Main Results

Suppose that I is an interval of real numbers with interior [ and f : I — R is a convex function on I.
Then f is continuous on [ and has finite left and right derivatives at each point of I. Moreover, if x, y € [ and
x <y, then f/ (x) < f] (x) < f/ (y) < fi (y) which shows that both f’ and f] are nondecreasing function on
L. Tt is also known that a convex function must be differentiable except for at most countably many points.

For a convex function f : I — R, the subdifferential of f denoted by df is the set of all functions
@ : I > [—00, c0] such that (p(Io) CRand

f(x)>f@)+(x—a)p () forany x,a € I. 17)
It is also well known that if f is convex on I, then df is nonempty, f/, fi € df and if ¢ € df, then
f(x) < @) < fl(x) forany x € .

In particular, ¢ is a nondecreasing function.
If f is differentiable and convex on I, then df = {f'}.

Theorem 3.1. Assume that f is convex on (0,00), A, B> 0 and u € (0, o) while ¢ € df, then

Pre(AB) 2 [f () - w)u]1®B)+ 9 u)(A®1). (18)
Moreover, if f is differentiable, then

Pre(AB) 2 [f(w) - f wu]1eB)+f () (A1), (19)
forall A, B> 0and u € (0,0).
Proof. By the gradient inequality we have

f@) = f )+ —u)p(u) (20)

forall x, u € (0,00).
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If we take x = £ in (20), then we get
t t
£(5)2 £+ (5 =)o

forallt, s > 0.
If we multiply (21) by s > 0, then we get

sf(é) > sf () + ¢ (u) (t - us)

forallt,s > 0.
We consider the spectral resolutions of A and B given by

A= f tdE (t) and B = f sdF (s) .
[0,00) [0,00)

If we take in (22) the integral f[o o0) f[o o) OVer dE (t) ® dF (s), then we get

t
j[;,oo) flo,oo) of (5) dE(H) @ dF (5)
© ono) Lm) [sf () + @ () (t — us)] dE (t) @ dF (s)
- dE (t) ® dF
f(u)‘f[;),oo) j{;’m)s () (S)

d d - d d
+q0(u)[j[~0,m)f[;,m)t E (t) ® dF (s) uf[;,oo)j[.o,m)s E(t)® F(s)]

=f(u)(1®B)+¢pu)(A®1-ul®B)

and by the representation (11) we get the desired inequality (18). [

Corollary 3.2. With the assumptions of Theorem 3.1 and for x, y € H with ||x|| = ||y|| =1, we have

(Pro(A,B) (x®y), x®y) 2 [f (4) — ¢ () u] (By, y) + () (Ax, x),

forall u> 0.
If f is differentiable, then

(Pro(A,B) (x®y), x@y) 2 [f ) - f @) ul (By, y) + f (u) (Ax,x).

(Ax,x)

In particular, if we take u = === in (23) then we get the Jensen’s type inequality of interest

(Byy)

(Pro(A,B)(x®Y), x®Y) - ((Ax,x))
By, ) By

Proof. If we take the tensorial inner product over x ® y in (18), then we get

<$Df,® (A, B) (x®y),x®y>

> fw){((1eB)(x®y),x®y)
+oW){(A®1-ul®B)(x®Yy),x®Y)
=fW(1®B)(x®Yy),x®Y)
+ew[{(Ael)(xey),x®y) —u(l®eB(xay),x®y)].

1505

(21)

(22)

(23)

(24)

(25)

(26)
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Observe that for x, y € H with ||x|| = ||y|| =1, we have

(1®B)(x®y),x®y) =((1x®By),x®Y)
= (1x,x) (By, y) = IdI* (By, y) = (By, )
and
(A1) (x®y),xQy) =(Ax®1y,xQ y)
= (Ax,2) (L, ) = A, ][ = Ax, )

and by (26) we deduce (23).

If we take u = % in (23), then we get

<Pf,® AB)(x®Yy),x® y>

> [ ) () g o9

((Ax, x) ) (Ax,0)

+
P\ By, v)

/(s o9

which gives (25). O

1506

Corollary 3.3. Assume that f is convex on (0,00), 0 < m < A, B < M for some constants m, M and ¢ € Jf, then

prmih 2 )] 2] o1
(m+M)(A®1)

and, if f is differentiable,

i ) ()
+f’(m+M)(A®l).

Also

Prio(AB) 2

M Mf (M) -
+(M—fmfm Foau - EVZI) 4 g )

£ = £ (m)
(W)“@“

M

Proof. If we take the integral mean in (18), then we get

M
Pre (A B) 2 (M—m ; f(u)du)(l@B)

M
+(Mimfm (p(u)du)(A@l)

M
—(Aﬁfm (p(u)udu)(l@B).

(27)

(28)

(29)

(30)
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Observe that, since ¢ € d®, hence

M M) —
1 f(P(”)d”:f(M)_i(m)

M- 1
and
M M
M—l_mfm ufp(u)deim[uf(u)lff—fm f(u)du]
Mf (M) - M
- f(M)_Zf(m)_Mimf f (u) du.
Therefore
M M
(Aﬁ ; f(u)du)(1®3)+(M1mfm (p(u)st)(A@l)
M
_(Aﬁf (P(u)udu)(1®B).
z(f%:;(m))m@l)
M MFf M) -
+(Aﬁfm f(u)du — f(M)_:nnf(m))(lezJB)

and by (30) we obtain (29). O

Theorem 3.4. Assume that f is continuously differentiable convex on (0,0), A, B > 0 and u € (0, c0), then

7)f/® (A/ B) < f (H) (1 ® B) + P}//@ (A/ B) - upf’/@ (A/ B) ’
where for a continuous function g on (0, o),

+ o t
Pl o (A,B) = L N L N tg(s)dE(t)@ndF(s)

=(A®1)g(A®B™)
=(A81)g((Ae1)1eB)™).

Proof. By the gradient inequality we have
fO) < fu)+(x—u) f' (x)

forall x, u € (0,0).
If we take x = £ in (33) and multiply with s, then we get

) srorear ) -or()

forallt, s € (0, ).
We consider the spectral resolutions of A and B given by

A= f tdE (t) and B = f sdF (s) .
[0,00) [0,00)

1507

(31)

(32)

(33)

(34)
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If we take in (34) the integral f[o ) f[o «) OVer dE (t) ® dF (s) , then we get

f f sf(f)dE(t)cadF(s) (35)
[0,00) J[0,00) = \S

< f(u) f[om) er) sdE (t) ® dF (s)

+f[0/w) j{;/w)tf’(é)dE(t)deF(s)

—ufmm)]{;/w)sf’(g)dE(t)@JdF(s),

which gives the desired inequality (31). O
Corollary 3.5. With the assumptions of Theorem 3.4 and for x, y € H with ||x|| = ||y|| =1, we have

(Pre(A,B)(x8Y),xQY) (36)
< f(u)(By,y)+ <P},,® (AB)(x®y),x® y>
- u(SDfr,@ (A,B)(x®y),x®y>,
forall u> 0.
_ (A

In particular, if we take u o) in (23) then we get the Jensen’s type inequality of interest

(37)

(Pre(AB)(x®y),x0y) (<Ax,x>)
(By, ) (By, )
<7)},,® (AB)(x®Y),x® y>
By, y)
<Pf/,® (AB)(x®y),x® y> )

_ (Axx)
(By,y)*
Corollary 3.6. With the assumptions of Theorem 3.4 and if 0 < m < A, B < M for some constants m, M, then

m+M
pf/@ (A/B) Sf( 2

_m+M
2

Ja®B) + P} (4,B) (39)

P, (A, B)

and

- m

1 M
Pf,@,(A,B)S(M mf f(u)du)(l@B) (39)

m+M
+ P}//@ (A/ B) - Tpf’/@) (A/ B) .

We also have:

Theorem 3.7. Assume that f is convex on (0,00), A, B > 0 with spectra Sp (A) C I, Sp(B) C | and such that
O<y<i<Tfortelandse], then

Pre (A, B) < [f (W) —up W] (1®B) +¢ ) (A1) (40)
+[LM - (A1 -u(leB)
foru € [y,T]and ¢ € df.
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Proof. Observe that, by the gradient inequality we have
fR) < f)+ (e —u) )
= f @)+ (= u) @ ) + (= u) [p (¥) = @ ()]

for x, u > 0 and ¢ € Jf.
Since ¢ is monotonic nondrecreasing, then

0<(f ()= f ) x—u) = |(f @)= f W) (x—u)|
F @)= f @)l —ul < [£2@O) = fL )]k —ul,
for x, u € [y, I'] and by (41)

f) S f@+x—u)ye@)+[f T)—fiO)]lx—ul

forx, u e[y, I.
If we take in (42) x = ¢ and multiply with s, then we get

f(5) < 5f )+ G- us) () + £ D) - £ ()] -

fort,s >0 with £, ue[y,T].
We consider the spectral resolutions of A and B given by

A:ftdE(t) andB:fde(s).
I J

If we take in (34) the integral fl f] over dE (t) ® dF (s),, then we get

flfjsf(é)dE(t)@)dF(s)

Sf(u)fﬁsdE(t)@dP(s)+(p(u)flj]‘(t—us)dE(t)®dF(s)
+1r@-£0) [ f] |~ us|dE () @ dF (),

which, as above, gives the desired result (40). O

Corollary 3.8. With the assumptions of Theorem 3.7 and for x, y € H with ||x|| = ||y|| =1, we have

<Pf,® (AB)(x®y),x® y)
< [f W) —up W] (By, y) + (Ax, x) ¢ ()
+[fO-ffMI(A1-u(1®B)|(x®y),x®Y)

forallu e [y,T].
(Ax,x)

In particular, if we take u = ===+ € [y,T] in (44) then we get the reverse of Jensen’s inequality

(Byy)

. (Pf,® (A,B) (x®y),x®y> ~ ((Ax,x))
B (By, ) (By, y)
<[ @-fio]
1
8 <<By,y> ‘Am B

(Ax, x)
(By, )

(1®B)

(x®y),x®y>.

1509

(41)

(42)

(43)

(44)

(45)
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4. Some Examples
Consider the function I'T, (1) = 4" =1, u > 0, r > 1, then by (19) we get
Pr,e(A,B) 2 M (A1) - [(r-1)u" +1](1®B), (46)

for A,B>0and u > 0.
If there exist the constants my, M;, m, and M, with

O0<m <A<M;,m <B<M,, (47)

then we can take in Theorem 3.7 y = ﬂ—; and I' = % and from (40) we derive

Pri,0(A,B)<A®1—[(r-1)u" +1](1®B) (48)
r=1 r—1
+r((%) _(A’%) )|A®1—u(1®B)|.

For x, y € H with ||x|| = ||y|| =1, we have by (25) that

(Prio(4,B)x®y) x®y) (<Ax, x) ) 1 (49)

(By, y) “\(By,y)

for A,B > 0.
If the condition (47) is satisfied, then by (45) we get

(50)

<Pf,® (A,B) (x®y),x®y> ((Ax,x) )r
_ 1
(By, v» (By, v)

M1 r—1 m r—1
<G -G )
1 (Ax, x)
—A®1 - 1®B
X<<By,y>‘ ® <By,y>( =)

for x, y € H with ||x|| = ||y|| =1.
If we take the convex function f = (-)In(-), then we get by (19) that

(x®y),x®y>

Piymee (A,B) > (nu+1)(A®1)—u(1®B), (51)

for A,B>0and u > 0.
By (25) we obtain

(Pomoe U B oY) x8y) ( (Ax, x>) (52)

(Ax, x) (By, v

for x, y € H with |lx]| = [|y|| = 1.
If the condition (47) is satisfied, then by (40) we obtain

Piyie (A,B) < (Inu+1)(A®1) - u(1®B) (53)
MiM,

+ ln(
mpy

)|A®1—u(1®B)|

forue[m Aﬁ]

My’ my
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From (45) we also derive

§ (Pomoe (A,B) (x®y),x®Y) ~ lrl((Ax,x})

- (Ax, x) By, y) &9
<In (M)
momq
1 (Ax, x)
><<<Ax,x> ®l_—(By,y>(1®B) (x®y),x®y>

for x, y € H with |lx]| = ||y|| = 1.
By choosing other convex functions, one can derive several similar inequalities. The details are omitted.
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